各种类型的微分方程及其相应解法复习进程

合集下载

高等数学微分方程总结

高等数学微分方程总结

二阶变 y f ( x, y) 令y p( x)
系数
y f ( y, y) 令y p[ y(x)]
1.r1 r2 y c1er1x c2er2x
2.r1 r2 y er1x (c1 c2 x)
3.r1,2 i y ex (c1 cos x c2 sin x) 二阶
一阶
y py qy 0 齐次
[
Q( x)e P( x)dxdx C ]
Bernoulli y P( x) y Q( x) yn (n 0,1) 令 z y1n
全微分方程 P(xy)dx Q(xy)dy 0 dU (xy) P Q y x
1.折线积分 2.凑全微分 3.定积分
二阶线性方程 a0(x) y a1(x) y a2(x) y 0 y a1(x) y a2 (x) y f (x)
于是
F(x) e2x e2x
二、两类二阶微分方程的解法
1. 可降阶微分方程的解法 — 降阶法

d2 y dx2
f
(x)
逐次积分求解

d2y dx2
f
(x, dy) dx

p (x) dy dx

d2y dx2
f
(y, dy) dx

p(y) dy dx
d p f (x, p) dx
2. 二阶线性微分方程的解法
• 常系数情形
齐次 非齐次
代数法
y py qy 0,
y py qy f ( x)
求解二阶常系数线性方程 二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程
r 2 pr q 0;
(2) 求出特征方程的两个根
r1 与 r2;

江苏省考研数学与应用数学复习资料微分方程解法总结

江苏省考研数学与应用数学复习资料微分方程解法总结

江苏省考研数学与应用数学复习资料微分方程解法总结微分方程是数学的一个重要分支,广泛应用于自然科学、工程技术以及社会科学等领域。

在江苏省考研数学与应用数学的复习中,微分方程也是一个重要的考点。

因此,在本文中,将对微分方程的解法进行总结,供考生参考复习。

一、一阶微分方程的解法:1.可分离变量法:对于形如dy/dx=f(x)g(y)的一阶微分方程,可以将d(y)和d(x)分别移到等式的两侧,然后进行分离,分别积分求解。

2.齐次微分方程法:对于形如dy/dx=f(y/x)的一阶微分方程,可以令y=vx,化为可分离变量的形式,然后进行求解。

3.恰当微分方程法:对于形如M(x, y)dx + N(x, y)dy = 0的一阶微分方程,若存在一个函数u(x, y),使得∂u/∂x = M,∂u/∂y = N,那么方程就是恰当微分方程。

此时,只需找到u(x, y),然后积分得到u(x, y) = c 即可。

4.线性微分方程法:对于形如dy/dx + P(x)y = Q(x)的一阶线性微分方程,可以使用常数变易法求解。

先求解对应的齐次线性微分方程,然后使用常数变易法求得特解。

二、二阶常系数线性微分方程的解法:1.特征方程法:对于形如d^2y/dx^2 + a dy/dx + by = 0的二阶常系数线性微分方程,可以构造特征方程λ^2 + aλ + b = 0,求解特征方程得到λ1和λ2,然后根据不同的情况,求解出相应的通解。

2.常数变易法:对于形如d^2y/dx^2 + a dy/dx + by = f(x)的二阶常系数线性微分方程,可以先求解对应的齐次线性微分方程,得到通解。

然后使用常数变易法,假设非齐次方程的特解为y = u(x),代入方程,求得u(x)的表达式,再将通解和特解相加,得到非齐次方程的通解。

三、高阶线性微分方程的解法:对于高阶线性微分方程d^n y/dx^n + a1 d^(n-1) y/dx^(n-1) + ... + an-1 dy/dx + an y = f(x),可以使用特征方程法和常数变易法结合的方法求解。

微分方程复习要点

微分方程复习要点
则方程有特解
y* xk e x[Rn1 (x) cos x Rn2 (x) sin x], 其中Rn1 (x), Rn2 (x)是n次的多项式,n max{ m, l},而 k按 i 是否为特征方程的根而分别取1或0.
二、例 题 选 讲
例1 求解方程 y d x (x2 4x) d y 0.
arctan p y C1 ,

y tan( y C1),
分离变量后,再两边积分得
ln | sin( y C1) | x ln C2 ,
从而得方程的通解
sin( y C1) C2 ex .
例6 求下列方程的通解
1. 4 y 20 y 25 y 0; 2. y 2 y x e2x ;
解 原方程变形为
d x 3 x y3x1 , dy y

d(x2 ) 6 (x2 ) 2 y3 ,
dy y
此是关于函数 x2 f ( y)的一阶线性非齐次线性微分方程,
由求解公式得
x2


e


6 y
d
y

2y3
e


6 y
d
y
d
y

C

y6 2
则方程有特解
y* e x xkQm (x), 其中Qm (x)是一个与 Pm (x)同次的多项式,而
k 10,,若若不是是特特征征方方程程的的单根根,, 2 ,若是特征方程的二重根.
②设方程
y py qy e x[Pl (x) cos x Pm (x) sin x],
2 1)
d
u

微积分-常微分方程解题方法

微积分-常微分方程解题方法

北京理工大学微积分-常微分方程解法常微分方程各种解题方法程功2011/2/161.几个基本定义(1)微分方程:凡含有未知函数的导数或微分的方程叫微分方程.实质: 联系自变量,未知函数以及未知函数的某些导数(或微分)之间的关系式.分类1: 常微分方程: 未知函数为一元函数 偏微分方程: 未知函数为多元函数分类2:微分方程的阶: 微分方程中出现的未知函数的最高阶导数的阶数称之. 一阶微分方程(,,)0,F x y y '=(,);y f x y '=高阶()n 微分方程()(,,,,)0,n F x y y y '= ()(1)(,,,,).n n y f x y y y -'=分类3: 线性与非线性微分方程.()(),y P x y Q x '+=2()20;x y yy x ''-+=分类4: 单个微分方程与微分方程组.32,2,dyy z dxdz y z dx⎧=-⎪⎪⎨⎪=-⎪⎩(2)微分方程的解:代入微分方程能使方程成为恒等式的函数称之.微分方程的解的分类:① 通解: 微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同.,y y '=例;x y Ce =通解0,y y ''+=12sin cos ;y C x C x =+通解② 特解: 确定了通解中任意常数以后的解. (3)解的图象: 微分方程的积分曲线. 通解的图象: 积分曲线族.(4)初始条件: 用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题.一阶:00(,)x x y f x y y y ='=⎧⎪⎨=⎪⎩过定点的积分曲线;二阶:0000(,,),x x x x y f x y y y y y y =='''=⎧⎪⎨''==⎪⎩过定点且在定点的切线的斜率为定值的积分曲线.2.可分离变量的微分方程可分离变量微分方程的形式()()g y dy f x dx =44225522,dy x y y dy x dx dx-=⇒=例如解法:设函数()g y 和()f x 是连续的,()()g y dy f x dx =⎰⎰设函数()G y 和()F x 是依次为()g y 和()f x 的原函数,()()G y F x C =+为微分方程的解.3.齐次方程形如()dy yf dx x=的微分方程称为齐次方程. 解法:作变量代换,y u x =,y xu =即,dy duu x dx dx∴=+ 代入原式(),du u x f u dx += 即().du f u u dx x-=(可分离变量的方程) (1)()0,f u u -≠当时1ln ,()duC x f u u=-⎰得),u x Ce ϕ=即()()du u f u uϕ=-⎰(),yu x =将代入(),yx x Ce ϕ=得通解 (2)0,u ∃当00()0,f u u -=使0,u u =则是新方程的解,代回原方程0.y u x =得齐次方程的解 4.可化为齐次的方程 定义111()dy ax by cf dx a x b y c ++=++形如的微分方程 10,c c ==当时为齐次方程.否则为非齐次方程. 解法:,x X h y Y k =+=+令,(其中h 和k 是待定的常数),dx dX dy dY ==11111()dY aX bY ah bk c f dX a X b Y a h b k c ++++=++++1110,0,ah bk c a h b k c ++=⎧⎨++=⎩ (1)1122a b a b ≠有唯一一组解.11()dY aX bYf dX a X b Y +=+得通解代回,X x h Y y k =-⎧⎨=-⎩, (2)11,a b a b λ==1(),()dy ax by c f dx ax by c λ++=++方程可化为,z ax by =+令 dz dy a b dx dx =+则,11()().dz z c a f b dx z c λ+-=+可分离变量. 5.其它类型:通过变量代换化为可分离变量方程(1)()()()f x y dx dy g x dx ±±=,u x y =±令,du dx dy =±方程化为()()f u du g x dx = (2)()()()f xy xdy ydx g x dx +=,u xy =令,du xdy ydx =+代入方程得()()f u du g x dx =(3)()()()y f xdy ydx g x dx x -=,y u x =令则2,xdy ydx du x -=代入方程得2()()g x f u du dx x=22(4)()()()f x y xdx ydy g x dx ++=22,u x y =+令 则22,du xdx ydy =+代入方程得()2()f u du g x dx =6.线性方程一阶线性微分方程的标准形式:()()dyP x y Q x dx+= ()0,Q x ≡当上方程称为齐次的.()Q x ≡当0,上方程称为非齐次的. 例如2,dy y x dx =+2sin ,dx x t t dt=+线性的; 23,yy xy '-=cos 1,y y '-=非线性的。

微分方程常见题型解法

微分方程常见题型解法

微分方程常见题型攻略一、一阶微分方程1.可分离变量的微分方程及或化为可分离变量的微分方程(齐次)(略)2.一阶线性微分方程(1)一阶线性齐次微分方程:0)( y x P y 法一:分离变量,积分;法二:套公式dxx P Ce y )(.(2)一阶线性非齐次微分方程:)()(x Q y x P y 法一:常数变易法①先求出对应齐次微分方程的通解 dxx P Ce y )(;②常数变易(设原方程的通解为) dx x P e x u y )()(;③代入原方程求出)(x u 即得原方程的通解。

法二:公式法])([)()(C dx e x Q e y dx x P dx x P 。

例1【2011年考研】微分方程x ey y xcos 满足条件0)0( y 的解为_________。

解:此为一阶线性微分方程,其中1)( x P ,x ex Q xcos )( ,通解为])([)()(C dx e x Q e y dx x P dx x P ]cos [11C dx xe e e dxx dx ]cos [C dx xe e e x x x ]cos [C xdx e x )(sin C x e x 。

由初始条件0)0( y ,得0 C ,故所求特解为x ey xsin 。

注:对于微分方程,经常以积分方程的形式出现,即给出的方程中含有积分上限函数。

(1)对于积分方程,方法是两边同时求导,化为微分方程。

但是在求导过程中要注意,如果两边同时求一阶导后还是含有积分上限函数,那么需要再一次求导,直到方程中不再求有积分上限函数,并且也要注意有时候需要对方程进行恒等变换后再求导。

(2)注意积分方程中隐含的初始条件。

例2已知函数)(x f 满足1)(21)(1x f du ux f ,1)(10 dx x f ,求)(x f 。

解:设ux t ,则dt x du 1,于是 10)(du ux f xdt t f x 0)(1。

常微分方程复习资料

常微分方程复习资料

第二章 一阶微分方程的初等解法
§2.1 变量分离方程与变量变换 §2.2 线性微分方程与常数变易法 §2.3 恰当微分方程与积分因子 §2.4 一阶隐式微分方程与参数表示
变量分离方程的求解
1、形式: dy f ( x )( y ) dx
2、求解方法: 分离变量、 两边积分、 考虑特殊情况
3、方程 dy p( x )y 的解为: dx
D(D 1) pD q y f (et )
机动 目录 上页 下页 返回 结束
c(x)
Q(
x)e
p(
x
)dx
dx
~
c
y e ( p(x)dx
Q(
x)e
p(
x
)
dxdx
~
c)
(3)
二 伯努利(Bernoulli )方程
伯努利方程:形如 dy p(x) y Q(x) yn 的方程, dx
这里P( x), Q( x)为x的连续函数。
解法:
10 引入变量变换 z y1n ,方程变为
dy a1x b1 y c1 dx a2 x b2 y c2
k(a2 x b2 y) c1 a2 x b2 y c2
f (a2x b2 y)
3. a1 b1
a2 b2
0,
且C1、C2不同时为零的情形
aa21
x x
b1 b2
y y
c1 c2
0 0
X x Y y ,
初值条件/Initial Value Conditions/ 对于 n 阶方程 y(n) f (x, y, y,, y(n1) )
初值条件可表示为
y(x0) y0, y(x0) y0 , y(x0) y0,, y(n1) (x0) y0(n1)

《常见一阶微分方程》类型及其一般求解思路与步骤

《常见一阶微分方程》类型及其一般求解思路与步骤

《常见⼀阶微分⽅程》类型及其⼀般求解思路与步骤⼀、《⾼等数学》⼀阶微分⽅程分类:第⼀类:可分离变量的微分⽅程及其分离变量的求解⽅法,包括齐次微分⽅程(换元法)。

第⼆类:⼀阶线性微分⽅程,其中齐次线性微分⽅程的求解归结为可分离变量的微分⽅程;⽽⾮齐次线性微分⽅程基于常数变易法,或称为待定函数法,直接得到⾮齐次线性微分⽅程的通解或者基于线性微分⽅程解的结构求得其⼀个特解来求通解:⾮齐次线性微分⽅程的特解=对应齐次线性微分⽅程的通解+⾮齐次的⼀个特解其中伯努利⽅程(换元法)归结为⼀阶线性微分⽅程。

第三类:全微分⽅程及基于曲线积分与路径⽆关的积分法,或者基于全微分运算法则与微分的形式不变性的⽅法(这部分内容在曲线积分有关积分与路径⽆关的内容中讨论)。

⼆、求解⼀阶微分⽅程的基本思路1.改写结构,对⽐标准可求解类型适当变换微分⽅程描述形式,⽐对标准类型⽅程结构。

常⽤的⼀阶微分⽅程的标准类型有:●可分离变量的微分⽅程:具有这种结构的⽅程可以使⽤分离变量法求解,●齐次⽅程(所谓齐次,各项次数相同):将原⽅程转换为可分离变量的微分⽅程求解。

●⼀阶线性微分⽅程:(1)当Q(x)恒等于0时,为齐次线性⽅程,使⽤可分离变量法求解;(2)当Q(x)不恒等于0时,为⾮齐次线性⽅程,基于对应的齐次线性⽅程的通解,使⽤常数变易法,或者说待定函数法求解;也可以直接利⽤通过常数变易法得到的通解计算公式直接得到通解,其中的不定积分都不带任意常数.●伯努利⽅程:通过两端同时除以yn,令z=y1-n将⽅程转换为⼀阶线性微分⽅程求解。

●全微分⽅程:它的判定和求解⽅法,使⽤曲线积分相关的理论与⽅法求解。

满⾜以上条件的微分⽅程为全微分⽅程,可以通过曲线积分与路径⽆关求积分得到通解,或者基于全微分的形式不变性与全微分公式得到通解,即2.换元转换,构建标准类型对于不符合标准类型的⽅程,考虑对微分⽅程进⾏适当变换后,使⽤换元法将⼀阶微分⽅程的右边项f(x,y)的部分表达式⽤新的变量表⽰,或者其中的变量⽤新的变量表达式替换,将⽅程转换为⼀阶微分⽅程标准类型来求解。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常见形式及解法在数学的广袤领域中,常微分方程是一个极其重要的分支,它在物理学、工程学、经济学等众多领域都有着广泛的应用。

简单来说,常微分方程就是含有一个自变量和未知函数及其导数的方程。

接下来,让我们一起深入探讨常微分方程的常见形式以及相应的解法。

一、常微分方程的常见形式1、一阶常微分方程可分离变量方程:形如$dy/dx = f(x)g(y)$的方程,通过将变量分离,将其化为$\frac{dy}{g(y)}=f(x)dx$,然后两边分别积分求解。

齐次方程:形如$dy/dx = F(y/x)$的方程,通过令$u = y/x$,将其转化为可分离变量的方程进行求解。

一阶线性方程:形如$dy/dx + P(x)y = Q(x)$的方程,使用积分因子法求解。

2、二阶常微分方程二阶线性常微分方程:形如$y''+ p(x)y' + q(x)y = f(x)$的方程。

当$f(x) = 0$时,称为二阶线性齐次方程;当$f(x) ≠ 0$时,称为二阶线性非齐次方程。

常系数线性方程:当$p(x)$和$q(x)$都是常数时,即$y''+ py'+ qy = f(x)$,这种方程的解法相对较为固定。

二、常微分方程的解法1、变量分离法这是求解一阶常微分方程的一种基本方法。

对于可分离变量的方程,我们将变量分别放在等式的两边,然后对两边进行积分。

例如,对于方程$dy/dx = x/y$,可以变形为$ydy = xdx$,然后积分得到$\frac{1}{2}y^2 =\frac{1}{2}x^2 + C$,从而解得$y =\pm \sqrt{x^2 +2C}$。

2、齐次方程的解法对于齐次方程$dy/dx = F(y/x)$,令$u = y/x$,则$y = ux$,$dy/dx = u + x(du/dx)$。

原方程可化为$u + x(du/dx) = F(u)$,这就变成了一个可分离变量的方程,从而可以求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种类型的微分方程及其相应解法
专业班级:交土01班 姓名:高云 学号:1201110102
微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我
们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分
方程及其相应解法。

一、一阶微分方程的解法
1.可分离变量的方程
dx x f dy y g )()(=,或)()(y g x f dx
dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边
积分。

例1.求微分方程ydy dx y xydy dx +=+2的通解.
解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=-
设,01,012≠-≠-x y 分离变量得
dx x dy y y 1112-=- 两端积分⎰⎰
-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y
2.齐次方程
(1))(x
y f dx dy = (2) )(c by ax f dx
dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy
y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222⎪⎭
⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u
u u u dx du x u +--=+ 分离变量得⎥⎦
⎤⎢⎣⎡-+--⎪⎭⎫ ⎝⎛--112212121u u u u ,x dx du = 两边积分得
,ln ln ln 2
1)2ln(23)1ln(C x u u u +=----
整理得 .)2(1
2/3Cx u u u =--
所求微分方程的解为 .)2()(32x y Cy x y -=-
3.一阶线性微分方程
⎰+⎰⎰==+-])([),()()()(C dx e x Q e y x Q y x p dx
dy dx x p dx x p 其通解为 例3. x y dx dy x sin 2=+, π
π1)(=y ; 解 将方程改写为 x
x y x dx dy sin 2=+, 这里x x p 2)(=,x
x x q sin )(=,故由求解公式得 )sin (1sin 222⎰⎰+=⎥⎦⎤⎢⎣⎡⎰+⎰=-
xdx x C x dx e x x C e y dx x dx x 22sin cos x x x x x C +-=
. 由初值条件ππ1
)(=y ,得0=C .
所以初值问题的解为 2
c o s s i n x x x x y -= 例 4.设非负函数()f x 具有一阶导数,且满足1
200()()()x
f x f t dt t f t dt =+⎰⎰,求函数()f x .
解:设1
20()A t f t dt =⎰,则0()()x
f x f t dt A =+⎰,两边对x 求导,得 ()()()x f x f x f x Ce '=⇒=,由已知(0)()x f A C A f x Ae =⇒=⇒=
又 1
1222004()()1
t A t f t dt t Ae dt A e ==⇒=+⎰⎰,则 24()1
x f x e e =+ 例5.设)()()(x g x f x F ⋅=,其中(),()f x g x 满足下列条件:
)()(x g x f =',()()g x f x '=,且()00f =,x e x g x f 2)()(=+.
① 求)(x F 满足的一阶方程; ② 求)(x F 的表达式.
解:(1) 由 )()()()()(x g x f x g x f x F '+'='=)()(22x f x g +
=)()(2)]()([2x g x f x g x f -+)(242x F e x -=,
可见,)(x F 所满足的一阶微分方程为
2()2()4(0)0
x
F x F x e F '⎧+=⎨=⎩. (2) 由通解公式有
]4[)(222C dx e e e x F dx x dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-22x x e Ce -=+.
将0)0()0()0(==g f F 代入上式,得1-=C .于是
22()x x F x e e -=-
4.伯努利方程。

内适当选定的点的坐标是区域其中内恒成立,此时通解为在区域要条件是方程的充分
的全微分,其为全微分左边恰好是某一个函数全微分方程
即可,其余同再令同除以G ,,),(),(),(G ),(,0),(),(.53,,)()(00100
y x C dy y x Q dx y x P y x u x Q y P y x u dy y x Q dx y x p y u y y x Q y x p dx
dy x x y
y n n n =+=∂∂=∂∂==+==+⎰⎰-二、二阶线性微分方程的解法
1.可降阶微分方程
次分型,求解方法:连续积n )()1()(x f y n =
(2)''''''',),(p y p y y x f y ===则型,求解方法:令
(3)p dy
dp dx dp y y y f y ===='''''p y ),(,则型,求解方法:令‘
例6. 方程03='+''y y x 的通解为 .
解:330y xy y y x ''''''+=⇒=-
令,
y p y p ''''==,原方程变为 3p p x '=-
11333ln 3ln ln C dp dp dx dx p x C p y p x p x x '⇒=-⇒=-⇒=-+⇒==⎰⎰
所以232112C dx C y C x x
=-+=⎰
)2).......(()()()
1......(0)()(.2''''''x f y x Q y x P y y x Q y x P y =++=++二阶非齐次线性方程二阶齐次线性方程
3.二阶常系数齐次线性方程
)
sin cos (,r )3()(r 2(,,10
q p ,0212,12121212'''21x C x C e y i e x C C y e C e C y r r q pr r qy py y x rx
x
r x r βββα+=±=+=+==++=++∂则通解为一对共轭复根,则通解为)有两个相等的实根则通解为)有两个不相等的实根(是常数,若特征方程,其中 例7. 解方程022=+'+''y y y .
解:022=+'+''y y y 的特征方程为2
1,22201r r r i ++=⇒=-±
则方程的通解为12(cos sin )x y e C x C x -=+
例8.设
0()sin ()()x f x x x t f t dt =--⎰ 其中)(x f 为连续函数,求)(x f .
解:原方程整理得
00()sin ()()x x f x x x f t dt tf t dt =-+⎰⎰, 两边求导 0()cos ()x
f x x f t dt '=-⎰,
再两边求导得
()sin ()f x x f x ''=--,
整理得 ()()sin ,(0)0,(0)1f x f x x f f '''+=-==(初始条件到原方程中找) 解得1()sin cos 22
x f x x x =
+ 有关微分方程的题目有很多,不可能一一列举出来,但我们可以举一反三,开拓思维,这样我们的高数才会得以提高。

相关文档
最新文档