数学教案-圆周角
九年级数学下册《圆周角定理》教案、教学设计

希望同学们通过完成作业,进一步巩固圆周角定理的知识,为后续学习打下坚实基础。同时,也希望大家能够享受学习数学的过程,不断提高自己的几何素养。
2.新课:以问题驱动的形式,引导学生观察圆周角的特点,猜想圆周角定理,并进行证明。
3.例题:设计不同难度的例题,让学生运用圆周角定理进行求解,巩固所学知识。
4.练习:布置适量的练习题,让学生在解答过程中,进一步掌握圆周角定理的应用。
5.总结:对本节课的学习内容进行总结,强调圆周角定理的重要性,激发学生学习数学的兴趣。
1.请同学们完成课本第章节后的习题1、2、3,这些习题涵盖了圆周角定理的基础知识,旨在帮助大家巩固所学,提高解题能力。
2.选做课本第章节后的习题4、5,这两题难度较大,需要综合运用圆周角定理及其他几何知识。希望同学们在解答过程中,注意分析问题,逐步解决问题。
3.结合生活实际,设计一道与圆周角定理相关的实际问题,并尝试运用所学知识进行解答。此举旨在培养学生的几何直观和实际应用能力,激发学生学习数学的兴趣。
3.选取部分学生的解答进行展示,让学生互相学习,提高解题能力。
(五)总结归纳
1.对本节课的知识点进行总结,强调圆周角定理的重要性。
2.引导学生回顾学习过程,总结自己在学习圆周角定理时的收获和感悟。
3.提醒学生课后进行复习,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对圆周角定理的理解和应用,特布置以下作业:
九年级数学下册《圆周角定理》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握圆周角的概念,理解并掌握圆周角定理及其推论,能够灵活运用圆周角定理解决相关问题。
2.培养学生运用圆周角定理进行几何图形的求解能力,提高学生的逻辑思维能力和解决问题的能力。
《圆周角的性质》数学教案

《圆周角的性质》数学教案标题:《圆周角的性质》数学教案一、教学目标:1. 知识与技能:- 学生能够理解和掌握圆周角的概念和性质。
- 能够运用圆周角的性质解决相关问题。
2. 过程与方法:- 通过观察、分析、归纳等活动,培养学生抽象思维和逻辑推理能力。
- 在探究过程中,学会用图形语言表达思考过程,提高几何直观能力。
3. 情感态度价值观:- 培养学生对数学的兴趣和热爱,体验数学的魅力。
- 让学生感受到数学知识在实际生活中的应用价值,增强学习的动力。
二、教学重点和难点:重点:理解并掌握圆周角的定义和性质。
难点:运用圆周角的性质解决实际问题。
三、教学准备:教具:多媒体课件,圆规,直尺,白板。
四、教学过程:(一) 导入新课(5分钟)1. 教师展示一些关于圆的图片,引导学生回顾之前学过的有关圆的知识,如半径、直径、弧度等。
2. 提出问题:“在圆中,除了直线角度,还有其他特殊的角吗?”引出圆周角的概念。
(二) 新授内容(30分钟)1. 定义讲解:教师以实例的形式,让学生明确什么是圆周角。
即顶点在圆上,两边都与圆相交的角就是圆周角。
2. 性质讲解:教师引导学生观察、比较圆周角与它所对应的圆心角的关系,发现圆周角等于它所对应圆心角的一半。
3. 练习巩固:设计一些简单的练习题,让学生通过实践来加深对圆周角性质的理解。
(三) 巩固提升(15分钟)1. 例题解析:选择一些典型的题目,详细解释解题思路,让学生了解如何运用圆周角的性质解决问题。
2. 自主练习:给出一些相关的题目,让学生独立完成,教师巡回指导。
(四) 小结反馈(10分钟)1. 学生小结:请学生分享本节课的学习心得,教师给予适当的点评和补充。
2. 教师总结:再次强调圆周角的定义和性质,并指出它们在解题中的重要作用。
五、作业布置:1. 复习课堂内容,整理笔记。
2. 完成课本上的习题。
六、教学反思:在教学过程中,要注意关注学生的反应,及时调整教学策略。
同时,要注重培养学生的自主学习能力和合作精神,让他们在探索中体验到学习的乐趣。
九年级数学上册《圆周角》教案、教学设计

(3)运用信息技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
2.教学过程:
(1)导入:以生活中的圆形物体为例,引导学生关注圆周角,激发他们的学习兴趣。
(2)新知探究:通过画图、观察、猜想、验证等环节,引导学生自主探究圆周角定理及其推论。
(2)关注学生的情感态度,鼓励他们在学习中勇于尝试、不怕困难。
(3)重视学生的反馈,及时调整教学策略,使教学更符合学生的实际需求。
四、教学内容与过程
(一)导入新课
在课堂开始时,我将以生活中的实例引入圆周角的概念。我会向学生展示一些圆形物体,如自行车轮、时钟等,并提问:“这些物体上有什么共同的特点?”引导学生关注圆形物体上的角度问题。接着,我会提出问题:“我们知道,圆是由无数个点组成的,那么这些点与圆心之间的角度有什么关系呢?”通过这个问题,激发学生对圆周角的探究欲望,从而引出本节课的主题——圆周角。
3.应用题:将圆周角知识应用于实际生活中,如测量圆形物体的周长、面积等。
让学生在练习中逐步提高解题能力,同时培养他们学以致用的意识。
(五)总结归纳
在课堂的最后,我会对本节课的知识点进行总结,强调圆周角的定义、定理和推论的重要性。同时,我会让学生分享他们在学习过程中的心得体会,以及如何运用所学知识解决实际问题。此外,我会布置课后作业,让学生进一步巩固所学知识,为下一节课的学习打下基础。
(二)讲授新知
1.圆周角的定义:首先,我会让学生观察圆上的任意两点与圆心所形成的角,引导学生发现这些角的度数是相等的。然后,我会给出圆周角的定义:圆周角是由圆上两点与圆心所形成的角,其度数等于所对圆弧的一半。
2.圆周角定理:在学生理解圆周角定义的基础上,我会引导学生通过画图、测量、计算等方法,发现并证明圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等。
初中数学初三数学下册《圆周角》教案、教学设计

本章节的学习对象为初三学生,他们在前两年的数学学习中,已经掌握了基本的几何知识和逻辑推理能力,具备了一定的图形观察能力和空间想象能力。在此基础上,学生对圆的性质和方程有一定了解,为学习圆周角奠定了基础。然而,圆周角涉及的概念和性质较为抽象,学生在理解上可能存在一定难度。此外,学生在解决与圆周角相关的问题时,可能缺乏有效的解题方法和技巧。因此,在教学过程中,教师应关注以下几点:
四、教学内容与过程
(一)导入新课
1.教学活动设计:利用多媒体展示生活中常见的圆形物体,如车轮、硬币、圆桌等,让学生观察并思考这些物体上的圆周角特点。
2.提问方式:教师提问:“大家知道什么是圆周角吗?圆周角有哪些特点?它在我们生活中有哪些应用?”
3.学生回答:鼓励学生积极回答,分享他们对圆周角的观察和认识。
2.提高题:选取一些涉及圆周角的几何图形,让学生独立完成求解。此类题目旨在培养学生的空间想象能力和逻辑推理能力。
设计意图:通过提高题目的练习,使学生能够将圆周角知识应用于实际问题中,提高解题技巧和思维水平。
3.拓展题:设计一些综合性的问题,让学生运用圆周角定理以及其他相关知识解决。此类题目有助于提高学生的综合运用能力和创新意识。
4.教师引导:根据学生的回答,教师总结圆周角的初步概念,并指出本节课将深入探讨圆周角的性质和应用。
(二)讲授新知
1.教学内容:讲解圆周角的定义,阐述圆周角与圆心角的关系,引入圆周角定理。
2.教学方法:采用直观演示、举例说明、推理证明等方式,让学生理解并掌握圆周角的性质。
3.教学步骤:
a.展示圆的图形,指出圆周角的定义。
1.注重启发式教学,引导学生通过观察、操作、推理等途径,发现圆周角的性质,提高学生的几何直观能力。
圆周角教案

圆周角教案圆周角教案三篇圆周角教案篇1教学目标:(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;(3)培养添加辅助线的能力和思维的广阔性.教学重点:圆周角定理的三个推论的应用.教学难点:三个推论的灵活应用以及辅助线的添加.教学活动设计:(一)创设学习情境问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?(二)分析、研究、交流、归纳让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.老师组织学生归纳:推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)问题3:(1)一个特殊的圆弧――半圆,它所对的圆周角是什么样的角?(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?学生通过以上两个问题的解决,在教师引导下得推论2:推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.启发学生根据推论2推出推论3:推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.(三)应用、反思例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.求证:AB・AC=AE・AD.对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).解(略)教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.变式练习1:如图,△ABC内接于⊙O,∠1=∠2.求证:AB・AC=AE・AD.变式练习2:如图,已知△ABC内接于⊙O,弦AE平分∠BAC交BC于D.求证:AB・AC=AE・AD.指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB 的平分线交⊙O于D;求BC,AD和BD的长.解:(略)说明:充分利用直径所对的圆周角为直角,解直角三角形.练习:教材P96中1、2(四)小结(指导学生共同小结)知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.(五)作业教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.探究活动我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.提示:(1)连结BC,可得∠E=(的度数―的度数)(2)延长AE、CE分别交圆于B、D,则∠B=的度数,∠C=的度数,∴∠AEC=∠B+∠C=(的度数+的度数).圆周角教案篇2教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.掌握圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题情感态度引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学流程安排活动流程图活动内容和目的活动1 创设情景,提出问题活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系活动3 发现并证明圆周角定理活动4 圆周角定理应用活动5小结,布置作业从实例提出问题,给出圆周角的定义.通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.反馈练习,加深对圆周角定理的理解和应用.回顾梳理,从知识和能力方面总结本节课所学到的东西.教学过程设计问题与情境师生行为设计意图[活动1 ]演示课件或图片(教科书图24.1-11):(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.本次活动中,教师应当重点关注:(1)问题的提出是否引起了学生的兴趣;(2)学生是否理解了示意图;(3)学生是否理解了圆周角的定义.(4)学生是否清楚了要研究的数学问题.从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:(1)拖动圆周角的顶点使其在圆周上运动;(2)改变圆心角的度数;3.改变圆的半径大小.本次活动中,教师应当重点关注:(1)学生是否积极参与活动;(2)学生是否度量准确,观察、发现的结论是否正确.活动2的设计是为引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.[活动3]问题(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?(3)另外两种情况如何证明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.本次活动中,教师应当重点关注:(1)学生是否会与人合作,并能与他人交流思维的'过程和结果.(2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.教师引导学生从特殊情况入手证明所发现的结论.学生写出已知、求证,完成证明.学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.本次活动中,教师应当重点关注:(1)学生是否会想到添加辅助线,将另外两种情况进行转化(2)学生添加辅助线的合理性.(3)学生是否会利用问题2的结论进行证明.数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题[活动4]问题(1)半圆(或直径)所对的圆周角是多少度?(2)90°的圆周角所对的弦是什么?(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?(5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?(6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长.学生独立思考,回答问题,教师讲评.对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.对于问题(6),教师应重点关注(1)学生是否能由已知条件得出直角三角形ABC、ABD;(2)学生能否将要求的线段放到三角形里求解.(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.[活动5]小结通过本节课的学习你有哪些收获?布置作业.(1)阅读作业:阅读教科书P90―93的内容.(2)教科书P94 习题24.1第2、3、4、5题.教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.圆周角教案篇3教材分析1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。
圆周角(三)数学教案

圆周角(三)数学教案标题:圆周角(三)数学教案一、教学目标:1. 知识与技能:学生能够理解和掌握圆周角的定义,性质及其应用。
2. 过程与方法:通过观察、分析和推理,提高学生的逻辑思维能力和空间想象能力。
3. 情感态度价值观:培养学生对数学学习的兴趣,养成良好的学习习惯。
二、教学重点和难点:重点:圆周角的定义和性质。
难点:圆周角的应用。
三、教学过程:(一)导入新课教师可以通过一些生活中的例子,比如钟表指针形成的角,来引入圆周角的概念。
让学生在实际情境中感知圆周角的存在,并激发他们的学习兴趣。
(二)讲授新课1. 圆周角的定义:顶点在圆心的角叫做圆心角;顶点不在圆心,而两边都与圆相交的角叫做圆周角。
2. 圆周角的性质:同弧所对的圆周角相等;等弧所对的圆周角相等;直径所对的圆周角是直角。
教师可以结合图形,引导学生理解并记住这些性质。
同时,鼓励学生自己动手画图,加深对圆周角的理解。
(三)课堂练习设计一些关于圆周角的习题,让学生进行练习。
如判断哪些角是圆周角,计算圆周角的度数等。
通过练习,检查学生是否真正掌握了圆周角的知识。
(四)课堂小结回顾本节课的主要内容,强调圆周角的定义和性质,提醒学生注意理解和记忆。
(五)作业布置布置一些关于圆周角的习题,让学生在课后进行复习和巩固。
四、教学反思在教学过程中,要注意观察学生的学习情况,及时调整教学策略。
对于学生的疑惑和困难,要耐心解答,帮助他们克服困难。
同时,也要注重培养学生的自主学习能力,让他们学会独立思考和解决问题。
人教版九年级上册数学24.1.4圆周角优秀教学案例

1.利用多媒体课件,讲解圆周角的定义及其性质。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.运用几何图形,解释圆周角定理及其推论。
在讲授新知环节,我将利用多媒体课件,讲解圆周角的定义及其性质。通过动画演示,让学生直观地感受圆周角的形成过程。在此基础上,我会运用几何图形,解释圆周角定理及其推论。在这个过程中,注重引导学生积极参与,鼓励他们提出问题,以便更好地理解和掌握圆周角的知识。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论。
2.让学生通过合作、交流,共同探究圆周角的性质。
3.组织学生展示讨论成果,分享彼此的想法和收获。
三、教学策略
(一)情景创设
1.利用多媒体课件,展示生活中的圆周角实例,引导学生认识圆周角。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.设计有趣的数学问题,激发学生的求知欲。
在情景创设方面,我将运用多媒体课件,以生动形象的方式展示圆周角的特点,帮助学生建立起空间观念。通过展示生活中的圆周角实例,引导学生认识圆周角,激发他们的学习兴趣。同时,设计有趣的数学问题,激发学生的求知欲,让他们在解决问题的过程中,自然而然地引入圆周角的知识。
人教版九年级上册数学24.1.4圆周角优秀教学案例
一、案例背景
本节内容为人教版九年级上册数学24.1.4圆周角,旨在让学生掌握圆周角的定义、性质及其在几何中的应用。通过对圆周角的学习,培养学生观察、思考、推理的能力,提高他们的空间想象力。
圆周角是圆心角的一种,它在圆中具有重要的地位。在本节内容中,学生需要了解圆周角的定义、性质,并能运用圆周角定理解决实际问题。在教学过程中,我将结合生活实例,引导学生认识圆周角,并通过小组合作、讨论交流的方式,让学生探究圆周角的性质,从而提高他们的合作意识和解决问题的能力。
数学教案-圆周角

数学教案-圆周角教学目标:1.让学生理解圆周角的概念,掌握圆周角定理。
2.培养学生运用圆周角定理解决实际问题的能力。
3.培养学生的空间想象能力和逻辑思维能力。
教学内容:1.圆周角的概念2.圆周角定理3.圆周角定理的应用教学过程:一、导入1.引导学生回顾已学的圆的性质,如圆的周长、面积等。
2.提问:在圆中,哪些角与圆周有关?二、探究圆周角的概念1.用PPT展示一个圆,让学生观察并找出圆周角。
2.请学生尝试用自己的语言描述圆周角的概念。
三、讲解圆周角定理1.用PPT展示一个圆,标出圆心、圆周角和圆心角。
2.讲解圆周角定理:圆周角定理指出,圆周角等于它所对的圆心角的一半。
3.举例说明:如圆周角为30度,则它所对的圆心角为60度。
四、练习圆周角定理的应用1.请学生在纸上画出一个圆,标出圆心、圆周角和圆心角。
2.让学生运用圆周角定理,计算圆周角和圆心角的度数。
3.互相交流,检查答案。
五、巩固提高1.出示练习题,让学生运用圆周角定理解决实际问题。
题目1:已知一个圆的半径为10cm,求圆周角为60度所对的弦长。
题目2:一个圆的直径为20cm,求圆周角为45度所对的弧长。
2.学生独立完成,教师巡回指导。
3.交流答案,分析解题过程。
六、拓展延伸1.请学生思考:圆周角定理在实际生活中有哪些应用?2.学生举例说明,如钟表的时针与分针所成的圆周角等。
2.强调圆周角定理在解决实际问题中的应用价值。
教学反思:本节课通过引导学生观察、思考、实践,让学生掌握了圆周角的概念和圆周角定理。
在教学过程中,注重培养学生的空间想象能力和逻辑思维能力,使学生在解决实际问题时能够灵活运用圆周角定理。
但在教学过程中,仍有个别学生对于圆周角的概念理解不够深刻,需要在今后的教学中加强引导和辅导。
重难点补充:一、圆周角的概念难点:学生可能难以直观地理解圆周角的定义。
对话设计:师:同学们,你们能告诉我什么是圆周角吗?生1:是不是圆上的一个角?师:很好,但我们要更准确地定义它。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教案-圆周角
第一课时圆周角(一)
教学目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
教学重点:圆周角的概念和圆周角定理
教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.
教学活动设计:(在教师指导下完成)
(一)圆周角的概念
1、复习提问:
(1)什么是圆心角?
答:顶点在圆心的角叫圆心角。
(2)圆心角的度数定理是什么?
答:圆心角的度数等于它所对弧的度数。
(如右图) 2、引题圆周角:
如果顶点不在圆心而在圆上,则得到如左图的新的
角∠ACB,它就是圆周角。
(如右图)(演示图形,提出圆周角的定义)
定义:顶点在圆周上,并且两边都和圆相交的角叫
做圆周角
3、概念辨析:
教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.
学生归纳:一个角是圆周角的条件:①顶点在圆上;
②两边都和圆相交。
(二)圆周角的定理
1、提出圆周角的度数问题
问题:圆周角的度数与什么有关系?
经过电脑演示图形,让学生观察图形、分析圆周角
与圆心角,猜想它们有无关系.引导学生在建立关系时
注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.
(在教师引导下完成)
(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半。
提出必须用严格的数学方法去证明。
证明:(圆心在圆周角上)
(2)其它情况,圆周角与相应圆心角的关系:
当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论。
证明:作出过C的直径(略)
圆周角定理: 一条弧所对的
周角等于它所对圆心角的一半。
说明:这个定理的证明我们分成三种情况。
这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想。
(对A层学生渗透完全归纳法)
(三)定理的应用
1、例题: 如图 OA、OB、OC都是圆O的半径,
∠AOB=2∠BOC.
求证:∠ACB=2∠BAC
让学生自主分析、解得,教师规范推理过程.
说明:①推理要严密;②符号“”应用要严格,教师要讲清.
2、巩固练习:
(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?
(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?
说明:一条弧所对的圆周角有无数多个,却这条弧
所对的圆周角的度数只有一个,但一条弦所对的圆周角
的度数只有两个.
(四)总结
知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.
思想方法:一种方法和一种思想:
在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题
转化成一系列的简单问题或已证问题.
(五)作业教材P100中习题A组6,7,8
第二、三课时圆周角(二、三)
教学目标:
(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;
(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;
(3)培养添加辅助线的能力和思维的广阔性.
教学重点:圆周角定理的三个推论的应用.
教学难点:三个推论的灵活应用以及辅助线的添加.
教学活动设计:
(一)创设学习情境
问题1:画一个圆,以B、C为弧的端点能画多少个
圆周角?它们有什么关系?
问题2:在⊙O中,若 =,能否得到∠C=∠G呢?根
据什么?反过来,若土∠C=∠G ,是否得到 =呢?
(二)分析、研究、交流、归纳
让学生分析、研究,并充分交流.
注意:①问题解决,只要构造圆心角进行过渡即可;
②若 =,则∠C=∠G;但反之不成立.
老师组织学生归纳:
推论1:同弧或等弧所对的圆周角相等;在同圆或
等圆中,相等的圆周角所对的弧也相等.
重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.
问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)
问题3:(1)一个特殊的圆弧——半圆,它所对的
圆周角是什么样的角?
(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?
学生通过以上两个问题的解决,在教师引导下得推
论2:
推论2:半圆(或直径)所对的圆周角是直角;
90°的圆周角所对的弦直径.
指出:这个推论是圆中一个很重要的性质,为在圆
中确定直角、成垂直关系创造了条件,要熟练掌握.启发学生根据推论2推出推论3:
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.
指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.
(三)应用、反思
例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.
求证:AB·AC=AE·AD.
对A层同学,让学生自主地分析问题、解决问题,
进行生生交流,师生交流;其他层次的学生在教师引导
下完成.
交流:①分析解题思路;②作辅助线的方法;③解
题推理过程(要规范).
解(略)
教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.
指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角
的性质.
变式练习1:如图,△ABC内接于⊙O,∠1=∠2.
求证:AB·AC=AE·AD.
变式练习2:如图,已知△ABC内接于⊙O,弦AE平分
∠BAC交BC于D.
求证:AB·AC=AE·AD.
指出:这组题目比较典型,圆和相似三角形有密切
联系,证明圆中某些线段成比例,常常需要找出或通过
辅助线构造出相似三角形.
例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;
求BC,AD和BD的长.
解:(略)
说明:充分利用直径所对的圆周角为直角,解直角
三角形.
练习:教材P96中1、2
(四)小结(指导学生共同小结)
知识:本节课主要学习了圆周角定理的三个推
论.这三个推论各具特色,作用各异,在今后的学习中
应用十分广泛,应熟练掌握.
能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技
能技巧一定要掌握.
(五)作业
教材P100.习题A组9、10、12、13、14题;另外A 层同学做P102B组3,4题.探究活动
我们已经学习了“圆周角的度数等于它所对的弧的
度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.
提示:(1)连结BC,可得∠E=(的度数—的度数)
(2)延长AE、CE分别交圆于B、D,则∠B=的度数,
∠C=的度数,
∴∠AEC=∠B+∠C=(的度数+ 的度数).。