结构力学习题集——超静定结构计算力法

合集下载

用力法求解超静定结构

用力法求解超静定结构

用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。

用力法是一种经典的结构分析方法,常用于求解超静定结构。

本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。

一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。

用力法适用于各种类型的结构,包括梁、柱、桁架等。

二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。

2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。

通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。

3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。

平衡方程包括力的平衡条件和力的矩平衡条件。

4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。

变形方程可以根据结构的刚度和约束条件来确定。

5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。

6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。

如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。

三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。

假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。

1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。

2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。

3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。

4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。

(整理)力法求解超静定结构的步骤:.

(整理)力法求解超静定结构的步骤:.

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。

二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。

即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。

多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。

多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。

即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。

3、物理条件:即变形或位移与内力之间的物理关系。

精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。

力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。

五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。

超静定结构解法力法.pptx

超静定结构解法力法.pptx

P
EI
EI
l
P
解:
X1
l
X1=1
Pl
P
1 0
11 X1 1P 0 11 l 3 / 3EI
1P Pl 3 / 2EI
X1 3P / 2()
M M1 X1 M P
l
M1
Pl
MP
第8页/共21页
3 Pl M 2
力法基本思路小结
解除多余约束,转化为静定结构。多余约 束代以多余未知力——基本未知力。
分析基本结构在单位基本未知力和外界因 素作用下的位移,建立位移协调条件——力 法方程。
从力法方程解得基本未知力,由叠加原理 获得结构内力。超静定结构分析通过转化为 静定结构获得了解决。
第9页/共21页
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
X1
X2
X3
X1
X2
X3
去掉一个链杆或切断 一个链杆相当于去掉 一个约束
X1 X2
X3
第12页/共21页
X2 X1
X3
X3
X2 X1
X3 X1
X1 X2 X3
X2
去掉一个固定端支 座或切断一根弯曲 杆相当于去掉三个 约束.
将刚结点变成铰结 点或将固定端支座 变成固定铰支座相 当于去掉一个约束.
几何可变体系不能 X3 作为基本体系
M
1 0
1 11 1P 0
11 X1 11
力法 方程
11 X1 1P 0
1 11 l 3 / 3EI
1P ql 4 / 8EI
X1 3ql / 8() M M1 X1 M P

结构力学 超静定结构的位移计算

结构力学 超静定结构的位移计算
2P
3a 3 12 21 4 EI
17 Pa 3 48EI
16 P X2 44
X1
3P 44
EI
p EI
6Pa/44 3Pa/44 3Pa/44 8Pa/44
2EI
16 P X2 44
M图
1
P=1
1 A EI
6 Pa 1 Pa 1 1 a 1 a 1 2 44 2 4 2 EI
6 150
30
90
M
P=1
MP
结构的 弯矩图
超静定结构的位移计算
4) M图与M P图图乘,
CV 1800 EI
小结:超静定结构的位移计算: 图 1)选基本体系作出超静定结构的弯矩图,作为MP
2)任选该超静定结构的一种基本结构,在拟求位移 M 的位置作用单位力,作出 图
3)
M图与M P图图乘结果就是所求的位移。
2)原结构等价于基本体系,则原结构在C点竖向位移,就 等价于求基本结构在X1 ,X2 及分布荷载q共同作用下C点竖 向位移。即,问题转化为求静定结构的位移问题。 150
q
- 5 kN
75 kN C
30
90
求此结构体系的位移, 3个荷载作用
结构的 弯矩图
超静定结构的位移计算
3)为求C处的竖向位移,在C处 作用P=1,与MP图图乘即可。
3Pa 7 Pa 2 1 1 a 44 176 EI 2
超静定结构的位移计算
计算实例
图示结构,各杆长都是 L,梁截面为矩形,截面高度h 数为 。求(1)绘弯矩图(2)求杆 A 端转角
L 10
,线膨胀系
-150 -150 A +250

结构力学第六章超静定结构的计算——力矩分配法

结构力学第六章超静定结构的计算——力矩分配法

《结构力学》习题集- 33 -第六章 超静定结构的计算——力矩分配法一、本章基本内容:1、基本概念:转动刚度、分配系数、传递系数、侧移刚度;(1)力矩分配法是以位移法为基础的一种渐进解法;(2)转动刚度与杆件的线刚度和远端支承情况有关;(3)杆件远端的支承情况不同,相应的传递系数也不同;(4)分配系数的值小于等于1,并且1=∑ik μ;(5)力矩分配法只适用于计算无结点线位移的结构。

2、固端力矩、结点不平衡力矩的计算;3、用力矩分配法计算多跨梁和无侧移刚架的一般步骤:(1)计算汇交于各结点的每一杆端的分配系数并确定传递系数;(2)求出各杆件的固端弯矩;(3)求出结点不平衡力矩,将其反号乘上各杆件的分配系数得到相应的分配弯矩。

然后,再将分配弯矩乘以传递系数,求出远端的传递弯矩。

按此步骤循环计算,直到不平衡力矩小到可以忽略不计为止。

(4)将每一杆端的固端弯矩、历次的分配弯矩和传递弯矩相加,求出最后杆端弯矩。

(5)校核最后杆端弯矩,作内力图。

二、习题:(一)、判断题(不作为考试题型):1、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。

2、若图示各杆件线刚度i 相同,则各杆A 端的转动刚度S 分别为:4 i , 3 i , i 。

AA A3、图示结构EI =常数,用力矩分配法计算时分配系数4 A μ= 4 / 11。

1l ll第六章 力矩分配法- 34 -4、图示结构用力矩分配法计算时分配系数μAB =12/,μAD =18/。

BCA D E =1i =1i =1i =1i5、用力矩分配法计算图示结构,各杆l 相同,EI =常数。

其分配系数μBA =0.8,μBC =0.2,μBD =0。

A B CD6、在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。

7、若用力矩分配法计算图示刚架,则结点A 的不平衡力矩为 −−M Pl 316。

超静定结构习题答案

超静定结构习题答案

超静定结构习题答案一、力法计算超静定结构1. 图示结构的超静定次数n = 。

答案:图示结构的超静定次数n = 8 。

2.用力法计算图示超静定刚架(利用对称性),绘出M 图。

答案:kN13.296]341621[145]4333323321[1011111111=-=⨯⨯⨯-=∆=⨯⨯+⨯⨯⨯⨯==∆+X EIEI EI EI X P P δδ 3. 图(b )为 图(a ) 结构的力法基本体系,试求典型方程中的系 数 δ11和 自 由 项 ∆1P 。

X lq(b)q答案:q⎪⎭ ⎝-===ϕδl l EIl l X C 4341111作M 图 1X M M =二、位移法1.求图示结构位移法典型方程的系数 r11 和 自 由 项 R P1 ,( 括号内 数表示相对 线刚度)。

m答案r11 = 17RP1 = 322.图示结构位移法典型方程的系数r22 和自由项 R P1 分 别 是 ⎽⎽⎽⎽ ,⎽⎽⎽⎽⎽ 。

( 括 号 内 数 表 示 相 对 线 刚 度 )22答案r22= 4.5RP1= -83. 计算图示结构位移法典型方程中的系 数 r r1122, 。

答案 :r EI 110375=.r EI 2235=.4.计算图示结构的位移法典型方程的全部自由项。

答案 :R P 10=R P 280=-k N三、力矩分配法1.用力矩分配法作图示连续梁的弯矩图(分配两轮)。

答案:2.用力矩分配法作图示连续梁的弯矩图(分配两轮)。

答案:。

超静定结构内力计算

超静定结构内力计算

超静定结构内力计算首先,需要明确的是,超静定结构与静定结构的计算方法基本相同,都是通过力平衡和力矩平衡方程来计算结构内力。

下面以一简支梁为例,介绍超静定结构内力计算的方法。

假设有一简支梁,梁长为L,受到均布载荷q,支座A、B处有横向支撑。

我们需要计算梁上任意一点x处的弯矩和剪力。

首先,对于简支梁,力平衡方程可得:∑Fx=0=>RA+RB=0(1)∑Fy=0=>VA+VB-qL=0(2)力矩平衡方程可得:∑Mz=0=>-qLx+VBx=0(3)(x为横坐标)由以上方程可以得到:RA=-RB=-qL/2,VA=-VB=qL/2接下来,我们可以使用能量方法计算结构内力。

能量方法是利用结构所受外界实际工作等于内力做的虚功,通过对外界做功和结构内工作的平衡,求解得到内力。

我们将简支梁分解为多个力学小段,每一小段的长度为Δx。

考虑梁上一小段AB,以A点为起点,Δx位置为B点。

对这一小段,外界对结构所做的虚功为:δWext = -VAdy (4) (dy为小段长度)其中,结构内力V由能量方法得到。

结构内力杆件AB的内工作为:dU = VAdy (5)因为外界做的虚功等于内工作,可得:-δWext = dU将式(4)和式(5)代入上式,得:VAdy = -VAdy对上式进行积分,得:∫VAdy = -∫VAdy∫VAdy = -(∫VAdy)由于简支梁内力为常数,所以可以将其从积分符号中移出,得:V∫Ady = -V∫Ady即:VAΔy=-VAΔy可以看出,对于简支梁而言,外界虚功和结构内工作的积分是相等的。

通过上述分析,我们可以发现,能量方法实际上是在计算外界对结构做的虚功,而虚功就是外界力对结构的作用力乘以作用距离的积分。

所以能量方法的基本思想是通过积分计算外界对结构的虚功,然后根据虚功等于内工作的原理,推导出结构的内力。

总结起来,超静定结构的内力计算方法主要是使用力平衡和力矩平衡方程,利用能量方法计算结构内力。

力法求解超静定结构

力法求解超静定结构

力法求解超静定结构
超静定结构是指其支反力个数大于等于结构模式自由度的结构,
也就是说,该结构中的支撑点不够,会产生多余的支反力,这就导致
了该结构的解题难度非常大。

但是,采用力法求解可以有效地解决这
个问题。

首先,可以采用静力平衡方程来确定结构中的支反力。

静力平衡
方程是通过平衡结构中的所有受力和力矩,来确定支反力的方程。


的基本形式为ΣF=0和ΣM=0,其中ΣF表示所有力的总和,ΣM表示
所有力的总力矩。

然后,要使用结构分析的基本原理,即支点位移法。

支点位移法
通过改变结构中某些支点的位置,并计算相应的支反力和位移量,来
求解结构中的位移和反力。

在计算反力时,要注意支点位移前后对结
构的影响,以及反力大小的变化等因素。

此外,在解决超静定结构时,还要注意结构中梁、柱等构件的弹
性变形。

这些变形对结构的位移和反力也会产生影响,因此需要考虑
其中的因素。

最后,要注意力法求解的精度问题。

由于超静定结构中存在多余
的支反力,因此求解过程中难免会产生误差。

为了提高计算精度,可
以采用迭代的方法,在多次迭代中逐步优化计算结果,提高求解精度。

总之,采用力法求解超静定结构需要掌握一定的理论基础和实践技巧,同时要注意结构中的弹性变形、支点移动等因素,并采用迭代的方法进行计算,以提高计算精度。

这些掌握了的技巧和方法将在实际工程中具有指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 超静定结构计算——力法一、判断题:1、判断下列结构的超静定次数。

(1)、 (2)、(a)(b)(3)、 (4)、(5)、 (6)、(7)、(a)(b)2、力法典型方程的实质是超静定结构的平衡条件。

3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。

4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。

5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。

(a)(b)X 16、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方程中∆12122t a t t l h =--()/()。

t 21t lA h (a)(b)X 17、图a 所示结构,取图b 为力法基本体系,其力法方程为。

(a)(b)1二、计算题:8、用力法作图示结构的M 图。

3m m9、用力法作图示排架的M 图。

已知 A = 0.2m 2,I = 0.05m 4,弹性模量为E 0。

q10、用力法计算并作图示结构M 图。

EI =常数。

a a11、用力法计算并作图示结构的M 图。

ql /212、用力法计算并作图示结构的M 图。

q3 m4 m13、用力法计算图示结构并作出M 图。

E I 常数。

(采用右图基本结构。

)l 2/3l /3/3l/314、用力法计算图示结构并作M 图。

EI =常数。

3m3m15、用力法计算图示结构并作M 图。

EI =常数。

2m2m 2m2m16、用力法计算图示结构并作M 图。

EI =常数。

l l ql l17、用力法计算并作图示结构M 图。

E I =常数。

18、用力法计算图示结构并作弯矩图。

161kN m m m m19、已知EI = 常数,用力法计算并作图示对称结构的M 图。

l l20、用力法计算并作图示结构的M 图。

EI =常数。

a a21、用力法作图示结构的 M 图 。

EI = 常数。

2q l22、用力法作M 图。

各杆EI 相同,杆长均为 l 。

23、用力法计算图示结构并作M 图。

EI = 常数。

4m 2kN24m mm24、用力法计算并作出图示结构的M 图。

E = 常数。

25、用力法计算图示结构并作M 图。

EI =常数。

20kN3m 4m 3m26、用力法计算图示结构并作M 图。

EI =常数。

ll /2l /2l /2l /227、利用对称性简化图示结构,建立力法基本结构(画上基本未知量)。

E =常数。

l l28、用力法计算图示结构并作M 图。

E =常数。

l ll /2/2/2/229、已知EA 、EI 均为常数,用力法计算并作图示结构M 图。

l l30、求图示结构A 、D 两固定端的固端力矩,不考虑轴力、剪力的影响。

ll /231、选取图示结构的较简便的力法基本结构。

EI =常数。

6m 6m32、选择图示结构在图示荷载作用下,用力法计算时的最简便的基本结构。

P33、用力法求图示桁架杆AC 的轴力。

各杆EA 相同。

a D34、用力法求图示桁架杆BC 的轴力,各杆EA 相同。

aD35、用力法计算图示桁架中杆件1、2、3、4的内力,各杆EA =常数。

d d d36、用力法求图示桁架DB 杆的内力。

各杆EA 相同。

4 m 4 m 4 m4 m37、用力法作图示结构杆AB 的M 图。

各链杆抗拉刚度EA 1相同。

梁式杆抗弯刚度为EI EI a EA ,=21100,不计梁式杆轴向变形。

a38、用力法计算并作出图示结构的M 图。

已知EI =常数,EA =常数。

a a a a a39、用力法计算并作图示结构M 图,其中各受弯杆EI=常数,各链杆EA EI l =)42。

40、图示结构支座A 转动θ,EI =常数,用力法计算并作M 图。

l A θ41、图a 所示结构EI =常数,取图b 为力法基本结构列出典型方程并求∆1c 和∆2c 。

lc (a)c(b)42、用力法计算图示超静定梁并作M 图。

E =常数。

l /2=1I2ϕI l /243、用力法计算并作图示结构由支座移动引起的M 图。

EI =常数。

cl l l44、用力法计算并作图示结构由支座移动引起的M 图。

EI =常数。

l /245、用力法作图示结构的M 图。

EI =常数,截面高度h 均为1m ,t = 20℃,+t 为温度升高,-t 为温度降低,线膨胀系数为α。

6m -t +t -t46、用力法计算图示结构由于温度改变引起的M 图。

杆件截面为矩形,高为h ,线膨胀系数为α。

l EI+10-10CC47、用力法计算并作图示结构的M 图,已知:α=0.00001及各杆矩形截面高h EI ==⨯⋅0321052.,m kN m 。

6m +10EI +30+10C CC EI48、图示连续梁,线膨胀系数为α,矩形截面高度为h ,在图示温度变化时,求M B 的值。

EI 为常数。

l C Cl -10+20B C -1049、已知EI =常数,用力法计算,并求解图示结构由于AB 杆的制造误差(短∆)所产生的M 图。

aa /2/2ABEA=o o50、求图示单跨梁截面C 的竖向位移∆C V 。

l l /2/251、图示等截面梁AB ,当支座A 转动θA ,求梁的中点挠度f C 。

l θC EI BA f C/2l /2A52、用力法计算并作图示结构M 图。

E I =常数,K EI l ϕ=。

53、图b 为图a 所示结构的M 图,求B 点的竖向位移。

EI 为常数。

ql ql 23ql 26ql 28(a) (b) M 图54、求图示结构中支座E 的反力R E ,弹性支座A 的转动刚度为k 。

l l l55、用力法作图示梁的M 图。

EI =常数,已知B 支座的弹簧刚度为k 。

B Al1k=EI/l356、用力法计算图示结构并作M 图。

EI =常数,k EIa =353。

Pkaaa第四章 超静定结构计算——力法(参考答案)1、(1)、4,3;(2)、3;(3)、21;(4)、6;(5)、1; (6)、7;(7)、5,62、(X )3、(O )4、(X )5、(X )6、(X )8、m kN M AB ⋅=31(上侧受拉);m kN M BC ⋅=15(有侧受拉)。

9、X 12219=. (压力)(水平链杆轴力) 10、1MM M /8M 图7/8X M /8 11、()←=281 ql X (有侧支座水平反力)12、m kN M CB⋅=06.2(上侧受拉)13、PX 1X 215、17、l2PlPl PlPl PX 1Pl 2Pl 2M 1图M P 图M 图δ1131312315==-=l EI PlEIX PP ,,.∆18、m kN M CA⋅=7600(右侧受拉) 19、四 角 处 弯 矩 值:202ql M =(外侧受拉)20、21、M P 图M 图M 1图X 1=13ql 2/83ql 2/8ql 2/8ql 2/8ql 2/2l22、P /2P /2X 1/2X 1=1l /2l /2l /2l M 1图P /2P /2M 图P l M 图/4P l /4P l /4P l /4P l /2P23、X 1413431基本体系图 M ()kN .m kN .m4kN m24、P/2P/21基本体系M 图1.77P1.77P3P PP3P1.23P 1.23P4.234.2325、10.445基本体系11.82210.44511.82210kNX 1图 M ()kN .m26、29、141411(⨯m 28)30、M M Pl A D ==/3 (上 侧 受 拉 )33、X N P AC 10561==. 34、X N P CB 10789==-. 35、N P N P N N P 123422202==-==,,,36、N N X P D B DB =+=010086. (拉 力 )37、M = 0。

38、Pa 2Pa 239、364Pl 2964Pl M 图40、图M 1()34EI l θ41、./ , , , 02122221211211111l c c X X X X c c c c -=∆-=∆-=∆++=∆++θδδδδ43、M6EI 5l 2c44、图M X 16EIC 7l245、=144M ´EI a ()46、图M 30EI hl α/()48、M EIhB =45α,下 侧 受 拉 50、()∆∆C V l=⋅-⎛⎝ ⎫⎭⎪↓316516ϕ51、()f EI l l EI ll C A A =⨯⨯⨯⎛⎝ ⎫⎭⎪=↓1124123316θθ 52、111=M 1图M P 图M 图1180Pl14580.Pl 2980Plδ1153=l EI ,∆12129482980P Pl EIX Pl=-=, 53、()∆B ql EI=↓424 54、11ql2k2lEI l 36δ1132834=+l EIl k ,∆14332422Pql EI ql k ql l EI k =-+⎛⎝ ⎫⎭⎪=-+⎛⎝ ⎫⎭⎪,δ111111316X X k l EI X P+=-=-∆,k EI l k EI l ql X 461722 1++=,R X E=12 55、1X 1∆δ1111131X X k l EI X +=-==∆∆∆∆,, δ11313==-l EIl ,, ∆∆()l EI X l l EI X l X EI 31312133131-=-+=, ,X EI l 1234= 34EIl图M。

相关文档
最新文档