点 线 面之间的位置关系知识易错点及例题合集

合集下载

高中数学必修二同步练习题库:空间点、线、面的位置关系(选择题:较难)

高中数学必修二同步练习题库:空间点、线、面的位置关系(选择题:较难)

空间点、线、面的位置关系(选择题:较难)1、如图所示,将等腰直角沿斜边上的高折成一个二面角,此时,那么这个二面角大小是()A.90° B.60° C.45° D.30°2、设是正方体的对角面(含边界)内的点,若点到平面、平面、平面的距离相等,则符合条件的点()A.仅有一个 B.有有限多个 C.有无限多个 D.不存在3、已知异面直线a,b成70°角,A为空间中一点,则过A且a,b都成55°的平面个数有()A.1 B.2 C.3 D.44、如图所示,正方体的棱长为1,分别是棱的中点,过直线的平面分别与棱交于,设,,给出以下四个命题:①②当且仅当时,四边形的面积最小;③四边形周长,,则是奇函数;④四棱锥的体积为常函数;其中正确命题的个数为()A.1个 B.2个 C.3个 D.4个5、如图,点是正方形外的一点,过点作直线,记直线与直线,的夹角分别为,,若,则满足条件的直线()A.有1条 B.有2条 C.有3条 D.有4条6、已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,,设面面MPQ=,则下列结论中不成立的是( )A. 面ABCDB. ACC. 面MEF与面MPQ垂直D. 当x变化时,是定直线7、矩形ABCD中,,,将△ABC与△ADC沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为()A. B.C. D.8、把边长为2的正方形沿对角线折起,使得平面平面,则异面直线所成的角为()A.120° B.30° C.90° D.60°9、在正方体中,是中点,点在线段上,直线与平面所成的角为,则的取值范围是()A. B. C. D.10、在正方体中,分别为的中点,则异面直线与所成角的余弦值为()A. B. C. D.11、矩形中,,,将与沿所在的直线进行随意翻折,在翻折过程中直线与直线成的角范围(包含初始状态)为()A. B. C. D.12、如图,已知,是的中点,沿直线将折成,所成二面角的平面角为,则()A. B.C. D.13、四棱锥的底面是一个正方形,平面,,是棱的中点,则异面直线与所成角的余弦值是()A. B. C. D.14、如图,在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为()A.60° B.90°C.105° D.75°15、已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.16、已知三棱锥的底面是以为斜边的等腰直角三角形,,则三棱锥的外接球的球心到平面的距离是()A. B.1 C. D.17、已知在直三棱柱中,,,则直线与夹角的余弦值为( )A. B. C. D.18、在正方体中,若是的中点,则异面直线与所成角的大小是()A. B. C. D.19、如图在一个二面角的棱上有两个点,,线段分别在这个二面角的两个面内,并且都垂直于棱,,则这个二面角的度数为()A. B. C. D.20、如图,等边三角形的中线与中位线相交于,已知是△绕旋转过程中的一个图形,下列命题中,错误的是( )A.动点在平面上的射影在线段上B.恒有平面⊥平面C.三棱锥的体积有最大值D.异面直线与不可能垂直参考答案1、A2、A3、A4、C5、D6、C7、C8、D9、A10、C11、C12、A13、B14、B15、C16、A17、A18、D19、B20、D【解析】1、试题分析:连接,则为等边三角形,设,则,所以,故选A.考点:1、平面与平面的位置关系;2、二面角的求法.【易错点晴】本题考查的是平面与平面的位置关系、二面角的求法,属于难题;二面角问题先要找出二面角,从两个平面的交线入手,找出从一个点出发的垂直于两平面交线的两条直线,此即为二面角的平面角;在三角形内,求出该平面角即可.2、解:与平面距离相等的点位于平面上;与平面距离相等的点位于平面上;与平面距离相等的点位于平面上;据此可知,满足题意的点位于上述平面,平面,平面的公共点处,结合题意可知,满足题意的点仅有一个.本题选择A选项.点睛:本题考查点到平面的距离,利用点到直线的距离将平面问题类比到空间中点到面的距离,据此找到满足题意的点是否存在即可.3、过作,设直线确定的平面为,∵异面直线成角,∴直线确所成锐角为.设过点的平面与所成的角相等,该平面的垂线与直线都成角,过只能作一条这样的垂线,故此时符合条件的平面只有一个.选A4、①连结,则由正方体的性质可知,平面,所以,所以正确.②因为,四边形的对角线是固定的,所以要使面积最小,则只需的长度最小即可,此时当为棱的中点时,即时,此时长度最小,对应四边形的面积最小.所以②正确.③因为,所以四边形是菱形.函数为偶函数,故③不正确.④连结,则四棱锥则分割为两个小三棱锥,它们以为底,以分别为顶点的两个小棱锥.因为三角形的面积是个常数.到平面的距离是个常数,所以四棱锥的体积为常函数,所以④正确.故选C.【点睛】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.5、∵故可知;由于平移不改变两直线的夹角,故题目可以转化为过点的直线与直线,的夹角为的直线有多少条;记直线,的夹角为,可以求得,故,故,即,故,,故过点的直线与直线,的夹角为的直线有4条,分别在这两直线夹角及补角的平分面上故选:D6、连接BD,,显然平面,而,连接HG,则所以AC⊥BD,又HG//L//BD,故AC⊥,只有当时,平面MEF⊥平面MPQ,无论x怎么变化,定是直线故选C点睛:考察立体几何中线面得关系,要熟悉线面,面面之间关系得判定定理,然后再逐一分析即可7、初始状态直线与直线成的角为,翻折过程中当时, 直线与直线成的角为直角,因此直线与直线成的角范围为,选C.8、过作,交于,连结,则是的中点,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,设异面直线、所成的角为,则,所以.所以异面直线、所成的角为.故选9、试题分析:由题意得,分别以为轴建立空间直角坐标系,则,平面的法向量,所以,故选A. 考点:直线与平面所成的角,【方法点晴】本题主要考查了直线与平面所成角的求解和空间几何体的结构特征,着重考查了学生的空间想象能力和推理与运算能力,其中准确计算是解答本题的关键,也是本题的一个易错点,属于中的试题,本题的解答中,分别以为轴建立空间直角坐标系,求解平面的法向量是解答本题的关键.10、试题分析:由题意可得又考点:异面直线所成角11、初始状态直线与直线成的角为,翻折过程中当时, 直线与直线成的角为直角,因此直线与直线成的角范围为,选C.12、试题分析:①当时,;②当时,如图,点投影在上,,连结,易得,,即综上所述,,故选A.考点:二面角的平面角及求法.【易错点晴】本题考查空间角的大小比较,注意解题方法的积累,属于中档题.与二面角有关的问题,主要是转化为其平面角,利用平面角的关系,将空间问题转化为平面问题来解决,该题的关键是分类讨论,按空间中的可能情况予以分类,准确的分类是解决问题的前提.13、试题分析:如图:取的中点为,连接,,是的中点,所以是的中位线,故,因此就是异面直线与所成的角,由于,且平面,四边形是正方形,所以,,连接交于,则,平面,易知:从而,在中,由,得是以为直角的直角三角形,所以,即异面直线与所成的角的余弦值为.故选B.考点:异面直线所成的角.14、试题分析:不妨设,则,所以直线与所成的角为.考点:数量积判断两个平面向量的垂直关系;异面直线所成的角.15、试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.16、试题分析:因为三棱锥的底面是以为斜边的等腰直角三角形,,在面内的射影为中点,平面,上任意一点到的距离相等.,,在面内作的垂直平分线,则为的外接球球心.,,,,即为到平面的距离,故选A.考点:球内接多面体;点到面的距离的计算.【思路点晴】本题考查点到面的距离的计算及球内接多面体问题及学生分析解决问题的能力,解答此类问题时要充分认识球内接多面体的性质,其中确定SHC与平面ABC的距离是关键,本题解答中根据三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=AB=SC,可得S在面ABC上的射影为AB中点H,SH平面ABC,在面SHC内SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心,OH为O与平面ABC的距离,由此可得到结论.17、试题分析:分别取的中点为,则,为异面直线与所成的角或其补角.可求得,.故A正确.考点:异面直线所成的角.【方法点睛】本题主要考查异面直线所成的角问题,难度一般.求异面直线所成角的步骤:1平移,将两条异面直线平移成相交直线.2定角,根据异面直线所成角的定义找出所成角.3求角,在三角形中用余弦定理或正弦定理或三角函数求角.4结论.18、试题分析:如图,作交的延长线于点,连接,因为,所以,所以(或其补角)是异面直线与所成角.设正方体的棱长为1,在中,,,,所以,.故选D.考点:异面直线所成的角.【名师点睛】异面直线所成的角:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角,其取值范围是:0°<θ≤90°.求解方法如下:解法一:平移法:根据定义,通过平移,找到异面直线所成的角θ;解含有θ的三角形,求出角θ的大小.平移的具体途径有:中位线、补形法等.解法二:向量法:设异面直线l1,l2的方向向量分别为,则l1与l2所成的角θ满足cos θ=.19、试题分析:设所求二面角的大小为,则,因为,所以而依题意可知,所以所以即所以,而,所以,故选B.考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.20、试题分析:由于.所以平面.经过点作平面ABC的垂线垂足在AF上.所以A选项正确.由A可知B选项正确.当平面垂直于平面时,三棱锥的体积最大,所以C正确.因为,设.所以,当时,.所以异面直线与可能垂直.所以D选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

2021年新高考数学总复习第八章《立体几何与空间向量》 空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行直线相交直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示 不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示 不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a ,就说平面α,β相交,并记作α∩β=a .( √ )(2)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( × )(3)如果两个平面有三个公共点,则这两个平面重合.( × )(4)经过两条相交直线,有且只有一个平面.( √ )(5)没有公共点的两条直线是异面直线.( × )(6)若a ,b 是两条直线,α,β是两个平面,且a ⊂α,b ⊂β,则a ,b 是异面直线.( × ) 题组二 教材改编2.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是AB ,AD 的中点,则异面直线B 1C 与EF 所成角的大小为( )A .30°B .45°C .60°D .90°答案 C解析 连接B 1D 1,D 1C ,则B 1D 1∥EF ,故∠D 1B 1C 即为所求的角.又B 1D 1=B 1C =D 1C ,∴△B 1D 1C 为等边三角形,∴∠D 1B 1C =60°.3.如图,在三棱锥A —BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形;(2)当AC ,BD 满足条件________时,四边形EFGH 为正方形.答案 (1)AC =BD (2)AC =BD 且AC ⊥BD解析 (1)∵四边形EFGH 为菱形,∴EF =EH ,∴AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH ,∵EF ∥AC ,EH ∥BD ,且EF =12AC ,EH =12BD , ∴AC =BD 且AC ⊥BD .题组三 易错自纠。

【高考数学易错专练】知识点 两条直线位置关系 易错点 2 忽视两条平行线距离公式的成立条件(学生版)

【高考数学易错专练】知识点 两条直线位置关系 易错点 2 忽视两条平行线距离公式的成立条件(学生版)

知识点:两条直线位置关系 易错点 2 忽视两条平行线距
离公式的成立条件
【易错诠释】计算两条平行线之间的距离,很多同学喜欢直接利用公式来计算,但往往会忽视直线方程系数的统一,从而导致距离计算出错,你会发生这样的错误吗?.
【典例1】已知直线()1:2230l x a y a +-+=,2:460l ax y ++=,a ∈R .
(1)若1l 恒过定点M ,求点M 的坐标;
(2)当12l l //时,求直线1l 与2l 之间的距离.
【针对练习】
1. 已知两平行直线1l :220x y --=与2l :250x ay -+=,直线1l 与圆
()()
()222120x y r r -+-=>相切,则下列说法正确的是( )
A. a 的值为4
B.
C. r
D. 直线2l 2. 已知点()1,2M 为圆228x y +=内一点,直线m 是以M 为中点的弦所在的直线,直线l 的方程为280x y ++=,则( )
A. l m ⊥
B. //l m
C. l 与圆相交
D. l 与圆相离 3. 已知直线1l :10ax y ++=,2l :10x ay ++=.若12l l ∥,则=
a ___________,此时1l 与2l 之间的距离为___________.。

点线面位置关系(知识点加典型例题)+大一高数知识点-重难点整理

点线面位置关系(知识点加典型例题)+大一高数知识点-重难点整理

点线面位置关系(知识点加典型例题)+大一高数知识点-重难点整理2.1空间中点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系 1、教学重点和难点重点:空间直线、平面的位置关系。

难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A ∈LB ∈L => L α ,A ∈α ,B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

推论:① 一条直线和其外一点可确定一个平面②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈LLA ·α C ·B·A· α P· αLβ公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.2、空间两条不重合的直线有三种位置关系:相交、平行、异面3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

易错点08 立体几何(解析版)

易错点08  立体几何(解析版)

易错点08 立体几何易错点1:平行和垂直的判定在立体几何中,点、线、面之间的位置关系,特别是线面、面面的平行和垂直关系,是高中立体几何的理论基础,是高考命题的热点与重点之一,一般考查形式为小题(位置关系基本定理判定)或解答题(平行、垂直位置关系的证明),难度不大。

立体几何中平行与垂直的易错点易错点1:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大。

易错点2:有关线面平行的证明问题中,对定理的理解不够准确,往往忽视",//,"a a b b αα⊄⊂三个条件中的某一个。

易错点3:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;易错点2:异面直线所成的角1.求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一找二证三求。

2.求异面直线所成角的步骤: ①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置斩点。

②求相交直线所成的角,通常是在相应的三角形中进行计算。

③因为异面直线所成的角的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。

3.“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

4.利用向量,设而不找,对于规则几何体中求异面直线所成的角也是常用的方法之一。

易错点3:直线与平面所成的角 1.传统几何方法:①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系知识梳理1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.作用:可用来证明点、直线在平面内.公理2:过不在一条直线上的三点,有且只有一个平面.作用:①可用来确定一个平面;②证明点线共面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点.公理4:平行于同一条直线的两条直线互相平行.作用:判断空间两条直线平行的依据.2.空间直线的位置关系(1)位置关系的分类:⎧⎧⎪⎨⎨⎩⎪⎩平行共面直线相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:0,2π⎛⎤ ⎥⎝⎦.(3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面,平面与平面之间的位置关系图形语言 符号语言 公共点 直线与平面 相交a ∩α=A 1个平行a ∥α 0个 在平面内a ⊂α 无数个 平面与平面 平行α∥β 0个 相交α∩β=l 无数个 易错点:1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.[试一试]1.下列说法正确的是()A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面解析:选D由异面直线的定义可知选D.2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:选D b与α相交或b⊂α或b∥α都可以.3.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.异面B.相交C.不可能平行D.不可能相交解析:选C由已知直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b.与a,b是异面直线相矛盾.4.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A.AB∥CD B.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.5.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,求异面直线B1C与EF所成的角的大小.解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求,又B1D1=B1C=D1C,∴∠D1B1C =60°.方法归纳:1.求异面直线所成角的方法(1)平移法:即选点平移其中一条或两条直线使其转化为平面角问题,这是求异面直线所成角的常用方法.(2)补形法:即采用补形法作出平面角.2.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内;(2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合.3.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上;(2)直接证明这些点都在同一条特定直线上.4.证明共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.[练一练]1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )解析:选D A ,B ,C 图中四点一定共面,D 中四点不共面.2.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,求异面直线BE 与CD 1所成的角的余弦值.解析:如上图连接BA 1 ∵BA 1∥CD 1,∴∠A 1BE 为所求.在△A 1BE 中,设AB =1,则AA 1=2,∴A 1B =5,A 1E =1,BE = 2.∴cos ∠A 1BE =31010考点精讲考点一 平面的基本性质及应用1.在下列命题中,不是..公理的是( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线解析:选A 选项A 是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数是( )A .0B .1C .2D .3解析:选C 对于①,未强调三点不共线,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,未强调三点共线,则两平面也可能相交,故④错误.3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为A 1A 的中点,求证:CE ,D 1F ,DA 三线共点.解析:∵112EF CD ,∴直线D 1F 和CE 必相交. 设D 1F ∩CE =P ,∵P ∈D 1F 且D 1F ⊂平面AA 1D 1D ,∴P ∈平面AA 1D 1D .又P ∈EC 且CE ⊂平面ABCD ,∴P ∈平面ABCD ,即P 是平面ABCD 与平面AA 1D 1D 的公共点.而平面ABCD ∩平面AA 1D 1D =AD .∴P ∈AD ,∴CE 、D 1F 、DA 三线共点.变式练习:本例条件不变试证明E ,C ,D 1,F 四点共面.证明:∵E ,F 分别是AB 和AA 1的中点,∴112EF A B ,又A 1D 1∥B 1C 1∥BC . ∴四边形A 1D 1CB 为平行四边形,∴A 1B ∥CD 1,从而EF ∥CD 1.∴EF 与CD 1确定一个平面,∴E ,C 1,F ,D 四点共面.[解题通法]1.证明线共点问题常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.2.证明点或线共面问题一般有以下两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证平面重合.考点二空间两直线的位置关系[典例]1、已知m,n,l为不同的直线,α,β为不同的平面,有下面四个命题:①m,n为异面直线,过空间任一点P,一定能作一条直线l与m,n都相交.②m,n为异面直线,过空间任一点P,一定存在一个与直线m,n都平行的平面.③α⊥β,α∩β=l,m⊂α,n⊂β,m,n与l都斜交,则m与n一定不垂直;④m,n是α内两相交直线,则α与β相交的充要条件是m,n至少有一条与β相交.则四个结论中正确的个数为()A.1B.2 C.3 D.4解析:选B①错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内且不在直线m上时,就不满足结论;②错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内时,就不满足结论;③正确,否则,若m⊥n,在直线m上取一点作直线a⊥l,由α⊥β,得a⊥n.从而有n⊥α,则n⊥l;④正确.2、已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.①求证:BC与AD是异面直线;②求证:EG与FH相交.证明:①假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.②如图,连接AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与HF相交.[类题通法]1.异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.[针对训练]若直线l 不平行于平面α,且l ⊄α,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交解析:选B 如图,设l ∩α=A ,α内直线若经过A 点,则与直线l 相交;若不经过点A ,则与直线l 异面.考点三 异面直线所成的角[典例]1、如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,求异面直线A 1B 与AD 1所成角的余弦值.[解析] 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45. 2、已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为多少.解:连接DF ,则AE ∥DF ,∴∠D 1FD 即为异面直线AE 与D 1F 所成的角.设正方体棱长为a ,则D 1D =a ,DF =52a ,D 1F =52a , ∴222155223cos 555222a a a D FD a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⋅⋅[类题通法]用平移法求异面直线所成的角的三步法(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.[针对训练]1、如图所示,点A 是平面BCD 外一点,AD =BC =2,E ,F 分别是AB ,CD 的中点,且EF =2,求异面直线AD 和BC 所成的角.解析:如图,设G 是AC 的中点,连接EG ,FG .因为E ,F 分别是AB ,CD 的中点,故EG ∥BC 且EG =12BC =1,FG ∥AD ,且FG =12AD =1.即∠EGF 为所求,又EF =2,由勾股定理逆定理可得∠EGF =90°.2、如图,三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =60°,PA =AB =AC =2,E 是PC的中点.(1)求异面直线AE 和PB 所成角的余弦值.(2)求三棱锥A -EBC 的体积.解:(1)取BC 中点F ,连接EF 、AF ,则EF ∥PB ,所以∠AEF 或其补角就是异面直线AE和PB 所成的角。

2016届高考数学文命题猜想专题13点、线、面之间的位置关系(学生版)

2016届高考数学文命题猜想专题13点、线、面之间的位置关系(学生版)

【命题热点突破一】点、线、面位置关系的判断例1、(1)[2015·浙江卷] 设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β()A.若l⊥β,则α⊥β B.若α⊥β,则l⊥mC.若l∥β,则α∥β D.若α∥β,则l∥m (2)如图13-7所示,在直三棱柱ABC - A1B1C1中,BC=AC,AC1⊥A1B,M,N分别为A1B1,AB的中点.给出下列结论:①C1M⊥平面A1ABB1;②A1B⊥AM;③平面AMC1∥平面CNB1.其中正确结论的个数为()图13-7A.0 B.1C.2 D.3【特别提醒】判断空间点、线、面的位置关系,主要依据四个公理、平行关系和垂直关系的定义及有关定理.解决具体问题时可以构建长方体或三棱锥等模型,把要考查的点、线、面融入模型中,判断会简洁明了.如要否定一个结论,只需找到一个反例即可.【变式探究】(1)如图13-8所示,在正方体ABCD - A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()图13-8A.不存在B.有1条C.有2条D.有无数条(2)已知直线l,m,平面α,β,且满足l⊥α,m⊂β,则“l⊥m”是“α∥β”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【命题热点突破二】线、面位置关系例2、如图所示,AB为圆O的直径,点E,F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,且AB=2,AD=EF=1.(1)设FC的中点为M,求证:OM∥平面DAF;(2)求证:AF⊥平面CBF.【特别提醒】(1)要证线面平行,主要有两个途径:一是证已知直线与平面内的某直线平行;二是证过已知直线的平面与已知平面平行.转化思想在证明平行关系上起着重要的作用,在寻求平行关系时,利用中位线、平行四边形等是常见的方法.(2)要证线面垂直,关键是在这个平面内能找出两条相交直线和已知直线垂直,即线线垂直⇒线面垂直.结合图形还要注意一些隐含的垂直关系,如等腰三角形的三线合一、菱形的对角线以及经计算得出的垂直关系等.【变式探究】在三棱柱ABC - A1B1C1中,AA1⊥BC,A1B⊥AC,D,E分别是BB1,A1C1的中点.(1)求证:DE∥平面A1BC;(2)若AB⊥BC,求证:A1B⊥平面ABC;(3)在(2)的条件下,若AB=BC=1,BB1=2,求三棱锥A1­BCC1的体积.【命题热点突破三】面面位置关系例3、[2015·湖南卷] 如图13-11,直三棱柱ABC - A1B1C1的底面是边长为2的正三角形,E,F 分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F - AEC的体积.【特别提醒】面面存在两种特殊的位置关系:平行与垂直.要证面面垂直,需利用面面垂直的判断定理,转化为证线面垂直;要证面面平行,需在其中一个平面内找到两条相交直线都平行于另一个平面.【变式探究】如图所示,在正四棱台ABCD - A1B1C1D1中,A1B1=a,AB=2a,AA1=2a,E,F分别是AD,AB的中点.(1)求证:平面EFB1D1∥平面BDC1;(2)求证:平面AA1C⊥平面BDC1.【命题热点突破四】空间中位置关系的证明与体积、距离问题例4、[2015·广东卷] 如图所示,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD =PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.【易错提醒】(1)不能将点C到平面PDA的距离转化为某几何体的高;(2)期望通过直接作出点到面的距离求解;(3)不熟悉等积等价转化方法,将三棱锥C -PDA的体积转化为三棱锥P -ACD 的体积;(4)位置关系证明不到位影响点到面距离的计算.【变式探究】如图所示,在等腰梯形PDCB中,DC∥PB,PB=3DC=3,PD=2,DA⊥PB,垂足为A.将△PAD沿AD折起,使得PA⊥AB,得到四棱锥P -ABCD.(1)证明:平面PAD⊥平面PCD;(2)点M在棱PB上,平面AMC把四棱锥P -ABCD分成两个几何体,当这两个几何体体积的比值V多面体PMACDV三棱锥M -ABC=2时,求点B到平面AMC的距离.【高考真题解读】1.(2015·广东,6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交2.(2015·湖北,5)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件3.(2015·浙江,4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m4.(2015·四川,18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系.并证明你的结论.(3)证明:直线DF⊥平面BEG.5.(2014·陕西,17)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.6.(2014·新课标全国Ⅱ,18)如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥PABD的体积V=34,求A到平面PBC的距离.7.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,G是AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为63,求该三棱锥的侧面积.8.(2015·安徽,19)如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求PMMC的值.9.(2015·湖北,20)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马PABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD 、BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(2)记阳马PABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V 1V 2的值. 10.(2015·浙江,18)如图,在三棱柱ABCA 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求直线A 1B 和平面BB 1C 1C 所成的角的正弦值.11.(2015·天津,17)如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 1所成角的大小.。

人教A版数学必修第二册8_4_2空间点、直线、平面之间的位置关系课件

人教A版数学必修第二册8_4_2空间点、直线、平面之间的位置关系课件

3.若M∈平面α,M∈平面β,则α与β的位置关系是( B )
A.平行
B.相交
C.异面
D.不确定
α与β相交于过 点M的一条直线
4.平面α∥平面β,直线a⊂α,则a与β的位置关系是___平__行____. β
α a
考点精讲
1.异面直线
(1)定义:不同在___任__何__一__个__平__面__内____的两条直线. (2)异面直线的画法:
空间点、直线、平面之间的位置关系
本节目标
学习目标
核心素养
1.了解空间中两条直线的三种位置关系,理解
两异面直线的定义,会用平面衬托来画异面直 1.通过空间中两条直线的位置关
线.(重点、难点)
系的学习,培养直观想象的核
2.了解直线与平面的三种位置关系,并会用图 心素养.
形语言和符号语言表示.(重点、易错点)
本课小结
判断直线与平面及平面与平面位置关系的常用方法
(1)定义法:借助线面、面面位置关系的定义判断; (2)模型法:借助长方体等熟悉的几何图形进行判断,有时起到事半功倍的效果; (3)反证法:反设结论进行推导,得出矛盾,到达准确的判断位置关系的目的.
[提示] 因为一个平面内任意一条直线都与另一个 平面平行,所以该平面与另一平面没有公共点,根 据两平面平行的定义知,这两个平面平行.
2.平面α内有无数条直线与平面β平行,那么 α∥β是否正确?
[提示] 不正确.如图,平面α内与平面β平行的 直线有无数条a1,a2,…,an,但此时α不平行于 β,而α∩β=l.
2.圆柱的两个底面的位置关系是( B )
A.相交
B.平行
C.平行或异面
D.相交或异面
3.下列命题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点、线、面之间的位置关系知识易错点及例题合集最近许多高二的同学问必修二点线面之间的知识点,普遍感觉这块非常难学,小数老师今天整理了易错点和例题给大家,作为参考![整合·网络构建][警示·易错提醒]1、不要随意推广平面几何中的结论平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”、“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.2、弄清楚空间点、线、面的位置关系解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,要注意定理应用准确、考虑问题全面细致。

3、不要忽略异面直线所成的角的范围求异面直线所成的角的时候,要注意它的取值范围是(0°,90°]。

两异面直线所成的角转化为一个三角形的内角时,容易忽略这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.4、透彻理解直线与平面的关系直线与平面位置关系的分类要清晰,一种分法是直线在平面内与直线在平面外(包括直线与平面平行和相交);另一种分法是直线与平面平行(无公共点)和直线与平面不平行(直线在平面内和直线与平面相交)。

5、使用判定定理时不要忽略条件应用直线与平面垂直的判定定理时,要熟记定理的应用条件,不能忽略“两条相交直线”这一关键点。

专题1共点、共线、共面问题(1)、证明共面问题证明共面问题,一般有两种证法:一是先由某些元素确定一个平面,再证明其余元素在这个平面内;二是先分别由不同元素确定若干个平面,再证明这些平面重合。

(2)、证明三点共线问题证明空间三点共线问题,通常证明这些点都在两个面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三个点是两个平面的公共点,当然必在两个平面的交线上。

(3)、证明三线共点问题证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在直线上的问题。

[例1]如图所示,在空间四边形ABCD中,E,F分别为AB,AD 的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2,求证:(1)、E,F,G,H四点共面;(2)、EG与HF的交点在直线AC上。

证明:(1)、因为BG∶GC=DH∶HC,所以GH∥BD。

又因为E,F分别为AB,AD的中点,所以EF∥BD,所以EF∥GH,所以E,F,G,H四点共面。

(2)、因为G,H不是BC,CD的中点,所以EF∥GH,且EF≠GH,所以EG 与FH必相交。

设交点为M,而EG⊂平面ABC,HF⊂平面ACD,所以M∈平面ABC,且M ∈平面ACD。

因为平面ABC∩平面ACD=AC,所以M∈AC,即EG与HF的交点在直线AC 上。

归纳升华:证明共点、共线、共面问题的关键是合理地利用三个公理,做到合理、恰当地转化。

[变式训练]三个平面α,β,γ两两相交于三条直线,即α∩β=c,β∩γ=a,γ∩α=b,若直线a和b不平行,求证:a,b,c三条直线必相交于同一点。

证明:如图所示,因为α∩γ=b,β∩γ=a,所以a⊂γ,b⊂γ。

因为直线a和b不平行,所以a,b必相交。

设α∩b=P,则P ∈a,P ∈b,因为a ⊂β,b⊂α,所以P ∈β,P ∈α。

又α∩β=c,所以P ∈c,所以a,b,c三条直线必相交于同一点。

专题2空间中的位置关系(1)、空间中两直线的位置关系:相交、平行、异面;(2)、空间中直线与平面的位置关系:直线在平面内、直线与平面平行、直线与平面相交;(3)、两个平面的位置关系:平行、相交。

[例2]已知m,n表示两条不同直线,α表示平面。

下列说法正确的是()A、若m∥α,n∥α,则m∥nB、若m⊥α,n⊂α,则m⊥nC、若m⊥α,m⊥n,则n∥αD、若m∥α,m⊥n,则n⊥α解析:若m∥α,n∥α,则m,n可能平行、相交或异面,A错;若m⊥α,n⊂α,则m⊥n,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m⊥α,m⊥n,则n∥α或n⊂α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,D错.答案:B归纳升华:若要否定一个结论,则只要举出一个反例即可;若要肯定一个结论,则需要进行严密的逻辑推理.[变式训练]下列命题正确的有()①若一直线a与平面α内一直线b平行,则a∥α;②若直线a在平面α外,则a∥α;③垂直于同一条直线的两条直线平行;④垂直于同一条直线的两个平面平行.A.0个B.1个C.2个D.3个解析:由a∥b,b⊂α,可得出a⊂α,或a∥α,①不正确.a⊄α有两种情况,即a∥α和a与α相交,②不正确.垂直于同一条直线的两条直线可能相交、平行或异面,③不正确.④正确.故选B。

答案:B专题3平行问题和垂直问题线线、线面、面面的平行与垂直是本章的重点,它包含了相关平行与垂直的证明,利用平行与垂直解决线、面等问题.其判定与性质之间并非孤立的,而是存在线线、线面、面面间平行与垂直关系的相互转化。

在高考中,常以解答题形式出现,其中线面平行和垂直是重中之重。

[例3]如图所示,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:(1)、PA⊥底面ABCD;(2)、BE∥平面PAD;(3)、平面BEF⊥平面PCD。

证明:(1)、因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD。

(2)、因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE。

所以四边形ABED为平行四边形,所以BE∥AD。

又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD。

(3)、因为AB⊥AD,而且四边形ABED为平行四边形,所以BE⊥CD,AD ⊥CD。

由(1),知PA⊥底面ABCD,所以PA⊥CD,所以CD⊥平面PAD,所以CD ⊥PD。

因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF。

又因为CD⊥BE,EF∩BE=E,所以CD⊥平面BEF,所以平面BEF⊥平面PCD。

归纳升华1、平行关系的转化.面面平行的性质是线线平行的判定要判定某一平行的过程就是从一平行出发不断转化的过程,在解题时把握这一点,灵活确定转化的思想和方向2、垂直关系的转化.面面垂直的性质是线线垂直的判定在证明两平面垂直时一般从现有直线中寻找平面的垂线,若这样的垂线不存在,则可通过作辅助线来解决.当有面面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,进一步转化为线线垂直.[变式训练]如图所示,在直三棱柱ABC­A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E。

求证:(1)、DE∥平面AA1C(2)、BC1⊥AB1证明:(1)、由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC。

因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C。

(2)、因为棱柱ABC­A1B1C1是直三棱柱,所以CC1⊥平面ABC,所以AC⊥CC1。

又AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1,所以BC1⊥AC.。

因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C。

因为AC∩B1C=C,所以BC1⊥平面B1AC。

又AB1⊂平面B1AC,所以BC1⊥AB1。

专题4空间角的求解空间角一般指两异面直线所成的角、直线与平面所成的角、平面与平面所成的角.[例4]如图所示,正方体的棱长为1,B′C∩BC′=O,求:(1)、AO与A′C′所成角的度数;(2)、AO与平面ABCD所成角的正切值;(3)、平面AOB与平面AOC所成角的度数。

解:(1)、因为A′C′∥AC,所以AO与A′C′所成的角就是∠OAC.因为OC⊥OB,AB⊥平面BC′,所以OC⊥AB且AB∩BO=B.所以OC⊥平面ABO.又OA⊂平面ABO,所以OC⊥OA.在Rt△AOC中,OC=,AC=,sin∠OAC=ACOC=21,所以∠OAC=30°,即AO与A′C′所成角的度数为30°。

(2)、如图所示,作OE⊥BC于点E,连接AE,因为平面BC′⊥平面ABCD,所以OE⊥平面ABCD,∠OAE为OA与平面ABCD所成的角。

在Rt△OAE中,OE=21,(3)、因为OC⊥OA,OC⊥OB,所以OC⊥平面AOB。

又因为OC⊂平面AOC,所以平面AOB⊥平面AOC,即平面AOB与平面AOC 所成角的度数为90°。

归纳升华:求空间角的问题,无论哪种情况,最终都归结到两条相交直线所成的角的问题.求空间角的解题步骤:①找出这个角;②说明该角符合题意;③构造出含这个角的三角形,解三角形,求出角。

[变式训练]如图1所示,平面角为锐角的二面角α­EFβ,A∈EF,AG⊂α,∠GAE=45°,若AG与β所成角为30°,求二面角α­EF­β的大小。

解:作GH⊥β于H,作HB⊥EF于B,连接GB,如图2.则GB⊥EF,∠GBH是二面角的平面角,又∠GAH是AG与β所成的角,专题5转化与化归思想在立体几何中的应用立体几何中最重要、最常用的思想就是转化与化归思想.(1)、线线、线面、面面的位置关系,通过转化,使它们建立联系,如面面平行、线面平行、线线平行、面面垂直、线面垂直、线线垂直等,有关线面位置关系的论证往往就是通过这种联系和转化得到解决的。

(2)、通过平移,将一些线面关系转化为平面内的线线关系,通过线面平行,将空间角最终转化为平面角,并构造三角形,借助于三角形的知识解决问题。

(3)、通过添加辅助线,将立体问题转化为平面问题。

[例5]如图1所示,四边形ABCD是平行四边形,PB⊥平面ABCD,MA∥PB,PB=2MA.在线段PB上是否存在一点F,使平面AFC∥平面PMD?若存在,请确定点F的位置;若不存在,请说明理由。

解:当点F是PB的中点时,平面AFC∥平面PMD.证明如下:如图2,连接BD和AC交于点O,连接FO,那么PF=21PB。

因为四边形ABCD是平行四边形,所以O是BD的中点,所以OF∥PD。

又OF⊄平面PMD,PD⊂平面PMD,所以OF∥平面PMD。

又AM綊21PB,所以PF綊MA,所以四边形AFPM是平行四边形,所以AF ∥PM。

又AF⊄平面PMD,PM⊂平面PMD,所以AF∥平面PMD。

又AF∩OF=F,AF⊂平面AFC,OF⊂平面AFC,所以平面AFC∥平面PMD.归纳升华:证明垂直关系时,注意面面垂直、线面垂直与线线垂直的相互转化.一般地,面面垂直问题可转化为线面垂直问题,线面垂直问题可转化为线线垂直问题.[变式训练]在四棱锥P­ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E作EF⊥PB于点F。

相关文档
最新文档