弧度制教案(第一课时)

合集下载

弧度制教案(第一课时)-数学高一必修4第一章1.1.2人教A版

弧度制教案(第一课时)-数学高一必修4第一章1.1.2人教A版

第一章三角函数1.1 任意角与弧度制弧度制一、学习目标1.知识与技能(1)理解弧度的意义.(2)了解角的集合与实数集R之间可建立起一一对应的关系.(3)熟记特殊角的弧度数.2.过程与方法能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题.二、重点、难点重点:弧度的概念.弧长公式及扇形的面积公式的推导与证明.难点:“角度制”与“弧度制”的区别与联系.三、教学方法自学练习,点拨法四、专家建议通过对新的度量角的单位制(弧度制)的引进学习,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.五、教学过程●新知探究知识1 度量角的两种单位制(1)角度制:用度作单位来度量角的制度叫做角度制,规定周角的1360为1度的角.(2)弧度制:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad.以弧度为单位来度量角的制度叫做弧度制.注:一般地,正角的弧度数是一个正角,负角的弧度数是一个负角,零角的弧度数是0.知识2 角度制与弧度制的换算(1)角度制与弧度制的换算(2)特殊角的弧度数角度0°15°30°45°60°75°90°120°135°150°弧度0π12π6π4π3512ππ223π34π5π6角度180°210°225°240°270°300°315°330°360°弧度π76π5π44π332π5π374π11π62π知识探究一 1.我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α). 解:半径为r ,圆心角为n °的扇形弧长公式为l =n πr180, 扇形面积公式为S 扇=n πr 2360. ∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2. ∴S 扇=12|α|r 2=12lr .2.角度制与弧度制下扇形的弧长及面积公式对比:设扇形的半径为R ,弧长为l ,α (0<α<2π)为其圆心角,则(1)弧度数公式:α=lr ;(2)弧长公式:l =αr ;(3)扇形面积公式:S =12lr =12αr 2. 探究点二用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z),其中α的单位必须是弧度. 问题1 利用弧度制表示终边落在坐标轴上的角的集合.问题2类型1 角度制与弧度制的互化【例1】将下列各角度与弧度互化. (1)67.5°;(2)112°30′;(3)-7π12;(4)3.【分析】 依据换算关系π rad =180°,逐个角进行转化. 【解析】 (1)67.5°=π180rad ×=3π8rad. (2)112°30′=112.5°=π180rad ×=5π8rad.(3)-7π12=-7π12×⎝⎛⎭⎫180π°=-105°.(4)3 rad =3×⎝ ⎛⎭⎪⎫180π°=57.30°×3=171.90°.【方法探究】角度制与弧度制换算时应注意的三个问题(1)用弧度为单位表示角的大小时,“弧度(rad)”可以省略不写;如果以度(°)为单位表示角的大小时,度(°)不能省略.(2)度化为弧度时,应先将分、秒化为度,再化为弧度.(3)有些角的弧度数是π的整数倍时,如无特别要求,不必把π化成小数.跟踪训练1:将下列角按要求转化:(1)300°=________rad;(2)-22°30′=________rad;(3)8π5=________度.答案:(1)5π3(2)-π8(3)288类型2 用弧度表示终边相同的角【例2】已知角α=2 010°.(1)将α改写成β+2kπ(k∈Z,0≤β<2π)的形式,并指出α是第几象限的角;(2)在区间[-5π,0)上找出与α终边相同的角.【分析】(1)可将α改写成β+2kπ(k∈Z,0≤β<2π)的形式,根据β与α终边相同判断.(2)关键在于由-5π≤β+2kπ<0求出k的取值.【解析】(1)2 010°=2 010×π180=67π6=5×2π+7π6,又π<7π6<3π2,所以α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写为γ=7π6+2kπ(k∈Z),又-5π≤γ<0,∴当k=-3时,γ=-296π;当k=-2时,γ=-176π;当k=-1时,γ=-5 6π.【方法探究】用弧度来表示终边相同的角:所有与角α终边相同的角,连同角α在内,构成的集合用弧度可表示为{β|β=2kπ+α,k∈Z},这里α应为弧度数.跟踪训练2:(1)(2014·某某高一检测)把-1 125°化为2kπ+α(k∈Z,0≤α<2π)的形式是()A.-6π-π4B.-6π+7π4C.-8π-π4D.-8π+7π4【解析】-1 125°=-254π=-8π+7π4.【答案】D(2)已知α=1 690°.①把α写成2kπ+β(k∈Z,β∈[0,2π))的形式;②求θ,使θ与α终边相同,且θ∈(-4π,4π).【解】(2)①1 690°=1 440°+250°=4×360°+250°=4×2π+25 18π.②∵θ与α终边相同,∴θ=2k π+2518π(k ∈Z ). 又θ∈(-4π,4π), ∴-4π<2k π+2518π<4π, ∴-9736<k <4736(k ∈Z ). ∴k =-2,-1,0,1.∴θ的值是-4718π,-1118π,2518π,6118π. 类型3 扇形的弧长、面积公式的应用【例3】已知扇形的周长为20 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?【分析】先用半径r 表示弧长,再建立扇形面积S 与半径r 之间的函数关系,进而求出最大值.【解析】 设扇形的半径为r ,弧长为l ,面积为S . 则l =20-2r ,∴S =12lr =12(20-2r )·r =-r 2+10r =-(r -5)2+25(0<r <10). ∴当半径r =5 cm 时,扇形的面积最大,为25 cm 2. 此时α=l r =20-2×55=2(rad).∴当它的半径为5 cm ,圆心角为2 rad 时, 扇形面积最大,最大值为25 cm 2.【方法探究】灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.跟踪训练3:(1)(2014·某某高一检测)设扇形的周长为8 cm ,面积为4 cm 2,则扇形的圆心角的弧度数是________.(2)(2014·某某高一月考)经过一刻钟,长为10 cm 的分针旋转过程中所扫过的面积是________.【解析】 (1)设扇形的半径为r cm ,圆心角为α rad ,弧长为l cm , 由题意⎩⎪⎨⎪⎧2r +l =8,12l ·r =4,解得⎩⎨⎧l =4,r =2,又由l =α·r ,所以α=l r =42=2(rad).(2)设分针旋转过程中所扫过的圆心角为α,弧长为l ,则所扫过的面积是S =12lR =12|α|R 2=12×π2×102=25π(cm 2).【答案】(1)2(2)25π cm 2六、课堂总结1.明确1弧度的含义是掌握本节问题的关键.2.弧度制与角度制的互化是一种比例关系的变形,具体变化时,可牢记以下公式:π180=弧度角度,只要将已知数值填入相应位置,解出未知的数值,再添上相应的单位即可. 3.弧度制下的扇形面积公式可类比三角形的面积公式来记忆.4.引入弧度制后,就有两种度量角的单位制,不仅使扇形的弧长和面积公式变得更加简洁,也建立了角与实数间的一一对应关系,为后面学习三角函数的定义打下了基础.七、板书设计弧度制八、当堂检测1.下列叙述中正确的是() 弧度是1度的圆心角所对的弧 弧度是长度为半径的弧 弧度是1度的弧与1度的角之和弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位 【解析】根据弧度制的定义知D 项正确. 【答案】 D2.(2014·某某高一月考)2弧度的角所在的象限是() A.第一象限 B.第二象限 C.第三象限D.第四象限【解析】 ∵π2<2<π,∴2弧度的角是第二象限角,故选B. 【答案】 B3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是() A .1 B .4 C .1或4 D .2或4【解析】设扇形半径为r ,中心角弧度数为α, 则由题意得⎩⎪⎨⎪⎧2r +αr =612αr 2=2,∴⎩⎨⎧ r =1α=4或⎩⎨⎧r =2α=1.【答案】 C4. 把-114π表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是________. 【解析】-114π=-2π+⎝ ⎛⎭⎪⎫-34π=2×(-1)π+⎝ ⎛⎭⎪⎫-34π.∴θ=-34π.【答案】 θ=-34π.九.课后延伸(1)时钟问题在解决时钟中的时针与分针有关的角度问题时,要注意它们在单位时间内各转了多少圈. 例如:2小时40分钟后,则分针所转的弧度数为______. 【解析】 首先注意到分针转的方向为顺时针,即为负角.word11 / 11 又2小时40分钟=83小时,而1小时分针转过的弧度数为2π.故分钟转了-2π×83=-163π.【答案】 -163π(2)角的“周期现象”一个角每旋转一周(顺时针或逆时针),终边就又回到了原来的位置,终边相同的角周而复始地出现,这正是三角函数具有周期性的本质原因,也是解决某些问题的关键,而且这种周期现象在现实生活中有广泛的应用.例如:今天是星期一,则100天后是星期几?【解】 由于星期几也具有周期性,因而可类似于角的问题来解决,即100=7×14+2,100天后是星期三.。

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案第一篇:1.1 任意角和弧度制教学设计教案教学准备1.教学目标1、知识与技能(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.2.教学重点/难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.3.教学用具多媒体4.标签任意角教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。

《弧度制》教学设计方案

《弧度制》教学设计方案

《5.2.1弧度制》教学设计【课题】弧度制【课时】 1课时(45分钟)【授课类型】新授课【设计理念】通过创设符合学生认知规律的问题情景,挖掘学生内在潜能,借助几何画板,让学生在做中学,学中思,亲身体会创造过程,理解弧度制概念的“来龙去脉”,领悟蕴涵其中的数学思想和方法,进一步培养学生的自主探究能力,逻辑推理能力,形成缜密的思维,养成探究的习惯,真正体现学生的主体地位.【内容解析】本节课选自高等教育出版社出版的《数学(基础模块)》上册第五章第二节第一课时《弧度制》.学生在初中已接触了角度制及圆的相关知识、高中又学习了任意角的概念,在此基础上来学习本节内容.弧度制是《三角函数》的重要概念之一,它是研究三角函数图象与性质的基本立足点,也是后续学习立体几何及微积分的理论基础,同时在物理学的研究中有着广泛应用.因此,本节课起着“承前启后”的作用.【学情简析】学生数学基础较好,思维活跃,有良好的平面几何基础,具备较强的计算机操作及信息处理能力,并会简单操作几何画板,这些特点为本堂课的有效教学提供了质的保障.【教学目标】知识与技能:(1)理解弧度制概念,正确领会1弧度角的含义;(2)能正确进行角度和弧度的换算,熟记特殊角的弧度数;过程与方法:(1)经历弧度制概念的形成过程,体会类比的数学思想,提高观察、分析、逻辑推理的能力;(2)通过弧度制与角度制换算关系的推导,会用联系的观点看问题;情感态度价值观:通过对弧度制概念的构建及两种角的度量制的比较,增强学生自主探究的能力,培养合作交流意识,养成良好的学习习惯. 【教学重点和难点】重点: 弧度制的概念、角度制与弧度制的换算关系难点:弧度制概念的建立关键点:1弧度角的定义【教学方法】教法:情境导入法任务驱动法实践操作法学法: 类比发现法自主探究法交流反馈法【教学用具】电子教室、多媒体、几何画板、网络测试平台、腾讯微博【教学过程】登录百度,搜索“角的度量制有哪些?”启发式课堂小结:今天你收获了什么?【教学反思】本节课以两个知识点的探究为主线,立足教材,贴近学生,着眼于概念本身的发现过程,实现了四个注重:注重几何画板辅助教学,让概念的内涵得到动态的生成;注重学生活动参与教学,让活跃的思维留下冷静的思考;注重及时评价反馈教学,让多样的评价推动有效的课堂;注重拓展任务延伸教学,让多彩的生活丰富教学的资源.。

弧度制教学设计方案

弧度制教学设计方案

课题《弧度制》(福建省福州财政金融职业中专学校数学学科李淑英)【课题】弧度制(高等教育出版〈数学(基础模块)上册〉第5.2.1节)【课时】1课时【设计理念】遵循以学生为主体,教师引导的原则,让学生在实际操作中获取知识,在练习中巩固知识;体现学生是学习的主人,教师是课堂的组织者。

【设计亮点】学生动手,主动参与;计算器的使用【职业背景分析】本次上课的对象是商务英语专业的学生,该专业要求学生必须具备一定的数学知识以达到为专业服务的目的,同时通过学习数学可以培养他们的逻辑思维能力,提高他们的文化素养。

【学情分析】针对中职学生的特点,理解力不够强,但动手能力较强,故本课堂以“学生为主”,主动学,主动练为原则,达到让学生真正动手,动脑这一目的。

在本堂课之前学生已经熟悉角的概念,角度制等【教学目标】1.知识目标:(1)理解弧度制的定义(2)理解角度制与弧度制的换算关系.2.能力目标:(1)会进行角度与弧度的换算;(2)会利用计算器进行角度与弧度的换算;(3)培养学生的计算技能与计算工具使用技能.3.情感目标:(1)通过动手强化学生的参与意识,培养合作精神,提高学习的兴趣(2)培养学生勤于思考的学习习惯(3)渗透辩证统一的思想【重点难点】重点:弧度制的概念,弧度与角度的换算.难点:弧度制的概念.【重点、难点剖析】弧度制是教材中新引进的新概念,是度量角的另一种方法.弧度是学生不容易理解的概念,深刻理解一弧度角的意义是突破难点的关键.【教学方法及策略】(1)为了突破难点,本节课设计先让学生动手实验操作,观察思考,然后发现弧长与半径之比的性质,从而理解弧度制定义的合理性,为弧度制的建立打下基础,做好充分准备.这样设计学生能较容易地建立弧度制概念,降低学习的难度。

(2)通过观察,探究,明晰弧度制与角度制的换算关系;(3)在练习,讨论中,深化、巩固知识,培养计算技能;(4)在操作实践中,培养计算工具使用技能;【教学平台及资源】多媒体辅助教学【教学过程】一.新课引入:1.引例:若基亚N86的主屏参数:1600万色AMOLED彩色屏幕;240×320像素,2.6英寸,其中2.6英寸是多少厘米?分析:这里的“英寸”是英制中的长度单位,1英寸=2.5400厘米2.请学生举出生活中还有哪些类似的单位换算的例子3.引入课题:在角度的度量里面,也有类似的情况,一个是角度制,另外一个就是这节课要研究的角的另外一种度量制---弧度制。

数学教案高中弧度制

数学教案高中弧度制

数学教案高中弧度制
教学目标:
1. 了解弧度制的定义和基本概念;
2. 掌握弧度和角度的换算方法;
3. 熟练运用弧度制解决相关数学问题。

教学重点:
1. 弧度制的定义和基本概念;
2. 弧度和角度的换算;
3. 弧度制的运用。

教学难点:
1. 弧度和角度的换算方法;
2. 弧度制与角度制的转换;
3. 弧度制在解决问题中的应用。

教学准备:
1. 教案、教材、课件;
2. 黑板、彩色粉笔、橡皮;
3. 学生练习册。

教学过程:
一、导入(5分钟)
教师介绍弧度制的概念,引导学生思考角度和弧度之间的关系。

二、讲解(15分钟)
1. 弧度的定义和性质;
2. 弧度和角度的换算方法;
3. 弧度制在三角函数中的应用。

三、示范(10分钟)
教师通过例题演示如何将角度转换为弧度,以及如何运用弧度制解决三角函数问题。

四、练习(15分钟)
学生进行练习,巩固弧度制的相关知识。

五、梳理(5分钟)
教师梳理本节课的重点和难点,给予学生反馈。

六、作业(5分钟)
布置相关作业,要求学生独立完成,以巩固弧度制的知识。

教学延伸:
教师可以通过讲解弧长公式、扇形面积计算等内容,进一步拓展学生对弧度制的理解和运用。

教学反思:
本节课教学难点在于学生对弧度和角度的换算容易混淆,需要通过实例演示和练习巩固。

教师在教学过程中应引导学生思考,激发他们对数学知识的兴趣和探索欲望。

《弧度制》示范课教学设计【高中数学】

《弧度制》示范课教学设计【高中数学】

《弧度制》教学设计1.根据函数概念中强调函数必须是实数集到实数集的对应,体会弧度制引入的背景及必要性,明白同一个量可以用不同的单位制来度量.2.在半径不同但圆心角相同的的扇形中,利用初中所学的扇形的弧长公式能够发现弧长与半径之比不变,从而体会用该比值作为弧度制定义的合理性,加深弧度制概念的理解.在此过程中,学生可以感悟数学抽象的层次性及逻辑推理的严谨性.3.体会弧度制是度量角的一种方式,并能利用180°=π rad进行弧度制与角度制的互化,利用单位圆中弧长等于半径的圆心角,直观感受用长度度量1弧度的大小,能证明并灵活运用一些关于扇形的公式,同时能理解角与实数之间的一一对应关系.教学重点:在了解弧度制引入的背景下,理解弧度制的概念,能进行角度制与弧度制的互化.教学难点:弧度制概念的理解.Geogebra、计算器、PPT课件.用Geogebra作动画来反映扇形的弧长、半径、圆心角之间的关系;在角度制与弧度制换算时,计算器可以解决近似值问题.(一)创设情境问题1:我们知道:篮球明星姚明的身高是2.26米,但在NBA官方数据中却是7.5英尺,为什么?你还知道哪些量有不同的度量制?举例说明.预设的师生活动:学生针对老师提出的问题进行思考与回答.预设答案:因为用了不同的单位.再如,度量重量可以用千克、斤、磅等不同的单位制,度量体积可以用立方米、升等不同的单位制.设计意图:通过生活中的发现,度量长度可以用米、尺、码等不同的单位制,让学生体会度量一样东西可以有多种度量制.(二)新知探究1.弧度制问题2:度量角除了角度制,还有什么单位制呢? 追问1:如图1,射线OA 绕端点O 旋转到OB 形成角α.在旋转过程中,射线OA 上的点P (不同于点O )的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α=n °,OP =r ,点P 所形成的圆弧1PP 的长为l .回忆初中所学知识,弧长l 如何用圆心角α来表示?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180πrn l =. 追问2:如图2,在射线OA 上任取一点Q (不同于点O 和P ),OQ =r 1.在旋转过程中,点Q 所形成的的圆弧1QQ 的长为l 1,那么l 1与r 1的比值是多少?你能得出什么结论?预设的师生活动:学生经过观察、讨论得出结论. 预设答案:180π11nr l =;圆心角α所对的弧长与半径的比值,与半径的大小无关,只与α的大小有关,也就是说,这个比值随α的确定而唯一确定.因此可以用弧长和半径的比值表示圆心角.设计意图:通过复习初中所学知识可知,使学生得到弧长与半径的比只与角的大小有关,推广到一般也成立,因此我们可以利用这个比值来度量角,引出新概念,使学生明白新概念的由来和定义的合理性.追问3:结合上面的探索过程,你能试着说一说什么是1弧度角吗?预设的师生活动:学生用自己的语言表述清楚即可,教师在学生表述的基础上进行完善. 预设答案:我们规定:长度等于半径的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度.设计意图:引导学生得出定义,体会定义产生的背景、原由及过程.追问4:(1)我们把半径为1的圆叫做单位圆.既然角的大小与半径无关,那么在单位圆中如何确定1 rad 的角呢?(2)在半径为r 的圆中,弧长为l 的弧所对的圆心角α的弧度数是多少? (3)角有正、负、零角之分,它的弧度数呢?图1图2预设的师生活动:学生思考后回答.预设答案:得出单位圆中长度为1的弧所对的圆心角就是1 rad (如图3);在半径为r 的圆中rl=α;类比角度制,α的正负由角α的终边的旋转方向决定.设计意图:深化理解弧度的定义.在单位圆中,直观感受1 rad 的角的大小,体会1 rad 角的几何表示;进一步能在一般圆中求得角的弧度数,使学生通过图形获取对新概念的直观印象,培养学生数形结合的能力.追问5:请你说说弧度制与角度制有哪些不同? 预设的师生活动:学生展开讨论之后总结提炼.预设答案:第一,弧度制以线段长度来度量角,角度制是“以角量角”; 第二,弧度制是十进制,角度制是六十进制;第三,1弧度是等于半径长的弧所对的圆心角的大小,而1°的角是周角的3601; 第四,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值,等等.设计意图:概念辨析,深化理解. 2.角度制与弧度制的换算问题3 既然角度制、弧度制都是角的度量制,那么,它们之间如何换算?你认为在换算的过程中最为关键的是什么?预设的师生活动:学生思考后回答,得出答案.预设答案:这两种角度度量制之间的关系是:360°=2π rad .其中,最为基础也是最为关键的是180°=π rad ,即1°=180π rad ,1 rad =°180π⎪⎭⎫ ⎝⎛≈57.30°. 设计意图:通过思考,让学生掌握弧度和角度换算的方法.体会同一个数学对象用不同方式表示时,它们之间的内在联系.认识这种联系性是数学研究的重要内容之一.例1 按照下列要求,把67°30′化成弧度: (1)精确值; (2)精确到0.001的近似值. 预设的师生活动:学生自行完成并回答问题.预设答案:(1)因为67°30′=°2135⎪⎭⎫ ⎝⎛,所以67°30′=2135×⎪⎭⎫ ⎝⎛180π rad =83π rad .(2)利用计算器有图31.178097245.因此,67°30′≈1.178rad.设计意图:在换算中学会根据要求的精度不同,选择不同的计算方式.例2将3.14 rad换算成角度(用度数表示,精确到0.001).预设的师生活动:使用计算器完成.预设答案:利用计算器有179.9087477.因此,3.14rad≈179.909°.设计意图:学会利用计算器完成这种繁杂的计算问题.追问:(1)67°30′能直接化成弧度吗?你是怎么做的?应该注意什么问题?(2)相互交流一下,如何使用计算机完成弧度制与角度制的换算?预设的师生活动:学生独立完成角度制与弧度制的换算的精确值,之后交流展示用计算机完成弧度制与角度制换算的近似值.设计意图:通过简单应用,熟悉弧度制、熟悉弧度制与角度制的换算.学生可能出现的问题:第一,进行角度制与弧度制的换算不够熟练;第二,角度转化弧度时需要把含分或秒的角度统一为度的单位;第三,计算机完成弧度制与角度制换算的近似值时,操作需要一个熟悉的过程.练习填写特殊角的角度数与弧度数的对应表(课本174页).预设的师生活动:快问快答,进行训练.预设答案:设计意图:这些角是今后常用的特殊角,不仅要求学生会换算,而且要让学生记住这些特殊角的度数与弧度数的对应值.另外,熟练角度和弧度的换算,进一步加深对180°=π rad 的理解和掌握.同时进一步体会角的概念推广后,无论用角度制还是弧度制,都能在角的集合与实数集R 之间建立一一对应关系.例3 利用弧度制证明下列关于扇形的公式: (1)l =αR ;(2)S =21αR 2;(3)S =21lR . 其中R 是圆的半径,α(0<α<π)为圆心角,l 是扇形的弧长,S 是扇形的面积. 预设的师生活动:学生学生利用弧度制证明关于扇形的公式,教师进行点评及板书. 预设答案:(1)由公式|α|=rl可得l =αR . 下面证明(2)(3).由于半径为R ,圆心角为n °的扇形的弧长公式和面积公式分别是l =180πRn ,S =360π2R n ,将n °转换为弧度,得α=180πn ,于是S =21αR 2.将l =αR 代入上式,即得S =21lR .设计意图:体会弧度制下的扇形弧长、面积公式的简洁美,这是引入弧度制的一个理由. (三)归纳小结问题4 通过本节课的学习,你学会用弧度制度量角了吗?追问:你觉得这样定义弧度制合理吗?在度量角的时候你觉得需要注意哪些问题?你现在觉得用弧度制度量角有什么好处?为什么会出现这种情况?你能画一个知识结构图来反映本节课的研究内容与路径吗?预设的师生活动:学生自主总结,并作出回答.预设答案:圆心角α所对的弧长与半径的比值随α的确定而唯一确定,因此,利用圆的弧长与半径的关系度量圆心角的是合理的;在度量角的时候需要注意:联系两种度量制的桥梁是360°=2 rad ;要注意防止出现角的两种度量制混用的现象,等等;用弧度制度量角的好处:弧度制下的扇形弧长、面积公式非常简单,这是引入弧度制带来的一个便利.实际上,角度制下角的度量制是六十进制,与长度、面积的度量进位制不一样,于是在公式中要有“换算因子”180π.而弧度制下角度与长度、面积一样,都是十进制,就可以去掉这个“换算因子”了.设计意图:帮助学生梳理所学知识,并让学生清楚引入弧度制的必要性,以及这样定义的合理性,逐步提升学生逻辑推理的核心素养.(四)布置作业: 教科书习题. (五)目标检测设计 1.把下列角度化成弧度:(1)22°30′; (2)-210°; (3)1 200°. 2.把下列弧度化成角度: (1)12π; (2)-3π4; (3)10π3. 3.已知半径为120 mm 的圆上,有一条弧的长是144 mm ,求该弧所对的圆心角(正角)的弧度数.预设答案: 1.(1)8π;(2)―6π7;(3)3π20.2.(1)15°;(2)-240°;(3)54°. 3.弧度数为1.2. 设计意图:巩固所学知识.。

5.1.2弧度制(第一课时)

5.1.2弧度制(第一课时)

5.1.2《弧度制》教学设计一、教材分析本节内容为学生学习三角函数的基础概念课,前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.二、课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.三、教学重难点重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.四、教学过程1.度量角的两种单位制(1)回顾角度制 ①定义:用 度 作为单位来度量角的单位制. ②1度的角:周角的1360. (2)定义弧度制①定义:以 弧度 作为单位来度量角的单位制.②1弧度的角:长度等于 半径长 的弧所对的圆心角.2.弧度数的计算l r正数 负数 零3.角度制与弧度制的转算(1)例1:(1)把 67°30′化成弧度.(2)例2.一些特殊角与弧度数的对应关系度0°30°45°60°90°120°135°150°180°270°360°弧度0π6π4π3π22π33π45π6π3π22π(3)例3.利用弧度制证明扇形的面积公式设扇形的半径为R,弧长为l,α(0<α<2π)为其圆心角,则:(1)弧长公式:l=αr.(2)扇形面积公式:S=12lr=12αr2.π180(180π)°。

人教版高中数学弧度制教案

人教版高中数学弧度制教案

人教版高中数学弧度制教案
教学内容:弧度制
教学目标:
1. 理解弧度制的概念及与角度制的转换关系;
2. 掌握弧度制的计算方法;
3. 能够运用弧度制解决相关问题。

教学重点:
1. 弧度制的概念及运用;
2. 弧度制和角度制的转换。

教学难点:
1. 弧度制与角度制的转换;
2. 弧度制的计算方法。

教学过程:
一、导入新知识(5分钟)
教师引导学生回顾角度制的概念及计算方法,并提出弧度制的定义。

二、讲解弧度制的概念及计算方法(15分钟)
1. 教师讲解弧度制的定义及计算方法,强调弧度制的优势和应用范围;
2. 带领学生进行弧度制与角度制的转换练习,并解释计算过程。

三、练习与讨论(20分钟)
1. 学生自主练习弧度制计算方法,并相互讨论解题思路;
2. 教师布置相关练习题,让学生在课后进行巩固练习。

四、检测与总结(10分钟)
1. 教师让学生进行弧度制的应用题练习,并及时纠正;
2. 学生合作讨论,总结本节课的知识点,提出问题并解决。

五、作业布置(5分钟)
布置相关作业,要求学生巩固掌握弧度制的概念和计算方法。

教学反思:
本节课主要围绕弧度制展开教学,通过讲解、练习和讨论,让学生充分理解弧度制的概念和计算方法,提高学生的数学运算能力和分析问题的能力。

在课后作业中,学生可以继续巩固弧度制的知识,提高解题的能力和速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:5.1 角的概念的推广—弧度制(一) 教学目的:
1.理解1弧度的角、弧度制的定义.
2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.
3.熟记特殊角的弧度数
教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算. 教学难点:弧度的概念及其与角度的关系. 授课类型:新授课 课时安排:1课时 内容分析:
讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解.教学过程:
一、复习引入:
1.角的概念的推广 ⑴“旋转”形成角
⑵ “正角”与“负角”“0角”
2.度量角的大小第一种单位制——角度制的定义
初中几何中研究过角的度量,当时是用度做单位来度量角,1°的角是如何定义的?
规定周角的
360
1
作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180
n r
π=
3.探究 30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长,再计算弧长与半径的比. 结论:圆心角不变,则比值不变,
因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制 二、讲解新课:
1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad,读作弧度,这种
用“弧度”做单位来度量角的制度叫做弧度制.
如下图,依次是1rad , 2rad , 3rad ,αrad
r r
r
1rad
2r
r
2rad
3r
r 3rad
l
r
α rad
探究:
⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )
⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0. ⑶角α的弧度数的绝对值 r
l
=
α(l 为弧长,r 为半径)
⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同
⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同 2. 角度制与弧度制的换算:
∵ 360︒=2π rad ∴180︒=π rad
∴ 1︒=rad rad 01745.0180≈π
, '185730.571801
=≈⎪⎭
⎫ ⎝⎛=πrad
三、讲解范例: 例1 把'3067
化成弧度
解:∵
⎪⎭
⎫ ⎝⎛=2167'3067 ∴ rad rad ππ832167180'3067=⨯=
例2 把rad π53
化成度
解:33
18010855
rad π=⨯=
注意几点:1.度数与弧度数的换算也可借助“计算器”进行;
2.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad ,
sin π表示πrad 角的正弦;
与实数的集合之间建立一种一一对应的关系.
例3用弧度制表示:
1.终边在x 轴上的角的集合;
2.终边在y 轴上的角的集合;
3.终边在坐标轴上的角的集合. 解:1.终边在x 轴上的角的集合 1{|,}S k k Z ββπ==∈ 2.终边在y 轴上的角的集合 2{|,}2
S k k Z π
ββπ==+

3.终边在坐标轴上的角的集合 3{|,}2
k S k Z π
ββ==∈ 四、课堂练习:
1.下列各对角中终边相同的角是( )
A.
ππ
π
k 222+-
和(k∈Z) B.-
3
π和322π
C.-97π和911π
D. 9
122320ππ和
2.若α=-3,则角α的终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 3.若α是第四象限角,则π-α一定在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .
5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .
6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .
7.求值:2
cos
4
tan
6
cos
6
tan
3
tan
3
sin
π
π
π
π
π
π
-+.
8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B . 9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角. 参考答案:
1.C
2.C
3.C
4.{α|2kπ<α<
2π+2kπ,k ∈Z } {α|kπ<α<2
π
+kπ,k ∈Z } 5.一 7-2π 6.3 7.2 8.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.24
11π
五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:
已知α是第二象限角,试求:
(1)2α角所在的象限;(2)3
α
角所在的象限;(3)2α角所在范围. 解:(1)∵α是第二象限角,∴2π+2kπ<α<π+2kπ,k ∈Z ,即4π+kπ<2α<2π
+kπ,k ∈Z .
故当k =2m (m ∈Z )时,4π+2mπ<2α<2π+2mπ,因此,2
α
角是第一象限角;当k =2m +1(m ∈Z )
时,45π+2mπ<2α<23π+2mπ,因此,2α角是第三象限角. 综上可知,2
α
角是第一或第三象限角.
(2)同理可求得3α角所在范围为:6π+32kπ<3α<3π+3
2
kπ,k ∈Z .
可得,
3
α
角是第一、第二或第四象限角. (3)同理可求得2α角所在范围为:π+4kπ<2α<2π+4kπ,k ∈Z . 可得,2α角是第三、第四或y 轴负半轴上的角.
评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k =0时第一象限角的一种特殊情况.
(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+
3
2
kπ(k ∈Z )所表示的角所在象限.
(3)对于本例(3),不能说2α只是第三、第四象限的角,因为2α也可为终边在y 轴负半轴上的角
2
3
π+4kπ(k ∈Z ),而此角不属于任何象限. 七、板书设计(略) 八、课后记:。

相关文档
最新文档