2014年福建中考数学模拟试卷及答案-中考试题

合集下载

2014年福建省、莆田市中考模拟数学试卷(一)及答案

2014年福建省、莆田市中考模拟数学试卷(一)及答案

2014年莆田市九年数学中考模拟试卷(一)满分:150分,考试时间:120分钟一、精心选一选。

(每小题4分,共32分) 1.-3的绝对值是( ) A 、-3 B 、3 C 、31 D 、-312.下列计算正确的是( ) A 、()623a a -=- B 、()222b a b a -=-C 、532523a a a =+ D 、336a a a =÷ 3.下列说法不正确的是( )A 、了解一批电视机的使用寿命适合用抽样调查B 、若甲组数据方差S 2甲=0.27,乙组数据方差S 2乙=0.2,则乙组数据比甲组数据稳定 C 、某种彩票中奖的概率是10001,买1000张该种彩票一定会中奖 D 、在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 4.某种的细胞的直径是4105-⨯毫米,这个数是( )A 、0.05毫米B 、0.005毫米C 、0.0005毫米D 、0.00005毫米5.如图,下列四个几何体中,它们各自的三视图有两个相同,而另一个不同的几何体是( )①正方体 ②圆柱 ③圆锥 ④球 A 、①② B 、②③ C 、②④ D 、③④6.在△ABC 中,∠C =900; AC=4,BC=3,则cos ∠B 的值是( ) A 、54 B 、53C 、34D 、437.如图,已知⊙O 的半径OA =6,∠AOB =900,则∠AOB 所对的弧AB 的长为( ) A 、2π B 、3π C 、6π D 、12π8. 已知二次函数2(0)y ax bx c a =++≠的图象如图所示, 给出以下结论①0a b c ++<;②0a b c -+<;③20b a +<; ④0abc >其中所有正确结论的序号是( ) 二、细心填一填。

(每小题4分,共32分) 9.当有意义。

时,二次根式2_________-x x 10.分解因式:______________422=-a a 11.已知圆锥的底面半径为3cm ,母线长为5cm , 则这个圆锥的侧面积为_____________。

2014年福州中考数学模拟卷(一)

2014年福州中考数学模拟卷(一)

2014年福州中考数学模拟卷(一)(完卷时间120分钟 满分150分 )一、选择题:(本大题共10小题,每小题4分,共40分)1.-2的相反数是A .-2B .2C .21D .-21 2.从财政部公布的2014年中央公共财政预算支出结构中,交通运输支出约为4350亿元,比去年同期增长7.1%.将数据4 350用科学记数法表示应为A. 4.35×103B. 0.435×104C. 4.35×104D. 43.5×1023.如图所示几何体的左视图是A .B .C .D .4.如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是A. 40°B. 50°C. 60°D. 140° 5.下列运算正确的是A.236a a a ⋅=;B.623a a a ÷=;C.236()a a =;D.624a a a -=.6.若代数式1x x -有意义,则实数x 的取值范围是 A . 1x ≠ B. 0x ≥ C . 0x > D .01x x ≥≠且7. 在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A.众数B.方差C.平均数D.中位数8. ⊙1O 和⊙2O 的半径分别是6㎝和4㎝,如果12O O =7㎝,则这两圆的位置关系是A .内含B .相交C .外切D .外离9.如图,在热气球C 点处测得地面A 、B 两点的俯角分别为30º、45º,如果此时热气球C 点的高度CD 为100米,点A 、D 、B 在同一直线上,则A 、B 两点的距离是 第9题图A.200米 B.2003米 C.2203米 D.100(31+)米10.直线y=﹣2x+m 与直线y=2x ﹣1的交点在第四象限,则m 的取值范围是A .m >﹣1B .m <1C .﹣1<m <1D .﹣1≤m ≤1二、填空题:(本大题共5小题,每小题4分,共20分)11.分解因式:x 2-2x =________________.12.五张标有1、2、3、4、5的卡片,除数字外其它没有任何区别。

福建省泉州市2014年中考数学试卷(WORD解析版)

福建省泉州市2014年中考数学试卷(WORD解析版)

福建省泉州市2014年中考数学试卷一、选择题(每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡题目区域内作答答对的得3分,答错或不答一律得0分.)1.(3分)(2014•泉州)2014的相反数是()A.2014 B.﹣2014 C.D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014的相反数是﹣2014.故选B.点评:本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014•泉州)下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.解答:解:A、a3+a3=2a3,故选项错误;B、2(a+1)=2a+2≠2a+1,故选项错误;C、(ab)2=a2b2,故选项正确;D、a6÷a3=a3≠a2,故选项错误.故选:C.点评:本题主要考查了二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则,解题的关键是熟记法则运算3.(3分)(2014•泉州)如图的立体图形的左视图可能是()A.B.C.D.考点:简单几何体的三视图.分析:左视图是从物体左面看,所得到的图形.解答:解:此立体图形的左视图是直角三角形,故选:A.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)(2014•泉州)七边形外角和为()A.180°B.360°C.900°D.1260°考点:多边形内角与外角.分析:根据多边形的外角和等于360度即可求解.解答:解:七边形的外角和为360°.故选B.点评:本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360°是解题的关键.5.(3分)(2014•泉州)正方形的对称轴的条数为()A.1B.2C.3D.4考点:轴对称的性质分析:根据正方形的对称性解答.解答:解:正方形有4条对称轴.故选D.点评:本题考查了轴对称的性质,熟记正方形的对称性是解题的关键.6.(3分)(2014•泉州)分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.7.(3分)(2014•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故本选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故本选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(每小题4分,共40分)8.(4分)(2014•泉州)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1200000000用科学记数法表示为:1.2×109.故答案为:1.2×109.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(4分)(2014•泉州)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=50°.考点:对顶角、邻补角.分析:根据对顶角相等,可得答案.解答:解;∵∠BOC与∠AOD是对顶角,∴∠BOC=∠AOD=50°,故答案为:50.点评:本题考查了对顶角与邻补角,对顶角相等是解题关键.10.(4分)(2014•泉州)计算:+=1.考点:分式的加减法分析:根据同分母分式相加,分母不变分子相加,可得答案.解答:解:原式==1,故答案为:1.点评:本题考查了分式的加减,同分母分式相加,分母不变分子相加.11.(4分)(2014•泉州)方程组的解是.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:3x=6,即x=2,将x=2代入①得:y=2,则方程组的解为.故答案为:点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(4分)(2014•泉州)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.考点:众数.分析:根据众数的定义即一组数据中出现次数最多的数,即可得出答案.解答:解:∵5出现了3次,出现的次数最多,∴这组数据的众数为5;故答案为:5.点评:此题考查了众数,众数是一组数据中出现次数最多的数,注意众数不止一个.13.(4分)(2014•泉州)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=65°.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠2,代入求出即可.解答:解:∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,故答案为:65.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.14.(4分)(2014•泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为5 cm.考点:直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.解答:解:∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.15.(4分)(2014•泉州)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=110°.考点:等腰三角形的性质.分析:先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答:解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.点评:此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.16.(4分)(2014•泉州)已知:m、n为两个连续的整数,且m<<n,则m+n=7.考点:估算无理数的大小.分析:先估算出的取值范围,得出m、n的值,进而可得出结论.解答:解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.点评:本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.17.(4分)(2014•泉州)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为1米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.考点:圆锥的计算;圆周角定理专题:计算题.分析:(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可.解答:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=,∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=,解得r=.故答案为1,.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.三、解答题(共89分)18.(9分)(2014•泉州)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、绝对值、负指数幂、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+6﹣8×+4=1+6﹣2+4=9.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负指数幂、二次根式化简等考点的运算.19.(9分)(2014•泉州)先化简,再求值:(a+2)2+a(a﹣4),其中a=.考点:整式的混合运算—化简求值分析:首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.解答:解:(a+2)2+a(a﹣4)=a2+4a+4+a2﹣4a=2a2+4,当a=时,原式=2×()2+4=10.点评:此题考查整式的化简求值,注意先化简,再代入求值.20.(9分)(2014•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.考点:矩形的性质;平行四边形的判定与性质专题:证明题.分析:根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.解答:证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.点评:本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.21.(9分)(2014•泉州)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.考点:列表法与树状图法;概率公式.分析:(1)由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.解答:解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是:;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)(2014•泉州)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?考点:二次函数的性质;坐标与图形变化-旋转.分析:(1)由于抛物线过点O(0,0),A(2,0),根据抛物线的对称性得到抛物线的对称轴为直线x=1;(2)作A′B⊥x轴与B,先根据旋转的性质得OA′=OA=2,∠A′OA=2,再根据含30度的直角三角形三边的关系得OB=OA′=1,A′B=OB=,则A′点的坐标为(1,),根据抛物线的顶点式可判断点A′为抛物线y=﹣(x﹣1)2+的顶点.解答:解:(1)∵二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).∴抛物线的对称轴为直线x=1;(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=2,在Rt△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为(1,),∴点A′为抛物线y=﹣(x﹣1)2+的顶点.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x <﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.23.(9分)(2014•泉州)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表类别时间t(小时)人数A t<0.5 10B 0.5≤t<1 20C 1≤t<1.5 15D t≥1.5 a(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?考点:条形统计图;用样本估计总体;统计表分析:(1)用抽查的学生的总人数减去A,B,C三类的人数即为D类的人数也就是a的值,并补全统计图;(2)先求出课外阅读时间不少于1小时的学生占的比例,再乘以1300即可.解答:解:(1)50﹣10﹣20﹣15=5(名),故a的值为5,条形统计图如下:(2)1300×=520(名),答:估计该校共有520名学生课外阅读时间不少于1小时.点评:本题主要考查样本的条形图的知识和分析问题以及解决问题的能力,属于基础题.24.(9分)(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用分析:(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.解答:解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.点评:本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0≤t≤1时,d2﹣d1>10;当1<t≤3时,d1﹣d2>10,分类讨论是解题关键.25.(12分)(2014•泉州)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.考点:四边形综合题分析:(1)①根据有两组对边互相平行的四边形是平行四边形即可求得,②根据△ADF∽△ABC推出对应边的相似比,然后进行转换,即可得出h与x之间的函数关系式,根据平行四边形的面积公式,很容易得出面积S关于h的二次函数表达式,求出顶点坐标,就可得出面积s最大时h的值.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.解答:解:(1)①∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形.②作AG⊥BC,交BC于G,交DF于H,∵∠ACB=45°,AC=24cm∴AG==12,设DF=EC=x,平行四边形的高为h,则AH=12h,∵DF∥BC,∴=,∵BC=20cm,即:=∴x=×20,∵S=xh=x•×20=20h﹣h2.∴﹣=﹣=6,∵AH=12,∴AF=FC,∴在AC中点处剪四边形DECF,能使它的面积最大.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.理由:对角线互相垂直平分的四边形是菱形.点评:本题考查了相似三角形的判定及性质、菱形的判定、二次函数的最值.关键在于根据相似三角形及已知条件求出相关线段的表达式,求出二次函数表达式,即可求出结论.26.(14分)(2014•泉州)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.考点:反比例函数综合题;待定系数法求反比例函数解析式;勾股定理;矩形的判定与性质;垂径定理;直线与圆的位置关系;锐角三角函数的定义专题:压轴题;探究型.分析:(1)设反比例函数的关系式y=,然后把点P的坐标(2,1)代入即可.(2)①先求出直线y=﹣x+3与x、y轴交点坐标,然后运用勾股定理即可求出△A′BC的周长;过点C 作CD⊥AB,垂足为D,运用面积法可以求出CD长,从而求出sin∠BA′C的值.②由于BC=2,sin∠BMC=,因此点M在以BC为弦,半径为m的⊙E上,因而点M应是⊙E与x轴的交点.然后对⊙E与x轴的位置关系进行讨论,只需运用矩形的判定与性质、勾股定理等知识就可求出满足要求的点M的坐标.解答:解:(1)设反比例函数的关系式y=.∵点P(2,1)在反比例函数y=的图象上,∴k=2×1=2.∴反比例函数的关系式y=.(2)①过点C作CD⊥AB,垂足为D,如图1所示.当x=0时,y=0+3=3,则点B的坐标为(0,3).OB=3.当y=0时,0=﹣x+3,解得x=3,则点A的坐标为(3,0),OA=3.∵点A关于y轴的对称点为A′,∴OA′=OA=3.∵PC⊥y轴,点P(2,1),∴OC=1,PC=2.∴BC=2.∵∠AOB=90°,OA′=OB=3,OC=1,∴A′B=3,A′C=.∴△A′BC的周长为3++2.∵S△ABC=BC•A′O=A′B•CD,∴BC•A′O=A′B•CD.∴2×3=3×CD.∴CD=.∵CD⊥A′B,∴sin∠BA′C===.∴△A′BC的周长为3++2,sin∠BA′C的值为.②当1<m<2时,作经过点B、C且半径为m的⊙E,连接CE并延长,交⊙E于点P,连接BP,过点E作EG⊥OB,垂足为G,过点E作EH⊥x轴,垂足为H,如图2①所示.∵CP是⊙E的直径,∴∠PBC=90°.∴sin∠BPC===.∵sin∠BMC=,∴∠BMC=∠BPC.∴点M在⊙E上.∵点M在x轴上∴点M是⊙E与x轴的交点.∵EG⊥BC,∴BG=GC=1.∴OG=2.∵∠EHO=∠GOH=∠OGE=90°,∴四边形OGEH是矩形.∴EH=OG=2,EG=OH.∵1<m<2,∴EH>EC.∴⊙E与x轴相离.∴x轴上不存在点M,使得sin∠BMC=.②当m=2时,EH=EC.∴⊙E与x轴相切.Ⅰ.切点在x轴的正半轴上时,如图2②所示.∴点M与点H重合.∵EG⊥OG,GC=1,EC=m,∴EG==.∴OM=OH=EG=.∴点M的坐标为(,0).Ⅱ.切点在x轴的负半轴上时,同理可得:点M的坐标为(﹣,0).③当m>2时,EH<EC.∴⊙E与x轴相交.Ⅰ.交点在x轴的正半轴上时,设交点为M、M′,连接EM,如图2③所示.∵∠EHM=90°,EM=m,EH=2,∴MH===.∵EH⊥MM′,∴MH=M′H.∴M′H═.∵∠EGC=90°,GC=1,EC=m,∴EG===.∴OH=EG=.∴OM=OH﹣MH=﹣,∴OM′=OH+HM′=+,∴M(﹣,0)、M′(+,0).Ⅱ.交点在x轴的负半轴上时,同理可得:M(﹣+,0)、M′(﹣﹣,0).综上所述:当1<m<2时,满足要求的点M不存在;当m=2时,满足要求的点M的坐标为(,0)和(﹣,0);当m>2时,满足要求的点M的坐标为(﹣,0)、(+,0)、(﹣+,0)、(﹣﹣,0).点评:本题考查了用待定系数法求反比例函数的关系式、勾股定理、三角函数的定义、矩形的判定与性质、直线与圆的位置关系、垂径定理等知识,考查了用面积法求三角形的高,考查了通过构造辅助圆解决问题,综合性比较强,难度系数比较大.由BC=2,sin∠BMC=联想到点M在以BC为弦,半径为m的⊙E 上是解决本题的关键.。

2014年福建省福州市中考数学试卷及解析(word版)

2014年福建省福州市中考数学试卷及解析(word版)

2014年福建省福州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2014年福建福州)﹣5的相反数是()A.﹣5 B.5C.D.﹣分析:根据相反数的定义直接求得结果.解:﹣5的相反数是5.故选:B.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(2014年福建福州)地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×105C.1.1×104D.0.11×105分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将110000000用科学记数法表示为:1.1×105.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2014年福建福州)某几何体的三视图如图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选D.点评:考查了由三视图判断几何体的知识,主视图和左视图的大致轮廓为长方形的几何体为锥体.4.(2014年福建福州)下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a分析:根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.解;A.x4•x4=x16,故本小题错误;B.(a3)2=a5,故本小题错误;C.(ab2)3=ab6故本小题错误;D.a+2a=3a,正确.故选:D.点评:本题主要考查了同底数幂相乘,幂的乘方的性质,积的乘方的性质,合并同类项,熟练掌握运算性质并理清指数的变化是解题的关键.5.(2014年福建福州)若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.47分析:先求出这组数的和,然后根据“总数÷数量=平均数”进行解答即可;解:平均数为:(40+42+43+45+47+47+58)÷7=322÷7=46(千克);故选C.点评:此题考查了平均数的计算方法,牢记计算方法是解答本题的关键,难度较小.6.(2014年福建福州)下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°分析:分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选B.点评:本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.7.(2014年福建福州)若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0C.1D.2分析:根据非负数的性质,可求出m、n的值,然后将代数式化简再代值计算.解:∵(m﹣1)2+=0,∴m﹣1=0,n+2=0;∴m=1,n=﹣2,∴m+n=1+(﹣2)=﹣1故选:A.点评:考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2014年福建福州)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.点评:此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(2014年福建福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°分析:根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.解:∵四边形ABCD是正方形,∴AB=AD又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°∴AD=AE∴∠ABE=∠AEB,∠BAE=90°+60°=150°∴∠ABE=(180°﹣150°)÷2=15°又∵∠BAC=45°∴∠BFC=45°+15°=60°故选:C.点评:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.10.(2014年福建福州)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1C.D.分析:作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A(2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形∴FD=DE=EF=1,设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选D.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(共5小题,每小题4分,满分20分)11.(2014年福建福州)分解因式:ma+mb=.分析:这里的公因式是m,直接提取即可.解:ma+mb=m(a+b).点评:本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.12.((2014年福建福州)若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.分析:根据不合格品件数与产品的总件数比值即可解答.解:∵在5个外观相同的产品中,有1个不合格产品,∴从中任意抽取1件检验,则抽到不合格产品的概率是:.故答案为:.点评:本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(2014年福建福州)计算:(+1)(﹣1)=.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解:(+1)(﹣1)=.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.14.(2014年福建福州)如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.分析:根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD 的周长.解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.点评:本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.15.(2014年福建福州)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.分析:根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.点评:本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.三、解答题(满分90分)16.(2014年福建福州)(1)计算:+()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.点评:本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.17.(2014年福建福州)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连接AA1,BB1,并计算梯形AA1B1B的面积.分析:(1)根据全等三角形的判定与性质,可得答案;(2)根据正弦函数的定义,可得答案;根据轴对称性质,可作轴对称图形,根据梯形的面积公式,可得答案.(1)证明:BE=CF,∴BE+EF=CF+EF.即BF=CE.在△ABF和△DCE中,,∴△ABF≌△DCE(SAS).∴∠A=∠D;(2)解:①∵AC=3,BC=4,∴AB=5.sinB=;②如图所示:由轴对称性质得AA1=2,BB1=8,高是4,∴==20.点评:本题考查了全等三角形的判定与性质,利用了等式的性质,全等三角形的判定与性质.18.(2014年福建福州)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?分析:(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.点评:此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(2014年福建福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?分析:(1)设A商品每件x元,B商品每件y元,根据关系式列出二元一次方程组.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件,根据关系式列出二元一次不等式方程组.求解再比较两种方案.解:(1)设A商品每件x元,B商品每件y元,依题意,得,解得.答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件解得5≤a≤6根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.点评:此题主要考查二元一次方程组及二元一次不等式方程组的应用,根据题意得出关系式是解题关键.20.(2014年福建福州)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.分析:(1)根据题意得出AE的长,进而得出BE=AE,再利用tan∠ACB=,求出EC的长即可;(2)首先得出AC的长,再利用圆周角定理得出∠D=∠M=60°,进而求出AM的长,即可得出答案.解:(1)过点A作AE⊥BC,垂足为E,∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,∴AE=ABsinB=3sin45°=3×=3,∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,在Rt△ACE中,∵tan∠ACB=,∴EC====,∴BC=BE+EC=3+;(2)连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,∴AC=2,∵∠D=∠M=60°,∴sin60°===,解得:AM=4,∴⊙O的半径为2.点评:此题主要考查了解直角三角形以及锐角三角函数关系应用,根据题意正确构造直角三角形是解题关键.21.(2014年福建福州)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.分析:(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•cos30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PBO,∴,即,化简得:AQ•PB=3.点评:本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.22.(2014年福建福州)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.分析:(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=()2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,).点评:本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.。

2014中考数学福建省莆田地区二模试卷有答案资料

2014中考数学福建省莆田地区二模试卷有答案资料

福建莆田秀屿下屿中学 2014 届九年级中考模拟卷 数学(满分:150 分,考试时间:120 分钟) 一、精心选一选:本大题共 8 小题,每小题 4 分,共 32 分.每小题给出的四个选项中有只 有一个选项是符合题目要求的.答对的得 4 分,答错、不答或答案超过一个的一律得 O 分. 1、化简|-2014|等于( ) A.2014 B.-2014 C.±2 014 2、观察下列图案,既是中心对称图形又是轴对称图形的是( D.-2013 )A、 3、下列计算正确的是( A.a+2a=3a2B、 )2 3 5C、D、B.a •a =aC.a ÷a=323D. (﹣a) =a334、地球上的陆地面积约为 149000000 千米 ,用科学记数法表示为( A.149× 10 千米6) .92B. 149× 10 千米72C.1.49× 10 千米82D.1.49× 10 千米25、如图,将三角尺的直角顶点放在直线 a 上,a∥b,∠1=50° ,∠2=60° ,则∠3 的度数为 ( )A、50° B、60° C、70° D、80° 6、若一个圆锥的侧面积是 10,则下列图象中表示这个圆锥母线 l 与底面半径 r 之间的函数 关系的是( )ABCD7、如图,在△ ABC 中,∠B=30° ,BC 的垂直平分线交 AB 于 E,垂足为 D.若 ED=5,则 CE 的 长为( ) A.10 B.8 C.5 D.2.58、如图,已知□ABCD 中,AB=4,AD=2,E 是 AB 边上的一动点(与点 A、B 不重合) ,设 AE= x ,DE 的延长线交 CB 的延长线于点 F,设 BF= y ,则下列图象能正确反映 y 与 x 的函 数关系的是D A E B FCy 2 O 4 xy 2 O 4 xyy 2O4xO4xABCD二、细心填一填:本大题共 8 小题,每小题 4 分,共 32 分. 9、-2 的倒数为______________ 10、使分式x 有意义的 x 的取值范围是 _________ x211、分解因式:a3﹣9a= _________ . 12、一个多边形的内角和是外角和的 2 倍,则这个多边形为 ______边形 13、已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆有唯一公共点,则 d 的值是 _____________ 14、 在半径为 2 的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概 率为_______(注:π 取 3)x+y=7 15、若方程组 ,则 3(x+y)-(3x-5y)的值是__________. 3x-5y=-316.新概念:[a,b]为一次函数 y=ax+b(a≠0,a,b 为实数)的“关联数”.若“关联数”[1,m-2] 的一次函数是正比例函数,则关于 x 的方程 三、解答题 17、 (8 分)计算题、 3 8 1 1 + =1 的解为 x 1 m.3  2  2 sin 60018、 (8 分)解不等式组:  3x  2  2 x  1(1) 并把它们的解集在数轴上表示出来。

福建省泉州市2014年中考模拟考试数学试卷

福建省泉州市2014年中考模拟考试数学试卷

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

福建省泉州市2014年中考模拟考试数 学 试 卷(试卷满分:150分;考试时间:120分钟) 友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.计算:3×(-1)等于( ).A .0B .2C .3D .3- 2.计算:23)(a 等于( ).A .5aB .6aC .32aD .a 63.如图,数轴上表示的是某不等式组的解集,则这个不等式组可以是( ).A .12x x ≥-⎧⎨<⎩B .12x x ≤-⎧⎨<⎩C .12x x >-⎧⎨≤⎩ D .12x x ≥-⎧⎨>⎩4.在某次体育测试中,九年级某班7位同学的立定跳远成绩(单位:m )分别为:2.15,2.25,2.25,2.31,2.42,2.50,2.51,则这组数据的中位数是( ). A .2.15 B .2.25 C .2.31 D .2.42 5.若n 边形的内角和是1080︒,则n 的值是( ). A .6 B .7 C .8 D .96.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( ).7.如图,在ABC Rt ∆中,90BAC ∠=︒, D 、E 分别是AB 、BC 的中点, F 在 CA 的延长线上,FDA B ∠=∠,AC=6,AB=8,则四边形AEDF 的周 长为( ).A .22 B.20 C.18 D.16二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.-2的相反数是 .(第6题图)(第3题图)A(第7题图)CD EF5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

2014年福建福州数学中考试卷+答案

2014年福建福州数学中考试卷+答案

2014年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.-5的相反数是( )A.-5B.5C.15D.-152.地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为( )A.11×104B.1.1×105C.1.1×104D.0.11×1063.某几何体的三视图如图所示,则该几何体是( )A.三棱柱B.长方体C.圆柱D.圆锥4.下列计算正确的是( )A.x4·x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是( )A.44B.45C.46D.476.下列命题中,假命题...是( )A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.若(m-1)2+√n+2=0,则m+n的值是( )A.-1B.0C.1D.28.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )A.600n+50=450nB.600n-50=450nC.600n=450n+50D.600n=450n-509.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.45°B.55°C.60°D.75°10.如图,已知直线y=-x+2分别与x轴,y轴交于A,B两点,与双曲线y=nn交于E,F两点.若AB=2EF,则k的值是( )A.-1B.1C.12D.34第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分;请将正确答案填在相应位置)11.分解因式:ma+mb= .12.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.13.计算:(√2+1)(√2-1)= .14.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.BC.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12若AB=10,则EF的长是.三、解答题(满分90分;请将正确答案及解答过程写在相应位置.作图或添加辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分))0+|-1|;(1)计算:√9+(12 014.(2)先化简,再求值:(x+2)2+x(2-x),其中x=1317.(每小题7分,共14分)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D;(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sin B的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连结AA1,BB1,并计算梯形AA1B1B的面积.图1 图218.(满分12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a= %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2 000名学生,请你估计该校D级学生有多少名?19.(满分12分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元;(2)如果小亮准备购买A,B两种商品共10件,总费用不超过...300元,问有几...350元,且不低于种购买方案,哪种方案费用最低?20.(满分11分)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3√2,点D为BA延长线上的一点,且∠D=∠ACB,☉O为△ACD的外接圆.(1)求BC的长;(2)求☉O的半径.21.(满分13分)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=1秒时,则OP= ,S△ABP= ;2(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B.求证:AQ·BP=3.图1 图2 备用图22.(满分14分)(x-3)2-1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为如图,抛物线y=12D.(1)求点A,B,D的坐标;(2)连结CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连结AE,AD.求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作☉E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.备用图答案全解全析:一、选择题1.B 只有符号不同的两个数互为相反数,-5的相反数是5,故选B. 评析 本题考查相反数的定义,属容易题.2.B 科学记数法的表示形式为a×10n ,1≤|a|<10,故110 000=1.1×105,故选B. 评析 本题考查科学记数法的定义,属容易题.3.D 由主视图和左视图为三角形知此几何体为锥体,由俯视图为圆可推得此几何体为圆锥.评析 本题考查由三视图抽象出几何体和学生的空间想象能力,属容易题.4.D x 4·x 4=x 4+4=x 8,A 选项错误;(a 3)2=a 3×2=a 6,B 选项错误;(ab 2)3=a 3·b 2×3=a 3b 6,C 选项错误;根据合并同类项法则知,D 选项正确,故选D. 5.C 这组数据的平均数是40+42+43+45+47+47+587=46,故选C.评析 本题考查数据分析中的平均数的计算方法,属容易题. 6.B 根据三角形三条边之间的关系可知B 是错误的,故选B.7.A ∵(m -1)2+√n +2=0,∴{n -1=0,n +2=0,∴{n =1,n =-2,∴m+n=-1,故选A.8.A 根据“现在生产600台机器所需时间与原计划生产450台机器所需时间相同”可以列出方程600n +50=450n,故选A.评析 本题考查分式方程的应用,根据题意正确找出等量关系是关键,属容易题. 9.C 由已知得AB=AE,∠BAE=150°,∴∠ABF=15°,∴∠BFC=∠ABF+∠BAF=60°. 评析 本题考查正方形、等边三角形、等腰三角形的性质,属中等难度题.10.D 如图,作ED⊥OB,EC⊥OA,FG⊥OA,垂足分别为D,C,G,ED 交FG 于H,易得A(2,0),B(0,2),∴△ACE、△AOB、△EHF 都是等腰直角三角形, 又∵AB=2EF,∴EH=FH=1,设OG=x,∴AC=EC=1-x, ∴E(x+1,1-x),F(x,2-x).又∵点E 、F 在双曲线上,∴(x+1)(1-x)=x(2-x),解得x=12,∴E (32,12),k=34.评析 本题考查反比例函数与一次函数图象的交点问题,相似三角形的判定和性质,属难题.二、填空题11.答案 m(a+b) 解析 ma+mb=m(a+b).评析 本题考查提公因式法分解因式,属容易题. 12.答案 15解析 5件外观相同的产品中有1件不合格,从中任意抽取1件进行检测,则抽到不合格产品的概率是15.评析 本题考查概率,属容易题. 13.答案 1解析 (√2+1)(√2-1)=(√2)2-12=2-1=1.评析 本题考查二次根式的运算法则和平方差公式,属容易题. 14.答案 20解析 ∵四边形ABCD 是平行四边形,AD=6,BE=2, ∴BC=AD=6,∴EC=4.又∵DE 平分∠ADC,∴∠ADE=∠EDC. ∵AD∥BC,∴∠ADE=∠DEC, ∴∠DEC=∠EDC.∴CD=EC=4.∴▱ABCD 的周长是2×(6+4)=20.评析 本题考查平行四边形的性质和等腰三角形的判定,属中等难度题. 15.答案 5解析 ∵在Rt△ABC 中,∠ACB=90°,点D,E 分别是边AB,AC 的中点,AB=10, ∴AD=5,AE=EC,DE=12BC,∠AED=90°. ∵CF=12BC,∴DE=FC.在Rt△ADE 和Rt△EFC 中,∵AE=EC,∠AED=∠ECF=90°,DE=FC, ∴Rt△ADE≌Rt△EFC(SAS).∴EF=AD=5.评析 本题考查三角形中位线定理,属中等难度题. 三、解答题16.解析 (1)原式=3+1+1=5.(2)原式=x 2+4x+4+2x-x 2=6x+4. 当x=13时,原式=6×13+4=6.评析 本题考查了实数的运算,属容易题. 17.解析 (1)证明:∵BE=CF, ∴BE+EF=CF+EF, 即BF=CE.又∵AB=DC,∠B=∠C, ∴△ABF≌△DCE. ∴∠A=∠D. (2)①35.②如图所示.由轴对称的性质可得,AA 1=2,BB 1=8,梯形AA 1B 1B 的高是4. ∴n 梯形nn 1n 1B =12(AA 1+BB 1)×4=20.评析 本题考查了全等三角形的判定与性质,属容易题. 18.解析 (1)50;24. (2)如图所示.综合评定成绩条形统计图(3)72.(4)该校D 级学生约有2 000×450=160(名).评析 本题考查了条形统计图和扇形统计图的综合运用,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比,属容易题. 19.解析 (1)设A 商品每件x 元,B 商品每件y 元.依题意,得{2n +n =90,3n +2n =160.解得{n =20,n =50.答:A 商品每件20元,B 商品每件50元.(2)设小亮准备购买A 商品a 件,则购买B 商品(10-a)件.依题意,得{20n +50(10-n )≥300,20n +50(10-n )≤350.解得5≤a≤623.根据题意知,a 的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10-5)=350元; 方案二:当a=6时,购买费用为20×6+50×(10-6)=320元. ∵350>320,∴购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件.其中方案二费用最低.20.解析 (1)过点A 作AE⊥BC,垂足为E. ∴∠AEB=∠AEC=90°. 在Rt△ABE 中,∵sin B=nnnn ,∴AE=AB·sin B=3√2·sin 45°=3√2×√22=3. ∵∠B=45°,∴∠BAE=45°. ∴BE=AE=3.在Rt△ACE 中,∵tan∠ACB=nnnn, ∴EC=nntan∠nnn =3tan60°=√3=√3.∴BC=BE+EC=3+√3.(2)由(1)得,在Rt△ACE 中,∠EAC=30°,EC=√3, ∴AC=2√3.解法一:连结AO 并延长交☉O 于M,连结CM. ∵AM 为直径,∴∠ACM=90°.在Rt△ACM 中,∵∠M=∠D=∠ACB=60°,sin M=nnnn , ∴AM=nnsin n =2√3sin60°=4. ∴☉O 的半径为2.解法二:连结OA,OC,过点O 作OF⊥AC,垂足为F,则AF=12AC=√3.∵∠D=∠ACB=60°,∴∠AOC=120°. ∴∠AOF=12∠AOC=60°.在Rt△OAF 中,∵sin∠AOF=nnnn , ∴AO=nnsin∠nnn =2,即☉O 的半径为2.评析 本题主要考查了解直角三角形以及锐角三角函数的应用,属中等难度题. 21.解析 (1)1;3√34. (2)①∵∠A<∠BOC=60°, ∴∠A 不可能为直角. ②当∠ABP=90°时,∵∠BOC=60°, ∴∠OPB=30°. ∴OP=2OB,即2t=2. ∴t=1.③当∠APB=90°时,作PD⊥AB,垂足为D,则∠ADP=∠PDB=90°. ∵OP=2t,∴OD=t,PD=√3t,AD=2+t,BD=1-t(△BOP 是锐角三角形).解法一:BP 2=(1-t)2+3t 2,AP 2=(2+t)2+3t 2.∵BP 2+AP 2=AB 2,∴(1-t)2+3t 2+(2+t)2+3t 2=9,即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 解法二:∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B.又∵∠ADP=∠PDB=90°, ∴△APD∽△PBD, ∴nn nn =nn nn,∴PD 2=AD·BD. 于是(√3t)2=(2+t)(1-t),即4t 2+t-2=0. 解得t 1=-1+√338,t 2=-1-√338(舍去). 综上,当△ABP 是直角三角形时,t=1或-1+√338.(3)证法一:∵AP=AB,∴∠APB=∠B.作OE∥AP,交BP 于点E, ∴∠OEB=∠APB=∠B. ∵AQ∥BP,∴∠QAB+∠B=180°. 又∵∠3+∠OEB=180°, ∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2.∴△QAO∽△OEP. ∴nn nn =nnnn,即AQ·EP=EO·AO.∵OE∥AP,∴△OBE∽△ABP. ∴nn nn =nn nn =nn nn =13.∴OE=13AP=1,BP=32EP.∴AQ·BP=AQ·32EP=32AO·OE=32×2×1=3.证法二:连结PQ,设AP 与OQ 相交于点F.∵AQ∥BP,∴∠QAP=∠APB. ∵AP=AB, ∴∠APB=∠B. ∴∠QAP=∠B. 又∵∠QOP=∠B, ∴∠QAP=∠QOP. ∵∠QFA=∠PFO, ∴△QFA∽△PFO. ∴nn nn =nn nn ,即nn nn =nnnn . 又∵∠PFQ=∠OFA, ∴△PFQ∽△OFA. ∴∠3=∠1.∵∠AOC=∠2+∠B=∠1+∠QOP, 已知∠B=∠QOP, ∴∠1=∠2. ∴∠2=∠3.∴△APQ∽△BPO. ∴nn nn =nnnn .∴AQ·BP=AP·BO=3×1=3.22.解析 (1)顶点D 的坐标为(3,-1). 令y=0,得12(x-3)2-1=0,解得x 1=3+√2,x 2=3-√2. ∵点A 在点B 的左侧,∴点A 坐标为(3-√2,0),点B 坐标为(3+√2,0). (2)证明:过D 作DG⊥y 轴,垂足为G, 则G(0,-1),GD=3.令x=0,则y=72,∴点C 坐标为(0,72).∴GC=72-(-1)=92. 设对称轴交x 轴于点M.∵OE⊥CD,∴∠GCD+∠COH=90°. ∵∠MOE+∠COH=90°, ∴∠MOE=∠GCD.又∵∠CGD=∠OME=90°, ∴△DCG∽△EOM.∴nn nn =nn nn ,即923=3nn. ∴EM=2,即点E 的坐标为(3,2),∴ED=3.由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2.∴△AED 是直角三角形,且∠DAE=90°.设AE 交CD 于点F. ∴∠ADC+∠AFD=90°. 又∵∠AEO+∠HFE=90°, ∠AFD=∠HFE, ∴∠AEO=∠ADC.(3)由☉E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小. 设点P 的坐标为(x,y),由勾股定理,得EP 2=(x-3)2+(y-2)2. ∵y=12(x-3)2-1,∴(x -3)2=2y+2.∴EP 2=2y+2+y 2-4y+4=(y-1)2+5.当y=1时,EP 2取最小值,为5.把y=1代入y=12(x-3)2-1,得12(x-3)2-1=1, 解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上, ∴x 1=1舍去.∴点P 的坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).评析本题是压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意求EP2最小值的具体方法.属难题.11。

2014年福建省南平市中考数学试卷附答案

2014年福建省南平市中考数学试卷附答案

2014年福建省南平市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)D2.(4分)(2014•南平)如图,几何体的主视图是().C D.可能性为5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是()=3.2=2.98.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是().C D二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数_________.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB=_________.13.(3分)(2014•南平)五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是_________.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为_________.15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为_________.16.(3分)(2014•南平)分解因式:a3﹣2a2+a=_________.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=_________°.18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.20.(8分)(2014•南平)解不等式组:.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了_________名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为_________°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为_________°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为_________°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.2014年福建省南平市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)D2.(4分)(2014•南平)如图,几何体的主视图是().C D.可能性为5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是()=3.2=2.98.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票9.(4分)(2014•南平)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()AB.10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,.C D、)表示的数是,二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数π.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB=6.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3).15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为..16.(3分)(2014•南平)分解因式:a3﹣2a2+a=a(a﹣1)2.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=65°.18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;④△BCD的外接圆的圆心是线段O1O2的中点.以上结论正确的是①③.(写出所有正确结论的序号)BD三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.1+2+;•.20.(8分)(2014•南平)解不等式组:.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.∴22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了50名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.上,∴)代入∴一次函数的解析式为AB25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.)代入然后根据﹣根据题意,得;)代入∴∴∵26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为60°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为45°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为36°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.(×APE=BCD=.参与本试卷答题和审题的老师有:星期八;wdzyzlhx;王开东;dbz1018;2300680618;zhjh;zcx;caicl;CJX;sjzx;lanchong;HJJ;sks;zjx111;73zzx;守拙(排名不分先后)菁优网2015年1月27日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年福建中考数学模拟试卷及答案-中考试题---------------------------------------(一)填空题:1.-3的相反数是______.(容易题)2.太阳半径大约是696000千米,用科学记数法表示为_千米.(容易题)3.因式分解:__________.(容易题)4.如图1,AB∥CD,AC∥BC,∥BAC=65°,则∥BCD=________度.(容易题)5.“明天会下雨”是事件.(填“必然”或“不可能”或“可能”)(容易题)6.如图2,正方形ABCD是∥O的内接正方形,点P是∥CD上不同于点C的任意一点,则∥BPC 的度数是_____________度.(容易题)7.不等式组的解集是_____________.(容易题)8.甲、乙俩射击运动员进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9,乙的成绩如图3所示.则甲、乙射击成绩的方差之间关系是______ (填“<”,“=”,“>”).(容易题)9.如图4,已知AB∥BD,ED∥BD,C是线段BD的中点,且AC∥CE,ED=1,BD=4,那么AB=__________.(中等难度题)10.一个机器人从点O出发,每前进1米,就向右转体α°(0<α<180),照这样走下去,如果它恰能回到O点,且所走过的路程最短,则α的值等于.(稍难题)(二)选择题:(A、B、C、D四个答案中有且只有一个是正确的)11.下列各选项中,最小的实数是().A.-3B.-1C.0D. (容易题)12.下列计算中,结果正确的是().A.B.C.D.(容易题)13. 方程的解是().A.x=1 B.x=2C.x=D.x=-(容易题)14.如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体可能是( )主视图(容易题)15.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.C.D.1 (中等难度题)16. 有一等腰梯形纸片ABCD(如图6),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下.由∥DEC 与四边形ABED不一定能拼接成的图形是( )A.直角三角形B.矩形C.平行四边形D.正方形(中等难度题)17. 观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )A.78 B.66 C.55 D.50(稍难题)(三)解答题:18.计算:|-2| + (4 - 7 )÷ .(容易题)19.先化简,再求值:,其中.(容易题)20. 如图7,∥B=∥D,请在不增加辅助线的情况下,添加一个适当的条件,使∥ABC∥∥ADE 并证明.(1)添加的条件是;(2)证明:(容易题)21.“国际无烟日” 来临之际,小敏同学就一批公众对在餐厅吸烟所持的三种态度(彻底禁烟、建立吸烟室、其他)进行了调查,并把调查结果绘制成如图1、2的统计图,请根据下面图中的信息回答下列问题:(1)被调查者中,不吸烟者中赞成彻底禁烟的人数有__________人(2)本次抽样调查的样本容量为__________(3)被调查者中,希望建立吸烟室的人数有人(4)某市现有人口约300万人,根据图中的信息估计赞成在餐厅彻底禁烟的人数约有____万人(容易题)22.某班将举行“庆祝建党90周年知识竞赛” 活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?(中等难度题)23.一副直角三角板叠放如图所示,现将含45°角的三角板ADE固定不动,把含30°角的三角板ABC绕顶点A顺时针旋转角α (α =∥BAD且0°<α<180°),使两块三角板至少有一组边平行.(1)如图①,α =____°时,BC∥DE;(2)请你分别在图②、图③的指定框内,各画一种符合要求的图形,标出α,并完成各项填空:图②中,α = °时,有∥ ;图③中,α = °时,有∥ .(中等难度题)24. 图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热热水器的铁架水平横管BC长0.2米,求(1)真空管上端B到AD的距离(结果精确到0.01米);(2)铁架垂直管CE的长(结果精确到0.01米). (中等难度题)25. 如图,已知抛物线与x轴相交于A、B两点,其对称轴为直线x =2,且与x轴交于点D,AO =1.(1)填空:b =______,c =______,点B的坐标为(_____,_____);(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F,求FC的长;(3)探究:在抛物线的对称轴上是否存在点P,使∥P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.(稍难题)26.如图①,在Rt∥ABC中,∥C=90&ordm;,AC=6,BC=8,动点P从点A出发沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C 出发沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ . 点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).∥直接用含的代数式分别表示:QB = ,PD = .∥是否存在的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,请说明理由.并探究如何改变点Q的速度(匀速运动),使得四边形PDBQ在某一时刻为菱形,求点Q的速度.(3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长.参考答案一、1.3;2.6.96×105;3.(x+2)2;4.25;5.可能;6.45;7.x>2;8.<;9.4;10.120;二、11.A;12.D;13.C;14.C;15.B;16.D;17.B;三、18..19.解:原式=x-1, .20.方法一:(1)添加的条件是:AB=AD.(2)证明:在∥ABC和∥ADE中,∥∥∥ABC∥∥ADE .方法二:(1)添加的条件是:AC=AE.(2)证明:在∥ABC和∥ADE中,∥∥∥ABC∥∥ADE21. 解:(1)82 (2)200 (3)56 (4)15922.(1)设买5元、8元笔记本分别为本、本.依题意得:,解得答:5元和8元的笔记本分别买了25本和15本.(2)设买本5元的笔记本,则买本8元的笔记本.依题意得:,解得,是正整数,∥ 不合题意,故不能找回68元.23.解:(1)15(2)第一种情形第二种情形第三种情形60 BC AD ; 105 BC AE (或AC DE ) ; 135 AB DE24.解:∥过B作BF∥AD于F.在Rt∥ABF中,∥sin∥BAF=,∥BF=ABsin∥BAF=2.1sin40°≈1.350.∥真空管上端B到AD的距离约为1.35米.∥在Rt∥ABF中,∥cos∥BAF=,∥AF=ABcos∥DAF=2.1cos40°≈1.609.∥BF∥AD,CD∥AD,又BC∥FD,∥四边形BFDC是矩形.∥BF=CD,BC=FD.在Rt∥EAD中,∥tan∥EAD=,∥ED=ADtan∥EAD=1.809tan25°≈0.844.∥CE=CD-ED=1.350-0.844=0.506≈0.51∥安装铁架上垂直管CE的长约为0.51米.25.解:(1),,(5,0)(2)解:由(1)知抛物线的解析式为∥当x=2时,y=4,∥顶点C的坐标是(2,4)∥在Rt∥BCD中,BD=3,CD=4∥ BC =5 ,∥ 直线EF是线段BC的垂直平分线∥FB=FC,CE=BE,∥BEF=∥BDC=90°又∥ ∥FBE=∥CBD∥ ∥BEF∥∥BDC∥ ,∥∥ ,故(3)存在.有两种情形:第一种情形:∥P1在x轴的上方时,设∥P1的半径为r ∥ ∥P1与x轴、直线BC都相切∥点P1的坐标为(2,r)∥ ∥CDB=∥CG P1=90°,P1G= P1D=r又∥∥P1CG=∥BCD∥ ∥P1CG∥∥BCD,即,∥∥ 点P1的坐标为第二种情形:∥P2在x轴的下方时,同理可得点P2的坐标为(2,-6)∥点P1的坐标为或P2(2,-6)26.解:(1) QB= ,PD= .(2)不存在.在Rt∥ 中, , , ,∥ .∥PD∥BC,∥∥APD∥∥ACB,∥ ,即:,∥ ,∥ .∥BQ∥DP,∥当BQ=DP时,四边形PDBQ是平行四边形.即,解得:.当时,,,∥DP≠BD,∥ 不能为菱形.设点Q的速度为每秒v单位长度,则,,.要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即,解得:.当PD= BQ,时,即,解得:.∥当点Q的速度为每秒单位长度时,经过秒,四边形PDBQ是菱形.(3)解法一:如图,以C为原点,以AC所在直线为x轴,建立平面直角坐标系.依题意,可知,当t=0时,M1的坐标为(3,0);当t=4时,过点M2作轴于点N,则, .∥M2的坐标为(1,4).设直线M1M2的解析式为,∥ 解得∥直线M1M2的解析式为.∥Q(0,2t)、P(,0).∥在运动过程中,由三角形相似得:线段PQ中点M3的坐标为(,t).把代入,得=t.∥点M3在直线M1M2上.由勾股定理得:.∥线段PQ中点M所经过的路径长为单位长度.解法二:如图3,当时,点M与AC的中点E重合.当时,点Q与点B重合,运动停止.设此时PQ的中点为F,连接EF.过点F作FH∥AC,垂足为H.由三角形相似得:,,∥ ,∥ .过点M作,垂足为N,则∥ .∥∥ ∥∥ .∥ ,即.∥ ,.∥ .∥ .∥当t≠0时,连接ME,则.∥ 的值不变.∥点M在直线EF上.由勾股定理得:∥线段PQ中点M所经过的路径长为单位长度.感谢阅读,欢迎大家下载使用!。

相关文档
最新文档