江苏省高考数学总复习-第6章第三节-理-苏教版PPT课件

合集下载

(江苏专版)2019版高考数学一轮复习 第六章 数列 6.3 等比数列课件.pptx

(江苏专版)2019版高考数学一轮复习 第六章 数列 6.3 等比数列课件.pptx

=(2n+1)bn+1,
令cn= bn ,则cn=2n .1
an
2n
因此Tn=c1+c2+…+cn= 3
2
+ 5 + 7 +…2+n 1+
22 23
2n1
所以 1
2
Tn=
3 22
+
5 23
+7
24
+…+2n 1+
2n
2n, 1
2n1
2n, 1
2n
两式相减得 1
2
Tn=3
2
+1
2
1-
22
,
1 2n1
故b3=5,公比q= b4 =2. 由b3=b1·22,即5=bb31·22,
解得b1= 5 .
4
所以{bn}是以 5 为首项,2为公比的等比数列,其通项公式为bn=5
4
4
3.
9
·2n-1=5·2n-
5 (1 2n )
(2)证明:数列{bn}的前n项和Sn= 4 =5·2n-2-
1 2
,即5Sn+
1 q
3
拓展延伸 等差数列与等比数列的关系: (1)若{an}是正项等比数列,则{logaan}(a>0且a≠1)是以logaa1为首项,logaq 为公差的等差数列(q是{an}的公比). (2)若{an}是等差数列,则{ba}n (b≠0)是以 b为a1 首项,bd为公比的等比数列 (d是{an}的公差).
2.解题时适当利用性质转化条件,可简化运算. 3.挖掘隐含条件,发现等差(或等比)关系,使解题目的明确.
例3 (2017山东文,19,12分)已知{an}是各项均为正数的等比数列,且a1+

等比数列PPT课件

等比数列PPT课件
第6章 第三节
高考数学总复习
[解析] (1)a2=a1+14=a+14,
a3=12a2=12a+
1 8.



(2)∵a4=a3+14=12a+38,

∴a5=12a4=14a+136,
第6章 第三节
高考数学总复习
∴b1=a1-14=a-14,b2=a3-14=12(a-14),
b3=a5-14=14(a-14),
6.(2012·安徽怀宁一模)设等比数列{an}的前 n 项和为 Sn,若
a1=1,S6=4S3,则 a4=________.
北 师

[答案] 3

第6章 第三节
高考数学总复习
[解析] 本题考查等比数列的通项公式及前 n 项和公式.
若 q=1 时,S3=3a1,S6=6a1,显然 S6≠4S3,故 q≠1,
等比数列{an}的公比为 q(q≠0),其前 n 项和为 Sn,
当 q=1 时,Sn=_n_a_1_;当 q≠1 时,Sn=a_1_11_-- __q_q_n__=a1qq-n-1 1
北 师 大 版
=qa-1qn1-q-a1 1.
第6章 第三节
高考数学总复习
6.等比数列前 n 项和的性质
公比不为-1 的等比数列{an}的前 n 项和 Sn,则 Sn,S2n-Sn,

∴a111--qq6=4·a111--q∴a4=a1q3=q3=3.
第6章 第三节
高考数学总复习
[点评] 解有关等比数列的前 n 项和问题时,一定要注意对

公比 q 进行分类讨论,否则会出现漏解现象.



第6章 第三节
高考数学总复习

(江苏专用)高考数学总复习 第六篇 数列、推理与证明《第35讲 数列的综合应用》课件 理 苏教

(江苏专用)高考数学总复习 第六篇 数列、推理与证明《第35讲 数列的综合应用》课件 理 苏教

2.解答数列应用题的步骤 (1)审题——仔细阅读材料,认真理解题意. (2)建模——将已知条件翻译成数学(数列)语言,将实际问题转 化成数学问题,弄清该数列的特征、要求是什么. (3)求解——求出该问题的数学解. (4)还原——将所求结果还原到原实际问题中.
3.数列应用题常见模型 (1)等差模型:如果增加(或减少)的量是一个固定量时,该模型 是等差模型,增加(或减少)的量就是公差. (2)等比模型:如果后一个量与前一个量的比是一个固定的数 时,该模型是等比模型,这个固定的数就是公比. (3)递推数列模型:如果题目中给出的前后两项之间的关系不 固定,随项的变化而变化时,应考虑是an与an+1的递推关系, 还是Sn与Sn+1之间的递推关系.
由题意可得(5-d+1)(5+d+9)=(5+3)2, 解得d1=2,d2=-10. ∵等差数列{bn}的各项为正,∴d>0, ∴d=2,b1=3,∴Tn=3n+nn2-1×2=n2+2n.
考向二 数列与函数的综合应用 【例2】►等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在 函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上. (1)求r的值; (2)当b=2时,记bn=n4+an1(n∈N*),求数列{bn}的前n项和Tn. [审题视点] 第(1)问将点(n,Sn)代入函数解析式,利用an=Sn-Sn-1(n≥2), 得到an,再利用a1=S1可求r. 第(2)问错位相减求和.
3.(2011·南通调研)已知三数x+log272,x+log92,x+log32成等比数列,则 公比为________. 解析 因为(x+log92)2=(x+log272)(x+log32),所以x+12log322=x+13log32 (x+log32),解得x=-14log3 2,所以公比q=xx++lloogg9922=xx- -42xx=3. 答案 3

江苏专版高考数学一轮复习第六章数列第三节等比数列教案文含解析苏教版

江苏专版高考数学一轮复习第六章数列第三节等比数列教案文含解析苏教版

江苏专版高考数学一轮复习第六章数列第三节等比数列教案文含解析苏教版第三节 等比数列1.等比数列的有关概念 (1)定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *);(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k. [小题体验]1.设S n 是等比数列{}a n 的前n 项和,若a 1=1,a 6=32,则S 3=________. 答案:72.在等比数列{a n }中,若a 1=1,a 3a 5=4(a 4-1),则a 7=________.解析:法一:设等比数列{a n }的公比为q ,因为a 1=1,a 3a 5=4(a 4-1),所以q 2·q 4=4(q 3-1),即q 6-4q 3+4=0,q 3=2,所以a 7=q 6=4.法二:设等比数列{a n }的公比为q, 由a 3a 5=4(a 4-1)得a 24=4(a 4-1),即a 24-4a 4+4=0,所以a 4=2,因为a 1=1,所以q 3=2,a 7=q 6=4.答案:43.(2018·南京学情调研)已知各项均为正数的等比数列{a n },其前n 项和为S n .若a 2-a 5=-78,S 3=13,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q (q >0),则由题意得⎩⎪⎨⎪⎧a 1q -a 1q 4=-78,a 11+q +q 2=13,两式相除得q 2-q -6=0,即q =3或q =-2(舍去),从而得a 1=1,所以数列{a n }的通项公式为a n = 3n -1.答案:3n -11.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.(2019·扬州质检)在等比数列{}a n 中,若a 3=7,前3项和S 3=21,则公比q =________.解析:由已知得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21,则1+q +q2q2=3,整理得2q 2-q -1=0,解得q =1或q =-12.答案:1或-122.各项均为正数的等比数列{}a n 的前n 项和为S n ,若S 10=2,S 30=14,则S 40=_______. 解析:依题意有S 10,S 20-S 10,S 30-S 20,S 40-S 30仍成等比数列,则2(14-S 20)=(S 20-2)2,解得S 20=6.所以S 10,S 20-S 10,S 30-S 20,S 40-S 30,即为2,4,8,16,所以S 40=S 30+16=30.答案:30考点一 等比数列的基本运算重点保分型考点——师生共研 [典例引领]1.(2019·苏北四市调研)在各项均为正数的等比数列{}a n 中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析:设等比数列{}a n 的公比为q ,由a 2=1,a 8=a 6+2a 4得q 6=q 4+2q 2,q 4-q 2-2=0,解得q 2=2,则a 6=a 2q 4=4.答案:42.(2018·南通一调)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=________. 解析:法一:设等比数列{a n }的首项为a 1,公比为q .显然q ≠1,由题意得⎩⎪⎨⎪⎧a 11-q 21-q=3,a11-q 41-q=15.解得⎩⎪⎨⎪⎧q =2,a 1=1或⎩⎪⎨⎪⎧q =-2,a 1=-3.所以S 6=a 11-q 61-q =1×1-261-2=63或S 6=a 11-q 61-q =-3×[1--26]1--2=63.法二:由S 2,S 4-S 2,S 6-S 4成等比数列可得(S 4-S 2)2=S 2(S 6-S 4),所以S 6=63. 答案:63[由题悟法]解决等比数列有关问题的2种常用思想 方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q1-q[即时应用]1.(2019·如东调研)设等比数列{}a n 的前n 项和为S n .若27a 3-a 6=0,则S 6S 3=________.解析:设等比数列的公比为q ,则a 6a 3=q 3=27, 所以S 6S 3=a 1+a 2+…+a 6a 1+a 2+a 3=1+a 4+a 5+a 6a 1+a 2+a 3=1+q 3+q 4+q 51+q +q2=1+q 3=28.答案:282.(2018·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q =________.解析:显然q ≠1,由题意得⎩⎪⎨⎪⎧a 11-q 21-q=2a 1q +3,a 11-q 31-q=2a 1q 2+3,整理得⎩⎪⎨⎪⎧a 11-q =3,a 11+q -q2=3,解得q =2.答案:2考点二 等比数列的判定与证明重点保分型考点——师生共研 [典例引领](2019·南京高三年级学情调研)已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求证数列{a n }为等比数列,并求其通项公式;(3)若k ,t ∈N *,且S 1,S k -S 1,S t -S k 成等比数列,求k 和t 的值. 解:(1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0. 因为a 1>0,所以a 1=1.(2)证明:因为3T n =S 2n +2S n , ① 所以3T n +1=S 2n +1+2S n +1, ② ②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ 所以3a n +2=S n +2+S n +1+2, ④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1, 所以当n ≥2时,a n +1a n=2. 又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2, 所以对∀n ∈N *,都有a n +1a n=2成立,故数列{a n }是首项为1,公比为2的等比数列, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.(3)由(2)可知S n =2n-1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k, 所以2t=(2k )2-3·2k+4,即2t -2=(2k -1)2-3·2k -2+1(*).由于S k -S 1≠0,所以k ≠1,即k ≥2. 当k =2时,2t=8,得t =3. 当k ≥3时,由(*),得(2k -1)2-3·2k -2+1为奇数, 所以t -2=0,即t =2,代入(*)得22k -2-3·2k -2=0,即2k=3,此时k 无正整数解.综上,k =2,t =3.[由题悟法]等比数列的4种常用判定方法[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·苏州高三期中调研)已知数列{a n }的前n 项和是S n ,且满足a 1=1,S n +1=3S n +1 (n ∈N *).(1)求证:数列{a n }为等比数列,并求其通项公式; (2)在数列{b n }中,b 1=3,b n +1-b n =a n +1a n(n ∈N *),若不等式λa n +b n ≤n 2对n ∈N *有解,求实数λ的取值范围.解:(1)证明:因为S n +1=3S n +1,所以S n =3S n -1+1(n ≥2), 两式相减得a n +1=3a n (n ≥2),又当n =1时,由S 2=3S 1+1,得a 2=3,符合a 2=3a 1, 所以a n +1=3a n ,所以数列{a n }是以1为首项,3为公比的等比数列,通项公式为a n =3n -1. (2)因为b n +1-b n =a n +1a n=3, 所以{b n }是以3为首项,3为公差的等差数列, 所以b n =3+3(n -1)=3n ,所以λa n +b n ≤n 2,即3n -1·λ+3n ≤n 2,即λ≤n 2-3n3n -1对n ∈N *有解,设f (n )=n 2-3n3n -1(n ∈N *),因为f (n +1)-f (n )=n +12-3n +13n-n 2-3n 3n -1=-2n 2-4n +13n,所以当n ≥4时,f (n +1)<f (n ),当n <4时,f (n +1)>f (n ), 所以f (1)<f (2)<f (3)<f (4)>f (5)>f (6)>…, 所以f (n )max =f (4)=427,所以λ≤427,即实数λ的取值范围为⎝ ⎛⎦⎥⎤-∞,427. 考点三 等比数列的性质重点保分型考点——师生共研[典例引领]1.(2018·南京调研)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=________.解析:由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.答案:82.设等比数列{}a m 的前n 项积为T n (n ∈N *),若a m -1a m +1-2a m =0,且T 2m -1=128,则m=________.解析:因为{}a m 为等比数列,所以a m -1·a m +1=a 2m .又a m -1·a m +1-2a m =0,所以得a m =2.因为T 2m -1=a 2m -1m,所以22m -1=128,解得m =4.答案:43.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158×⎝ ⎛⎭⎪⎫-89=-53.答案:-53[由题悟法]掌握运用等比数列性质解题的2个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件.(2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如:①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列.②若公比不为1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.[即时应用]1.(2019·张家港调研)已知等比数列{}a n 的各项均为正数,且满足a 1a 9=4,则数列{log 2a n }的前9项之和为________.解析:∵a 1a 9=a 25=4,∴a 5=2,∴log 2a 1+log 2a 2+…+log 2a 9=log 2(a 1a 2…a 9)=log 2a 95=9log 2a 5=9. 答案:92.(2018·镇江调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以3n -6=36,即n =14. 答案:14一抓基础,多练小题做到眼疾手快1.(2019·如东中学检测)已知等比数列{a n }的公比q =-12,则a 1+a 3+a 5a 2+a 4+a 6=________.解析:a 1+a 3+a 5a 2+a 4+a 6=a 1+a 3+a 5q a 1+a 3+a 5=a 1+a 3+a 5-12a 1+a 3+a 5=-2.答案:-22.(2018·盐城期中)在等比数列{a n }中,已知a 1+a 2=1,a 3+a 4=2,则a 9+a 10=________.解析:设等比数列{a n }的公比为q ,则a 3+a 4=q 2(a 1+a 2),所以q 2=2,所以a 9+a 10=q 8(a 1+a 2)=16.答案:163.(2018·苏州期末)设各项均为正数的等比数列{}a n 的前n 项和为S n ,已知a 2=6,a 3-3a 1=12,则S 5=________.解析:∵a 2=6,a 3-3a 1=12,∴⎩⎪⎨⎪⎧a 1q =6,a 1q 2-3a 1=12且q >0,解得a 1=2,q =3, ∴S 5=21-351-3=242.答案:2424.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, 所以a 2=2,所以q 2=a 4a 2=4,所以a 6=a 4q 2=32. 答案:325.(2019·南京一模)若等比数列{}a n 的前n 项和为S n ,且a 1=1,S 6=3S 3,则a 7的值为________.解析:设等比数列{}a n 的公比为q , 因为a 1=1,S 6=3S 3, 当q =1时,不满足S 6=3S 3;当q ≠1时,可得q 6-1q -1=3q 3-1q -1,化简得q 3+1=3,即q 3=2, 所以a 7=a 1q 6=4. 答案:46.(2018·常州期末)已知等比数列{a n }的各项均为正数,且a 1+a 2=49,a 3+a 4+a 5+a 6=40,则a 7+a 8+a 99的值为________.解析:⎩⎪⎨⎪⎧a 1+a 2=a 11+q =49,a 3+a 4+a 5+a 6=a 1q 2+q 3+q 4+q 5=40,两式相除可得q 2+q 4=90,即q 2=-10(舍)或q 2=9.又a n >0,所以q =3,故a 1=19,所以a 7+a 8+a 9=34+35+36=1 053,即a 7+a 8+a 99=117.答案:117二保高考,全练题型做到高考达标1.(2018·徐州期末)设等比数列{}a n 的公比为q ,前n 项和为S n ,若S 2是S 3与S 4的等差中项,则实数q 的值为________.解析:∵S 2是S 3与S 4的等差中项, ∴2S 2=S 3+S 4,∴2a 3+a 4=0, 解得q =-2. 答案:-22.(2019·如皋模拟)已知数列{}a n 是正项等比数列,满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+a 4+a 5=2,则log 2(a 51+a 52+a 53+a 54+a 55)=________.解析:∵log 2a n +1=1+log 2a n , ∴log 2a n +1a n=1,可得q =2. ∵a 1+a 2+a 3+a 4+a 5=2, ∴log 2(a 51+a 52+a 53+a 54+a 55)=log 2[(a 1+a 2+a 3+a 4+a 5)q 50]=log 2251=51. 答案:513.设等比数列{}a n 的公比为q (0<q <1),前n 项和为S n .若存在m ∈N *,使得a m +a m +2=52a m +1,且S m =1 022a m +1,则m 的值为________. 解析:∵a m +a m +2=52a m +1,S m =1 022a m +1,∴⎩⎪⎨⎪⎧a 1q m -1+a 1q m +1=52a 1q m,a 11-q m1-q =1 022a 1q m,解得m =9,q =12.答案:94.(2018·启东检测)数列{a n }满足a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n-1}是等比数列,则λ=________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.因为数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:25.(2019·姜堰模拟)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=2728,则a 5a 3=________.解析:设等比数列{a n }的公比为q ,由S 3S 6=2728, 得q ≠1,a 11-q 31-q a 11-q 61-q =2728,化简得11+q 3=2728,解得q =13. 所以a 5a 3=q 2=19.答案:196.(2018·海安中学测试)在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m =________.解析:由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5.答案:57.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n , 即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0, 所以a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列, 故S 9=2×1-291-2=210-2=1 022.答案:1 0228.(2019·徐州调研)已知正项等比数列{}a n 的前n 项和为S n 且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为________.解析:因为S 8-2S 4=6,所以S 8-S 4=S 4+6.由等比数列的性质可得,S 4,S 8-S 4,S 12-S 8成等比数列,所以S 4(S 12-S 8)=(S 8-S 4)2,所以a 9+a 10+a 11+a 12=S 12-S 8=S 4+62S 4=S 4+36S 4+12≥24,当且仅当S 4=6时等号成立.故a 9+a 10+a 11+a 12的最小值为24. 答案:249.在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)设等差数列{a n }的公差为d , 则依题意有⎩⎪⎨⎪⎧a 1=1,a 1+3d2=a 1+d a 1+7d ,解得d =1或d =0(舍去), 所以a n =1+(n -1)=n . (2)由(1)得a n =n , 所以b n =2n, 所以b n +1b n=2, 所以{b n }是首项为2,公比为2的等比数列, 所以T n =21-2n1-2=2n +1-2.10.(2018·苏州高三期中调研)已知数列{a n }各项均为正数,a 1=1,a 2=2,且a n a n +3=a n +1a n +2对任意n ∈N *恒成立,记{a n }的前n 项和为S n .(1)若a 3=3,求a 5的值;(2)证明:对任意正实数p ,{a 2n +pa 2n -1}成等比数列;(3)是否存在正实数t ,使得数列{S n +t }为等比数列.若存在,求出此时a n 和S n 的表达式;若不存在,说明理由.解:(1)因为a 1a 4=a 2a 3,所以a 4=6, 又因为a 2a 5=a 3a 4,所以a 5=32a 4=9.(2)证明:由⎩⎪⎨⎪⎧a n a n +3=a n +1a n +2,a n +1a n +4=a n +2a n +3,两式相乘得a n a n +1a n +3a n +4=a n +1a 2n +2a n +3, 因为a n >0,所以a n a n +4=a 2n +2(n ∈N *), 从而{a n }的奇数项和偶数项均构成等比数列,设公比分别为q 1,q 2,则a 2n =a 2q n -12=2q n -12,a 2n -1=a 1q n -11=q n -11, 又因为a n +3a n +2=a n +1a n ,所以a 4a 3=a 2a 1=2=2q 2q 1,即q 1=q 2, 设q 1=q 2=q ,则a 2n +pa 2n -1=q (a 2n -2+pa 2n -3),且a 2n +pa 2n -1>0恒成立, 所以数列{a 2n +pa 2n -1}是首项为2+p ,公比为q 的等比数列.(3)法一:在(2)中令p =1,则数列{a 2n +a 2n -1}是首项为3,公比为q 的等比数列, 所以S 2k =(a 2k +a 2k -1)+(a 2k -2+a 2k -3)+…+(a 2+a 1)=⎩⎪⎨⎪⎧3k ,q =1,31-q k1-q ,q ≠1,S 2k -1=S 2k -a 2k =⎩⎪⎨⎪⎧3k -2q k -1,q =1,31-q k 1-q -2q k -1,q ≠1,且S 1=1,S 2=3,S 3=3+q ,S 4=3+3q , 因为数列{S n +t }为等比数列,所以⎩⎪⎨⎪⎧S 2+t 2=S 1+t S 3+t ,S 3+t2=S 2+tS 4+t ,即⎩⎪⎨⎪⎧3+t2=1+t 3+q +t ,3+q +t 2=3+t3+3q +t ,即⎩⎪⎨⎪⎧2t +6=q 1+t,t =q -3,解得⎩⎪⎨⎪⎧t =1,q =4或⎩⎪⎨⎪⎧t =-3,q =0(舍去).所以S 2k =4k-1=22k-1,S 2k -1=22k -1-1,从而对任意n ∈N *有S n =2n-1, 此时S n +t =2n,S n +tS n -1+t=2为常数,满足{S n +t }成等比数列,当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1,又a 1=1,所以a n =2n -1(n ∈N *),综上,存在t =1使数列{S n +t }为等比数列,此时a n =2n -1,S n =2n-1(n ∈N *).法二:由(2)知a 2n =2qn -1,a 2n -1=qn -1,且S 1=1,S 2=3,S 3=3+q ,S 4=3+3q ,因为数列{S n +t }为等比数列,所以⎩⎪⎨⎪⎧S 2+t 2=S 1+t S 3+t ,S 3+t2=S 2+tS 4+t ,即⎩⎪⎨⎪⎧3+t2=1+t 3+q +t ,3+q +t2=3+t3+3q +t ,即⎩⎪⎨⎪⎧2t +6=q 1+t ,t =q -3,解得⎩⎪⎨⎪⎧t =1,q =4或⎩⎪⎨⎪⎧t =3,q =0(舍去).所以a 2n =2qn -1=22n -1,a 2n -1=22n -2,从而对任意n ∈N *有a n =2n -1,所以S n =20+21+22+…+2n -1=1-2n1-2=2n -1, 此时S n +t =2n,S n +tS n -1+t=2为常数,满足{S n +t }成等比数列,综上,存在t =1使数列{S n +t }为等比数列,此时a n =2n -1,S n =2n -1(n ∈N *).三上台阶,自主选做志在冲刺名校1.各项均为正数的等比数列{a n }中,若a 1≥1,a 2≤2,a 3≥3,则a 4的取值范围是________. 解析:设{a n }的公比为q ,则根据题意得q =a 2a 1=a 3a 2, ∴32≤q ≤2,a 4=a 3q ≥92,a 4=a 2q 2≤8,∴a 4∈⎣⎢⎡⎦⎥⎤92,8. 答案:⎣⎢⎡⎦⎥⎤92,8 2.(2018·泰州中学高三学情调研)设正项等比数列{a n }满足2a 5=a 3-a 4,若存在两项a n ,a m ,使得a 1=4a n ·a m ,则m +n =________.解析:设等比数列{a n }的公比为q .正项等比数列{a n }满足2a 5=a 3-a 4,则2a 3q 2=a 3(1-q ),可得2q 2+q -1=0,q >0,解得q =12,若存在两项a n ,a m ,使得a 1=4a n ·a m ,可得a 1=4a 21⎝ ⎛⎭⎪⎫12m +n -2,所以m +n =6. 答案:63.(2019·苏锡常镇调研)已知数列{a n }的前n 项和为S n ,a 1=3,且对任意的正整数n ,都有S n +1=λS n +3n +1,其中常数λ>0.设b n =a n3n (n ∈N *).(1)若λ=3,求数列{}b n 的通项公式; (2)若λ≠1且λ≠3,设c n =a n +2λ-3·3n (n ∈N *),证明数列{}c n 是等比数列; (3)若对任意的正整数n ,都有b n ≤3,求实数λ的取值范围. 解:因为S n +1=λS n +3n +1,n ∈N *,所以当n ≥2时,S n =λS n -1+3n, 从而a n +1=λa n +2·3n,n ≥2,n ∈N *﹒ 在S n +1=λS n +3n +1中,令n =1,可得a 2=λa 1+2×31,满足上式,所以a n +1=λa n +2·3n,n ∈N *.(1)当λ=3时, a n +1=3a n +2·3n,n ∈N *,从而a n +13n +1=a n 3n +23,即b n +1-b n =23,又b 1=a 13=1,所以数列{}b n 是首项为1,公差为23的等差数列,所以b n =1+(n -1)×23=2n +13.(2)证明:当λ>0且λ≠3且λ≠1时,c n =a n +2λ-3·3n =λa n -1+2·3n -1+2λ-3·3n=λa n -1+2λ-3·3n -1(λ-3+3) =λ⎝⎛⎭⎪⎫a n -1+2λ-3·3n -1=λ·c n -1, 又c 1=3+6λ-3=3λ-1λ-3≠0, 所以{}c n 是首项为3λ-1λ-3,公比为λ的等比数列,故c n =3λ-1λ-3·λn -1.(3)在(2)中,若λ=1,则c n =0也可使a n 有意义,所以当λ≠3时,c n =3λ-1λ-3·λn-1.从而由(1)和(2)可知a n =⎩⎪⎨⎪⎧2n +1·3n -1, λ=3,3λ-1λ-3·λn -1-2λ-3·3n,λ≠3.当λ=3时,b n =2n +13,显然不满足条件,故λ≠3.当λ≠3时,b n =λ-1λ-3×⎝ ⎛⎭⎪⎫λ3n -1-2λ-3. 若λ>3,λ-1λ-3>0,b n <b n +1,n ∈N *,b n ∈[1,+∞),不符合,舍去. 若0<λ<1,λ-1λ-3>0,-2λ-3>0,b n >b n +1,n ∈N *,且b n >0. 所以只需b 1=a 13=1≤3即可,显然成立. 故0<λ<1符合条件;若λ=1,b n =1,满足条件.故λ=1符合条件; 若1<λ<3,λ-1λ-3<0,-2λ-3>0,从而b n <b n +1,n ∈N *, 因为b 1=1>0.故b n ∈⎣⎢⎡⎭⎪⎫1,-2λ-3, 要使b n ≤3恒成立,只需-2λ-3≤3即可. 所以1<λ≤73.综上所述,实数λ的取值范围是⎝ ⎛⎦⎥⎤0,73.。

(江苏专版)2019版高考数学一轮复习第六章数列6.3等比数列讲义

(江苏专版)2019版高考数学一轮复习第六章数列6.3等比数列讲义

§6.3等比数列考纲解读考点内容解读要求五年高考统计常考题型预测热度2013 2014 2015 2016 20171.等比数列的运算1.等比数列的证明2.等比数列的通项公式3.等比数列求和C14题5分填空题解答题★★★2.等比数列的性质及数列的综合运用1.等比数列性质运用2.数列的综合应用C19题16分7题5分20题16分20题16分填空题解答题★★★分析解读等比数列是高考的热点.中档题主要考查等比数列的基本运算,压轴题常和等差数列综合在一起考查推理证明,对能力要求比较高.五年高考考点一等比数列的运算1.(2013江苏,14,5分)在正项等比数列{a n}中,a5=,a6+a7=3.则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为.答案122.(2015课标Ⅱ改编,4,5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7= .答案423.(2014广东,13,5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+lna20= .答案504.(2014天津,11,5分)设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为.答案-教师用书专用(5—7)5.(2013江西理改编,3,5分)等比数列x,3x+3,6x+6,…的第四项等于.答案-246.(2013北京理,10,5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q= ;前n项和S n= . 答案2;2n+1-27.(2013陕西理,17,12分)设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.解析(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n =,∴S n =(2)证明:假设{a n+1}是等比数列,则对任意的k∈N+,(a k+1+1)2=(a k+1)(a k+2+1),+2a k+1+1=a k a k+2+a k+a k+2+1,q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.考点二等比数列的性质及数列的综合运用1.(2017课标全国Ⅰ理改编,12,5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是.答案4402.(2015福建改编,8,5分)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于.答案93.(2015安徽,14,5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.答案2n-14.(2015湖南,14,5分)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n= .答案3n-15.(2014江苏,7,5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.答案 46.(2017山东理,19,12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连结点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.解析(1)设数列{x n}的公比为q,由已知知q>0.由题意得所以3q2-5q-2=0.因为q>0,所以q=2,x1=1.因此数列{x n}的通项公式为x n=2n-1.(2)过P1,P2,…,P n+1向x轴作垂线,垂足分别为Q1,Q2,…,Q n+1.由(1)得x n+1-x n=2n-2n-1=2n-1,记梯形P n P n+1Q n+1Q n的面积为b n,由题意b n=×2n-1=(2n+1)×2n-2,所以T n=b1+b2+…+b n=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2,①2T n=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1.②①-②得-T n=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=+-(2n+1)×2n-1.所以T n=.7.(2017天津文,18,13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).解析(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.又因为q>0,所以q=2.所以,b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n.(2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.得T n=(3n-4)2n+2+16.所以,数列{a2n b n}的前n项和为(3n-4)2n+2+16.8.(2016江苏,20,16分)记U={1,2,…,100}.对数列{a n}(n∈N*)和U的子集T,若T=⌀,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.解析(1)由已知得a n=a1·3n-1,n∈N*.于是当T={2,4}时,S T=a2+a4=3a1+27a1=30a1.又S T=30,故30a1=30,即a1=1.所以数列{a n}的通项公式为a n=3n-1,n∈N*.(2)证明:因为T⊆{1,2,…,k},a n=3n-1>0,n∈N*,所以S T≤a1+a2+…+a k=1+3+…+3k-1=(3k-1)<3k.因此,S T<a k+1.(3)证明:下面分三种情况证明.①若D是C的子集,则S C+S C∩D=S C+S D≥S D+S D=2S D.②若C是D的子集,则S C+S C∩D=S C+S C=2S C≥2S D.③若D不是C的子集,且C不是D的子集.令E=C∩∁U D,F=D∩∁U C,则E≠⌀,F≠⌀,E∩F=⌀.于是S C=S E+S C∩D,S D=S F+S C∩D,进而由S C≥S D得S E≥S F.设k为E中的最大数,l为F中的最大数,则k≥1,l≥1,k≠l.由(2)知,S E<a k+1.于是3l-1=a l≤S F≤S E<a k+1=3k,所以l-1<k,即l≤k.又k≠l,故l≤k-1.从而S F≤a1+a2+…+a l=1+3+…+3l-1=≤=≤,故S E≥2S F+1,所以S C-S C∩D≥2(S D-S C∩D)+1,即S C+S C∩D≥2S D+1.综合①②③得,S C+S C∩D≥2S D.9.(2016天津,18,13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且-=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)n}的前2n项和.解析(1)设数列{a n}的公比为q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1.所以a n=2n-1.(2)由题意,得b n=(log2a n+log2a n+1)=(log22n-1+log22n)=n-,即{b n}是首项为,公差为1的等差数列.设数列{(-1)n}的前n项和为T n,则T2n=(-+)+(-+)+…+(-+)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.10.(2015江苏,20,16分)设a1,a2,a3,a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:,,,依次构成等比数列;(2)是否存在a1,d,使得a1,,,依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得,,,依次构成等比数列?并说明理由.解析(1)证明:因为==2d(n=1,2,3)是同一个常数,所以,,,依次构成等比数列.(2)令a1+d=a,则a1,a2,a3,a4分别为a-d,a,a+d,a+2d(a>d,a>-2d,d≠0).假设存在a1,d,使得a1,,,依次构成等比数列,则a4=(a-d)(a+d)3,且(a+d)6=a2(a+2d)4.令t=,则1=(1-t)(1+t)3,且(1+t)6=(1+2t)4,化简得t3+2t2-2=0(*),且t2=t+1.将t2=t+1代入(*)式,得t(t+1)+2(t+1)-2=t2+3t=t+1+3t=4t+1=0,则t=-.显然t=-不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,,,依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得,,,依次构成等比数列,则(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k).分别在两个等式的两边同除以及,并令t=,则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k).将上述两个等式两边取对数,得(n+2k)ln(1+2t)=2(n+k)·ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t).化简得2k[ln(1+2t)-ln(1+t)]=n[2ln(1+t)-ln(1+2t)],且3k[ln(1+3t)-ln(1+t)]=n[3ln(1+t)-ln(1+3t)].再将这两式相除,化简得ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t)(**).令g(t)=4ln(1+3t)ln(1+t)-ln(1+3t)ln(1+2t)-3ln(1+2t)·ln(1+t),则g'(t)=.令φ(t)=(1+3t)2ln(1+3t)-3(1+2t)2ln(1+2t)+3(1+t)2·ln(1+t),则φ'(t)=6[(1+3t)ln(1+3t)-2(1+2t)ln(1+2t)+(1+t)·ln(1+t)].令φ1(t)=φ'(t),则φ'1(t)=6[3ln(1+3t)-4ln(1+2t)+ln(1+t)].令φ2(t)=φ'1(t),则φ'2(t)=>0.由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ'2(t)>0,知φ2(t),φ1(t),φ(t),g(t)在和(0,+∞)上均单调.故g(t)只有唯一零点t=0,即方程(**)只有唯一解t=0,故假设不成立.所以不存在a1,d及正整数n,k,使得,,,依次构成等比数列.11.(2015陕西,21,12分)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=+;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.解析(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1+++…+-2=-2=-<0,所以F n(x)在内至少存在一个零点.又F'n(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n.因为x n是F n(x)的零点,所以F n(x n)=0,显然x n≠1.即-2=0,故x n=+.(2)解法一:由题设,得g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时, f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1-.若0<x<1,h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时, f n(x)=g n(x);当x≠1时, f n(x)<g n(x).解法二:由题设,得f n(x)=1+x+x2+…+x n,g n(x)=,x>0.当x=1时, f n(x)=g n(x).当x≠1时,用数学归纳法可以证明f n(x)<g n(x).①当n=2时, f2(x)-g2(x)=-(1-x)2<0,所以f2(x)<g2(x)成立.②假设n=k(k≥2)时,不等式成立,即f k(x)<g k(x).那么,当n=k+1时,f k+1(x)=f k(x)+x k+1<g k(x)+x k+1=+x k+1=.g k+1(x)-=,令h k(x)=kx k+1-(k+1)x k+1(x>0),则h'k(x)=k(k+1)x k-k(k+1)x k-1=k(k+1)x k-1(x-1).所以当0<x<1时,h'k(x)<0,h k(x)在(0,1)上递减;当x>1时,h'k(x)>0,h k(x)在(1,+∞)上递增.所以h k(x)>h k(1)=0,从而g k+1(x)>.故f k+1(x)<g k+1(x),即n=k+1时不等式也成立.由①和②知,对一切n≥2的整数,都有f n(x)<g n(x).12.(2013江苏,19,16分)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.证明由题意得,S n=na+ d.(1)由c=0,得b n==a+ d.又因为b1,b2,b4成等比数列,所以=b1b4,即=a,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.(2)设数列{b n}的公差是d1,则b n=b1+(n-1)d1,即=b1+(n-1)d1,n∈N*,代入S n的表达式,整理得,对于所有的n∈N*,有n3+n2+cd1n=c(d1-b1).令A=d1-d,B=b1-d1-a+d,D=c(d1-b1),则对于所有的n∈N*,有An3+Bn2+cd1n=D.(*)在(*)式中分别取n=1,2,3,4,得A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1,从而有由②,③得A=0,cd1=-5B,代入方程①,得B=0,从而cd1=0.即d1-d=0,b1-d1-a+d=0,cd1=0.若d1=0,则由d1-d=0,得d=0,与题设矛盾,所以d1≠0.又因为cd1=0,所以c=0.教师用书专用(13—20)13.(2014安徽,12,5分)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q= .答案 114.(2013辽宁理,14,5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6= .答案6315.(2014浙江,19,14分)已知数列{a n}和{b n}满足a1a2a3…a n=((n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n;(2)设c n=-(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.解析(1)因为a1a2a3…a n=(,b3-b2=6,所以a3=(=8.又由a1=2,得公比q=2(q=-2舍去),所以数列{a n}的通项为a n=2n(n∈N*),所以,a1a2a3…a n==()n(n+1).故数列{b n}的通项为b n=n(n+1)(n∈N*).(2)(i)由(1)知c n=-=-(n∈N*),所以S n=-(n∈N*).(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,c n=,而-=>0,得≤<1,所以,当n≥5时,c n<0.综上,对任意n∈N*,恒有S4≥S n,故k=4.16.(2015天津,18,13分)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.解析(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2.当n=2k-1(k∈N*)时,a n=a2k-1=2k-1=;当n=2k(k∈N*)时,a n=a2k=2k=.所以,{a n}的通项公式为a n=(2)由(1)得b n==.设{b n}的前n项和为S n,则S n=1×+2×+3×+…+(n-1)×+n×,S n=1×+2×+3×+…+(n-1)×+n×,上述两式相减,得S n=1+++…+-=-=2--,整理得,S n=4-.所以,数列{b n}的前n项和为4-,n∈N*.17.(2015广东,21,14分)数列{a n}满足:a1+2a2+…+na n=4-,n∈N*.(1)求a3的值;(2)求数列{a n}的前n项和T n;(3)令b1=a1,b n=+a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2ln n. 解析(1)当n=1时,a1=1;当n=2时,a1+2a2=2,解得a2=;当n=3时,a1+2a2+3a3=,解得a3=.(2)当n≥2时,a1+2a2+…+(n-1)a n-1+na n=4-,①a1+2a2+…+(n-1)a n-1=4-,②由①-②得,na n=,所以a n=(n≥2),经检验,a1=1也适合上式,所以a n=(n∈N*).所以数列{a n}是以1为首项,为公比的等比数列.所以T n==2-.(3)证明:b1=1,b n=-·+·(n≥2).当n=1时,S1=1<2+2ln 1.当n≥2时,b n=+·a n=+·(T n-T n-1)=+·T n-·T n-1=·T n-·T n-1,所以S n=1+·T2-1·T1+·T3-·T2+…+·T n-·T n-1=·T n<2=2+2,以下证明++…+<ln n(n≥2).构造函数h(x)=ln x-1+(x>1),则h'(x)=-=>0(x>1),所以函数h(x)在区间(1,+∞)上单调递增,即h(x)>h(1)=0.所以ln x>1-(x>1),分别令x=2,,,…,,得ln 2>1-=,ln>1-=,ln>1-=,……ln>1-=.累加得ln 2+ln+…+ln>++…+,即ln 2+(ln 3-ln 2)+…+[ln n-ln(n-1)]>++…+,所以++…+<ln n(n≥2).综上,S n<2+2ln n,n∈N*.18.(2015湖北,18,12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q.已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=,求数列{c n}的前n项和T n.解析(1)由题意有,即解得或故或(2)由d>1,知a n=2n-1,b n=2n-1,故c n=,于是T n=1+++++…+,①T n=+++++…+.②①-②可得T n=2+++…+-=3-,故T n=6-.19.(2013湖北理,18,12分)已知等比数列{a n}满足:|a2-a3|=10,a1a2a3=125.(1)求数列{a n}的通项公式;(2)是否存在正整数m,使得++…+≥1?若存在,求m的最小值;若不存在,说明理由. 解析(1)设等比数列{a n}的公比为q,则由已知可得解得或故a n=·3n-1,或a n=-5·(-1)n-1.(2)若a n=·3n-1,则=·,故是首项为,公比为的等比数列,从而==·<<1.若a n=(-5)·(-1)n-1,则=-(-1)n-1,故是首项为-,公比为-1的等比数列,从而=故<1.综上,对任何正整数m,总有<1.故不存在正整数m,使得++…+≥1成立.20.(2013天津理,19,14分)已知首项为的等比数列{a n}不是..递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(1)求数列{a n}的通项公式;(2)设T n=S n-(n∈N*),求数列{T n}的最大项的值与最小项的值.解析(1)设等比数列{a n}的公比为q,因为S3+a3,S5+a5,S4+a4成等差数列,所以S5+a5-S3-a3=S4+a4-S5-a5,即4a5=a3,于是q2==.又{a n}不是递减数列且a1=,所以q=-.故等比数列{a n}的通项公式为a n=×=(-1)n-1·.(2)由(1)得S n=1-=当n为奇数时,S n随n的增大而减小,所以1<S n≤S1=,故0<S n-≤S1-=-=.当n为偶数时,S n随n的增大而增大,所以=S2≤S n<1,故0>S n-≥S2-=-=-.综上,对于n∈N*,总有-≤S n-≤.所以数列{T n}最大项的值为,最小项的值为-.三年模拟A组2016—2018年模拟·基础题组考点一等比数列的运算1.(2018江苏南通中学练习)等比数列{a n}中,若a1=-2,a5=-4,则a3的值为.答案-22.(2018江苏金陵中学月考)公比为2的等比数列{a n}的各项都是正数,且a4a10=16,则a10= .答案323.(2018江苏姜堰中学期中)已知等比数列{a n}的前n项和为S n,S3=3a1+a2,则= .答案 34.(2018江苏盐城时杨中学月考)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a7的值是. 答案45.(2018江苏常熟调研)已知等比数列{a n}中,a3=2,a4a6=16,则= .答案 46.(2017盐城第三次模拟考试,11)设{a n}的首项a1=1,且满足a2n+1=2a2n-1,a2n=a2n-1+1,则S20= .答案 2 0567.(2017江苏南通中学期中)设S n是等比数列{a n}的前n项的和,若a3+2a6=0,则的值是.答案 28.(2016江苏南通、扬州、泰州调研,8)设等比数列{a n}的前n项和为S n,若S2=3,S4=15,则S6的值为.答案639.(苏教必5,二,3,变式)等比数列{a n}共有奇数项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1= .答案 3考点二等比数列的性质及数列的综合运用10.(2017江苏苏州期中,6)已知等比数列{a n}的各项均为正数,且满足:a1a9=4,则数列{log2a n}的前9项之和为.答案911.(苏教必5,二,3,变式)在等比数列{a n}中,各项均为正值,且a6a10+a3a5=41,a4a8=5,则a4+a8= .答案12.(2018江苏常熟期中)已知数列{a n}各项均为正数,a1=1,a2=2,且a n a n+3=a n+1a n+2对任意n∈N*恒成立,记{a n}的前n项和为S n.(1)若a3=3,求a5的值;(2)证明:对任意正实数p,{a2n+pa2n-1}成等差数列;(3)是否存在正实数t,使得数列{S n+t}为等比数列?若存在,求出此时a n和S n的表达式;若不存在,说明理由.解析(1)∵a1a4=a2a3,∴a4=6,又∵a2a5=a3a4,∴a5=a4=9.(2)证明:由得a n a n+1a n+3a n+4=a n+1a n+3,∵a n>0,∴a n a n+4=(n∈N*),从而{a n}的奇数项和偶数项分别构成等比数列,设公比分别为q1,q2,则a2n=a2,a2n-1=a1=,又∵=,∴==2=,即q1=q2,设q1=q2=q,则a2n+pa2n-1=q(a2n-2+pa2n-3),且a2n+pa2n-1>0恒成立.∴数列{a2n+pa2n-1}是首项为2+p,公比为q的等比数列,问题得证.(3)在(2)中令p=1,则数列{a2n+a2n-1}是首项为3,公比为q的等比数列,∴S2k=(a2k+a2k-1)+(a2k-2+a2k-3)+…+(a2+a1)=∴S2k-1=S2k-a2k=且S1=1,S2=3,S3=3+q,S4=3+3q,∵数列{S n+t}为等比数列,∴即即解得(t=-3舍去),∴S2k=4k-1=22k-1,S2k-1=22k-1-1,从而对任意n∈N*有S n=2n-1,此时S n+t=2n,=2为常数,满足{S n+t}成等比数列,当n≥2时,a n=S n-S n-1=2n-2n-1=2n-1,又a1=1,∴a n=2n-1(n∈N*),综上,存在t=1使数列{S n+t}为等比数列,此时a n=2n-1,S n=2n-1(n∈N*).13.(2018江苏常熟期中)已知数列{a n}的前n项和是S n,且满足a1=1,S n+1=3S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)在数列{b n}中,b1=3,b n+1-b n=(n∈N*),若不等式λa n+b n≤n2在n∈N*上有解,求实数λ的取值范围. 解析(1)∵S n+1=3S n+1(n∈N*),∴S n=3S n-1+1(n∈N*,n≥2),∴a n+1=3a n(n∈N*,n≥2),又当n=1时,由S2=3S1+1得a2=3,∴a2=3a1,∴a n+1=3a n(n∈N*),∴数列{a n}是以1为首项,3为公比的等比数列,∴通项公式为a n=3n-1(n∈N*).(2)∵b n+1-b n==3(n∈N*),b1=3,∴{b n}是以3为首项,3为公差的等差数列,∴b n=3+3(n-1)=3n(n∈N*),∴λa n+b n≤n2,即3n-1·λ+3n≤n2,即λ≤在n∈N*上有解,设f(n)=(n∈N*),∵f(n+1)-f(n)=-=,∴当n≥4时,f(n+1)<f(n),当n<4时,f(n+1)>f(n),∴f(1)<f(2)<f(3)<f(4),f(4)>f(5)>f(6)>…,∴[f(n)]max=f(4)=,∴λ≤.B组2016—2018年模拟·提升题组(满分:60分时间:30分钟)一、填空题(每小题5分,共15分)1.(苏教必5,二,3,变式)在等差数列{a n}和等比数列{b n}中,已知a1=-8,a2=-2,b1=1,b2=2,那么满足a n=b n的n的所有取值构成的集合是.答案{3,5}2.(苏教必5,二,3,变式)在正项等比数列{a n}中,已知a1a2a3=4,a4a5a6=12,a n-1a n a n+1=324,则n= .答案143.(2017扬州高三上学期期末)在正项等比数列{a n}中,若a4+a3-2a2-2a1=6,则a5+a6的最小值为.答案48二、解答题(共45分)4.(2017江苏海安中学质检,19)设数列{a n},{b n},{c n}满足a1=a,b1=1,c1=3,且对于任意n∈N*,都有b n+1=,c n+1=.(1)若数列{a n}和{c n+b n}都是常数列,求实数a的值;(2)求数列{c n-b n}的通项公式;(3)设{a n}是公比为a的等比数列,数列{b n},{c n}的前n项和分别为S n,T n.若2S n+1-T n<对一切正整数n均成立,求实数a的取值范围.解析(1)因为b n+1+c n+1=a n+,且{a n}、{c n+b n}是常数列,所以a==2.(2)由已知得a n=2b n+1-c n,a n=2c n+1-b n,所以2b n+1-c n=2c n+1-b n,即c n-b n=-2(c n+1-b n+1),又因为c1-b1=2,所以数列{c n-b n}是以2为首项,-为公比的等比数列,故c n-b n=2·.(3)由已知得a n=2b n+1-c n,所以a1+a2+…+a n=2(b2+b3+…+b n+1)-(c1+c2+…+c n),所以2S n+1-T n=(a1+a2+…+a n)+2b1=(a+a2+…+a n)+2,故a+a2+…+a n<恒成立,记M n=a+a2+…+a n,当a≥1时,M n≥1恒成立,不符合题意;当a<-1时,M n==(a n-1)·,当n为偶数时,令(a n-1)·>⇒n>log(-a),即当n取大于log(-a)的偶数时,M n<不成立,不符合题意,舍去;当0<a<1时,M n==-<,由≤,解得0<a≤;当-1<a<0时,M n<0恒成立,符合题意;当a=-1时,M n=-1或M n=0,符合题意.综上,-1≤a<0或0<a≤.5.(2017江苏镇江一模,19)已知n∈N*,数列{a n}的各项均为正数,前n项和为S n,且a1=1,a2=2,设b n=a2n-1+a2n.(1)若数列{b n}是公比为3的等比数列,求S2n;(2)若对任意n∈N*,S n=恒成立,求数列{a n}的通项公式;(3)若S2n=3(2n-1),数列{a n a n+1}为等比数列,求数列{a n}的通项公式.解析(1)b1=a1+a2=1+2=3,S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n)=b1+b2+…+b n==.(2)易知2S n=+n,∴2S n-1=+n-1(n≥2),∴2a n=2S n-2S n-1=+n-(+n-1)=-+1(n≥2),(a n-1)2-=0,(a n-a n-1-1)(a n+a n-1-1)=0,故a n-a n-1=1或a n+a n-1=1.下面证明a n+a n-1=1对任意的n≥2且n∈N*恒不成立.事实上,因a1+a2=3,所以a n+a n-1=1不恒成立;若存在n>2,使a n+a n-1=1,设n0是其中最小的,则+=1,且∈(0,1),+≠1,所以-=1,所以<0,与已知矛盾.故a n+a n-1=1对任意的n≥2且n∈N*恒不成立,所以a n-a n-1=1对任意的n≥2且n∈N*恒成立.因此{a n}是以1为首项,1为公差的等差数列,所以a n=1+(n-1)×1=n.(3)因为数列{a n a n+1}为等比数列,所以设公比为q,则当n≥2时,==q.即{a2n-1},{a2n}分别是以1,2为首项,q为公比的等比数列,故a3=q,a4=2q.令n=2,有S4=a1+a2+a3+a4=1+2+q+2q=9,解得q=2.所以a2n-1=2n-1,a2n=2×2n-1=2n,所以b n=a2n-1+a2n=3×2n-1,所以S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n)=b1+b2+…+b n==3(2n-1),符合题意.因为a2n-1=2n-1,a2n=2n,所以a n=6.(2017江苏无锡期中,19)已知各项均为正数的数列{a n}为等比数列,等差数列{b n}的前n项和为S n(n∈N*),且满足:S13=208,S9-S7=41,a1=b2,a3=b3.(1)求数列{a n},{b n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n(n∈N*),求T n;(3)设c n=是否存在正整数m,使得c m·c m+1·c m+2+8=3(c m+c m+1+c m+2)?若存在,求出m的值;若不存在,说明理由.解析(1)因为数列{b n}为等差数列,且S13=208,S9-S7=41,所以所以b7=16,公差d=3,所以b1=-2,所以b n=3n-5.所以a1=b2=1,a3=b3=4,记数列{a n}的公比为q,则q2=4,易知q>0,所以q=2,所以a n=2n-1(n∈N*).(2)T n=a1b1+a2b2+…+a n b n=-2×1+1×2+…+(3n-5)×2n-1,①则2T n=-2×2+1×22+…+(3n-5)×2n,②①-②得,-T n=-2+3×(2+22+…+2n-1)-(3n-5)×2n=3×(2n-2)-(3n-5)×2n-2=(8-3n)×2n-8,所以T n=(3n-8)×2n+8(n∈N*).(3)由(1)知c n=当m=1时,c1·c2·c3+8=1×1×4+8=12,3(c1+c2+c3)=18,不相等,当m=2时,c2·c3·c4+8=1×4×7+8=36,3(c2+c3+c4)=3×(1+4+7)=36,等式成立,当m≥3且为奇数时,c m+2,c m为偶数,c m+1为奇数,所以c m·c m+1·c m+2+8为偶数,3(c m+c m+1+c m+2)为奇数,等式不成立,当m≥4且m为偶数时,若c m·c m+1·c m+2+8=3(c m+c m+1+c m+2),则(3m-5)·2m·(3m+1)+8=3(3m-5+2m+3m+1),整理得(9m2-12m-8)·2m=18m-20.(*)因为(9m2-12m-8)·2m≥(36m-12m-8)·24>18m-20,所以(*)不成立.综上,m=2.C组2016—2018年模拟·方法题组方法1 等比数列的基本运算1.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为.答案 2方法2 等比数列的判定与证明2.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln |x|.其中是“保等比数列函数”的f(x)的序号为.答案①③3.已知数列{a n}和{b n}满足a1=λ,a n+1=a n+n-4,b n=(-1)n(a n-3n+21),其中λ为实数,n为正整数.(1)证明:对任意实数λ,数列{a n}不是等比数列;(2)证明:当λ≠-18时,数列{b n}是等比数列.证明(1)假设存在一个实数λ,使{a n}是等比数列,则有=a1a3,即=λ⇒λ2-4λ+9=λ2-4λ⇒9=0,矛盾.所以{a n}不是等比数列.(2)b n+1=(-1)n+1[a n+1-3(n+1)+21]=(-1)n+1=-(-1)n·(a n-3n+21)=-b n.又λ≠-18,所以b1=-(λ+18)≠0,所以b n≠0,所以=-(n∈N*).故当λ≠-18时,数列{b n}是以-(λ+18)为首项,-为公比的等比数列.方法3 等差数列与等比数列的综合运用4.(2018江苏徐州铜山中学期中)已知数列{a n}的前n项和为S n,满足S n=2a n-1,n∈N*,数列{b n}满足nb n+1-(n+1)b n=n(n+1),n∈N*,且b1=1.(1)求数列{a n}和{b n}的通项公式;(2)若c n=a n·,数列{c n}的前n项和为T n,对任意的n∈N*,都有T n≤nS n-a,求实数a的取值范围;(3)是否存在正整数m,n,使b1,a m,b n(n>1)成等差数列?若存在,求出所有满足条件的m,n;若不存在,请说明理由. 解析(1)当n=1时,S1=2a1-1=a1,所以a1=1.当n≥2时,S n=2a n-1,S n-1=2a n-1-1,两式相减得a n=2a n-1,又a1=1,所以数列{a n}为首项a1=1,公比q=2的等比数列,所以数列{a n}的通项公式为a n=2n-1.由nb n+1-(n+1)b n=n(n+1),得-=1,所以数列为首项b1=1,公差d=1的等差数列,所以=n,所以数列{b n}的通项公式为b n=n2.(2)由(1)得c n=a n=n·2n-1,于是T n=1×1+2×2+3×22+…+(n-1)×2n-2+n×2n-1,所以2T n=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n,两式相减得-T n=1+2+22+…+2n-1-n×2n=-n×2n,所以T n=(n-1)·2n+1,由(1)得S n=2a n-1=2n-1,因为∀n∈N*,都有T n≤nS n-a,即(n-1)·2n+1≤n(2n-1)-a恒成立,所以a≤2n-n-1恒成立,记d n=2n-n-1,所以a≤(d n)min,因为d n+1-d n=[2n+1-(n+1)-1]-(2n-n-1)=2n-1>0,所以数列{d n}为递增数列,所以当n=1时,d n取得最小值d1=0,于是a≤0.(3)假设存在正整数m,n,使b1,a m,b n(n>1)成等差数列,则b1+b n=2a m,即1+n2=2m, 若n为偶数,则1+n2为奇数,而2m为偶数,上式不成立.若n为奇数,设n=2k-1(k∈N*),则1+n2=1+(2k-1)2=4k2-4k+2=2m,于是2k2-2k+1=2m-1,即2(k2-k)+1=2m-1,当m=1时,k=1,此时n=2k-1=1,与n>1矛盾;当m≥2时,上式左边为奇数,右边为偶数,显然不成立.综上所述,满足条件的m,n不存在.。

(江苏专用)高考数学总复习 第六篇 数列、推理与证明《第35讲 数列的综合应用》课件 理 苏教版

(江苏专用)高考数学总复习 第六篇 数列、推理与证明《第35讲 数列的综合应用》课件 理 苏教版

bn+1 4n 1 ∴ = n =4. bn 4 ∴{bn}是首项是4,公比q=4的等比数列.
对等差、等比数列的综合问题的分析,应重点分析等差、等比数 列的通项及前n项和;分析等差、等比数列项之间的关系.往往用到转化与 化归的思想方法.
【训练1】 数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1). (1)求{an}的通项公式; (2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15, 又a1+b1,a2+b2,a3+b3成等比数列,求Tn. 解 (1)由an+1=2Sn+1,可得an=2Sn-1+1(n≥2), 两式相减得an+1-an=2an,则an+1=3an(n≥2). 又a2=2S1+1=3,∴a2=3a1. 故{an}是首项为1,公比为3的等比数列,∴an=3n-1. (2)设{bn}的公差为d, 由T3=15,b1+b2+b3=15,可得b2=5, 故可设b1=5-d,b3=5+d,又a1=1,a2=3,a3=9,
(1)解
由an=a1+(n-1)d,a10=30,
a +9d=30, 1 a20=50,得方程组 a1+19d=50, a =12, 1 解得 d=2.
∴an=12+(n-1)· 2=2n+10. (2)证明 由(14n,
第35讲 数列的综合应用
基础梳理 1.等比数列与等差数列比较表
不同点 等差 数列 (1)强调从第二项起每一项与前 项的差;(2)a1和d可以为零; (3)等差中项唯一 (1)强调从第二项起每一项与前 等比 项的比;
相同点 (1)都强调从第二项起每 一项与前项的关系;
(2)结果都必须是同一个
常数; (3)数列都可由a1,d
3.数列应用题常见模型 (1)等差模型:如果增加(或减少)的量是一个固定量时,该模型 是等差模型,增加(或减少)的量就是公差. (2)等比模型:如果后一个量与前一个量的比是一个固定的数 时,该模型是等比模型,这个固定的数就是公比. (3)递推数列模型:如果题目中给出的前后两项之间的关系不 固定,随项的变化而变化时,应考虑是an与an+1的递推关系, 还是Sn与Sn+1之间的递推关系.

高中数学一轮(理科)苏教版江苏专用配套精品课件第六章数列6-3

高中数学一轮(理科)苏教版江苏专用配套精品课件第六章数列6-3

1 q3=- , 2 或 ∴a1+a10=a1(1+q9)=-7. a1=-8,
基础诊断
考点突破
课堂总结
法二
a4+a7=2, 由 a5a6=a4a7=-8,
a4=-2, 解得 a7=4
a4=4, 或 a7=-2.
3 q =-2, ∴ a1=1
课堂总结
4.已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10= ________.
解析 法一
3 q =-2, ∴ a1=1
3 6 a4+a7=a1q +a1q =2, 由题意得 4 5 2 9 a a = a q × a q = a 5 6 1 1 1q =-8,
1 q3=- , 2 或 ∴a1+a10=a1(1+q9)=-7. a1=-8,
答案 -7
基础诊断
考点突破
课堂总结
5.(2014·广东卷)等比数列{an}的各项均为正数,且a1a5=4,则 log2a1+log2a2+log2a3+log2a4+log2a5=________.
解析 由等比数列的性质知 a1a5=a2a4=a2 3=4⇒a3=2,所以 log2a1 + log2a2 + log2a3 + log2a4 + log2a5 = log2(a1a2a3a4a5) = log2a5 3=5log22=5.
同一个 非零常数,那么这个数列叫做等比数列,这个常数
叫做等比数列的 公比 ,公比通常用字母q(q≠0)表示.
an+1 an 数学语言表达式: = q (n≥2,q 为非零常数),或 a = an-1 n q(n∈N*,q 为非零常数).
基础诊断 考点突破 课堂总结
2. 等比数列的通项公式及前n项和公式 (1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an

【优化方案】江苏省高考数学总复习 选修系列第三节课件 理 苏教

【优化方案】江苏省高考数学总复习 选修系列第三节课件 理 苏教
②椭圆xb22+ay22=1(a>b>0)的参数方程是x_y_==__ba_cso_is_nθ_θ,___. 其
中 θ 是ቤተ መጻሕፍቲ ባይዱ数.
课前热身
1.(2010年高考广东卷改编)在极坐标系(ρ, θ)(0≤θ<2π)中,求曲线ρ=2sin θ与ρcos θ=- 1的交点的极坐标.
解:∵ρ=2sin θ,∴x2+y2=2y, ∵ρcos θ=-1,∴x=-1, ∴两曲线交点的直角坐标为(-1,1),
考向瞭望·把脉高考
考情分析
从近几年江苏高考来看,本部分内容重点考查直 线与圆的极坐标方程,极坐标与直角坐标的互化; 直线,圆与椭圆的参数方程,参数方程与普通方 程的互化,题目不难,考查“转化”为目的. 预测2012江苏高考中,极坐标、参数方程与直角 坐标系间的互化仍是考查的热点,题目容易.
规范解答 例 (本题满分10分)(2010年高考江苏卷)在极坐 标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ +a=0相切,求实数a的值.
5
所以当 m=2 2时,d 最小,此时点 P 坐标为
2,
2 2
.
【名师点评】 法一借助了三角函数的知识, 较为方便,这也是参数方程的一个优点,其 实质是减少了变量的个数,最终归结到某一 个变量来研究.
变式训练2 已知曲线C的方程为y2=3x2-2x3, 设y=tx,t为参数,求曲线C的参数方程.
y
式:ρ2=_x_2_+__y_2_,tanθ= __x__ (x≠0).
3.常见曲线的极坐标方程 (1)直线的极坐标方程 过方点 程为M(_ρρ_0_s,i_n_θ(_θ0)_-且__α倾_)=_斜_ρ_角0_s_i为n__(αθ_的0_-_直_α_)线_.l的极坐标 (2)圆的极坐标方程 圆标心 方的 程坐 为标__ρ为_2-_M_2_(ρ_ρ0_0ρ_,c_o_θs_0()θ_,-__半θ_0_径)_+_为_ρ_2r_的0-__圆r_2_的=__极0__坐_. 4.几种常见曲线的参数方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

法二:∵a>b,b>0,4a+b=1, ∴ab=144a·b≤14(4a+ 2 b)2=116, 当且仅当 4a=b=12, 即 a=18,b=12时等号成立. 所以 ab 的最大值为116.
(2)∵x>2,∴x-2>0, ∴x+x-4 2=x-2+x-4 2+2 ≥2 (x-2)·x-4 2+2=6, 当且仅当 x-2=x-4 2, 即 x=4 时,等号成立. 所以 x+x-4 2的最小值为 6.
变式训练 1 解下列问题. (1)已知 a>0,b>0,且 4a+b=1,求 ab 的 最大值; (2)已知 x>2,求 x+x-4 2的最小值.
解:(1)法一:∵a>0,b>0,4a+b=1, ∴1=4a+b≥2 4ab=4 ab, 当且仅当 4a=b=12,即 a=18,b=12时等号成立. ∴ ab≤14,∴ab≤116.所以 ab 的最大值为116.
【解】 (1)∵0<x<2,∴0<3x<6,8-3x>2>0, ∴y= 3x(8-3x)≤3x+(28-3x)=82=4, 当且仅当 3x=8-3x,即 x=43时,取等号. ∴y= 3x(8-3x)的最大值是 4.
(2)显然 a≠4, 当 a>4 时,a-4>0,

3 a-4

a

3 a-4

数的算术平均数_不__小__于__它们的几何平均数.
4.利用基本不等式求最值 设 x,y 都是正数, (1)如果积 xy 是定值 P,那么当_x_=__y_时,和 x+y 有最小值_2__P__. (2)如果和 x+y 是定值 S,那么当_x_=__y__时,积 xy 有最大值__14_S_2.
思考感悟 在利用基本不等式求最值时,应注意哪些问题? 提示:利用基本不等式求最值时,一定要注意“一 正、二定、三相等”.“一正”即公式中a、b必须是 正数,“二定”即必须有定值(和为定值或积为定 值).“三相等”即公式中的等号必须成立,必要时 要合理拆分项或配凑因式,以满足上述三个条件.
(2)ab_≤__(a+2 b)2(a,b∈R);
a2+b2 (3) 2
_≥__(a+2 b)2(a,b∈R);
(4)ba+ab≥_2__(a,b 同号且不为零).
3.算术平均数与几何平均数 a+b
设 a>0,b>0,则 a,b 的算术平均数为___2__,几
何平均数为__a_b__,基本不等式可叙述为:两个正
(2)当多次使用基本不等式时,一定要注意每次 是否能保证等号成立,并且要注意取等号的条 件的一致性,否则就会出错,因此在利用基本 不等式处理问题时,列出等号成立的条件不仅 是解题的必要步骤,而且也是检验转换是否有 误的一种方法.
2.基本不等式的几种变形公式
对于基本不等式,不仅要记住原始形式,而且
(a

4)

4≥2
a-3 4×(a-4)+4=2 3+4,
当且仅当a-3 4=a-4,即 a=4+ 3时,取等号; 当 a<4 时,a-4<0,
∴a-3 4+a=a-3 4+(a-4)+4=-[4-3 a+(4-a)]+4 ≤-2 4-3 a×(4-a)+4=-2 3+4, 当且仅当4-3 a=(4-a),即 a=4- 3时,取等号. ∴a-3 4+a 的取值范围是(-∞,-2 3+4]∪[2 3+4, +∞).
第三节 基本不等式
第双基研习·面对高考三节基考点探究·挑战高考




考向瞭望·把脉高考
双基研习·面对高考
基础梳理
1.基本不等式
基本不等式
不等式成立 的条件
等号成立的 条件
ab≤a+2 b _a_>_0_,___b_>_0__ _a_=__b__
2.常用的几个重要不等式
(1)a2+b2≥__2_a_b_(a,b∈R);
还要掌握它的几种常见的变形形式及公式的
逆运用等.如:
a2+abb≤ ab≤a+2 b≤
a2+2 b2(a>0,b>0).
例1 (1)设 0<x<2,求函数 y= 3x8-3x的 最大值; (2)求a-3 4+a 的取值范围;
(3)已知 x>0,y>0,且 x+y=1,求8x+2y的最 小值.
【思路分析】 解答 (1)题直接应用基本不等式, 本题 — (2)配凑,(3)题常值代换
解析:∵x+2y+2xy=8, ∴y=28x-+x2>0, ∴0<x<8,∴x+2y=x+2·28x-+x2 =(x+1)+x+9 1-2≥2 (x+1)·x+9 1-2=4, 此时 x=2,y=1.
答案:4
考点探究·挑战高考
考点突破
考点一 利用基本不等式求最值
1.创设应用基本不等式的条件 (1)合理拆分项或配凑因式是常用的技巧,而拆 与凑的目的在于使等号成立,且每项为正值, 必要时需出现积为定值或和为定值.
3.已知5x+3y=2(x>0,y>0),则 xy 的最小值 是________.
解析:2=5x+3y≥2 1x5y, 所以 xy≥15,当且仅当5x=3y, 即 x=5,y=3 时等号成立.所以 xy 的最小值是 15. 答案:15
4.(2010年高考重庆卷改编)已知x>0,y>0,x +2y+2xy=8,则x+2y的最小值是________.
(3)∵x>0,y>0,且 x+y=1,

8 x

2 y

(
8 x

2 y
)(x

y)

10

8y x

2x y
≥10

2
8xy·2yx=18. 当且仅当8xy=2yx,即 x=23,y=13时等号成立,
∴8x+2y的最小值是 18.
【名师点评】 (1)利用基本不等式求最值,必 须满足三条:一正、二定、三相等,即①x、y 都是正数;②积xy或和x+y为定值;③x与y必 须能够相等. (2)利用基本定理解决一些较为复杂的问题时需 要同时或连续使用基本定理,这时要注意保证 取等号的一致性.
课前热身 1.下列函数中,最小值为 4 的函数是
________.(填序号)
①y=x+4x;
②y=sinx+si4nx(0<x<π);
③y=ex+4e-x;
④y=log3x+logx81.
答案:③
2.(2011 年苏州调研)“a>b>0”是“ab<a2+2 b2” 的________条件.
解析:a>b>0⇒a2+2 b2>ab. ∵a2+b2≥2ab(a,b∈R), ∴由a2+2 b2>ab⇒a, b∈R 且 a≠b/a>b>0. 答案:充分不必要
相关文档
最新文档