化工热力学考试重点终极版

合集下载

化工热力学复习题及答案精编WORD版

化工热力学复习题及答案精编WORD版

化工热力学复习题及答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】《化工热力学》课程模拟考试试卷 A 开课学院:化工学院,专业:材料化学工程 考试形式: ,所需时间: 分钟考生姓名: 学号: 班级: 任课教师:F)1.理想气体的压缩因子1Z =,但由于分子间相互作用力的存在,实际气体的压缩因子 。

(A) 小于1 (B) 大于1 (C) 可能小于1也可能大于1 (D) 说不清楚2.甲烷c 4.599MPa p =,处在r 0.3p =时,甲烷的压力为 。

(A) 15.33MPa (B) 2.7594 MPa ; (C) 1.3797 MPa (D) 1.1746 MPa3.关于建立状态方程的作用,以下叙述不正确的是 。

(A) 可以解决由于实验的p -V -T 数据有限无法全面了解流体p -V -T 行为的问题。

(B) 可以解决实验的p -V -T 数据精确度不高的问题。

(C) 可以从容易获得的物性数据(p 、V 、T 、x )来推算较难测定的数据(H ,U ,S ,G )。

(D) 可以解决由于p -V -T 数据离散不便于求导和积分,无法获得数据点以外的p -V -T 的问题。

4.对于流体混合物,下面式子错误的是 。

(A) 0lim i i i x M M ∞→=(B)i i i H U pV =+(C) 理想溶液的i i V V =,i i U U = (D) 理想溶液的i i S S =,i i G G =5.剩余性质RM 的概念是表示什么差别的 。

(A) 真实溶液与理想溶液 (B) 理想气体与真实气体(C) 浓度与活度 (D) 压力与逸度6.纯物质在临界点处的状态,通常都是 。

(A) 气体状态 (B) 液体状态(C) 固体状态 (D) 气液不分状态7.关于化工热力学研究内容,下列说法中不正确的是( )。

化工热力学考试重点

化工热力学考试重点


溶解热: 气体, 液体, 或固体溶解于液体时的热效应称为溶解热。 溶解 1mol 溶质于极大量的溶液中以至于溶液的浓度只有无限小的变化,或是在某一 浓度的溶液中加入无限小量的溶质,而将其热效应换算为 1mol 量的值, 这样的热效应称为微分溶解热。若溶解 1mol 溶质于某一数量溶剂中,得 到一定组成的溶液,则所产生的热效应称为积分溶解热 稀释热:将溶剂加入溶液中,使溶质的浓度降低,也有热效应产生,称为 稀释热。 稀释热和温度、 压力、 稀释前和稀释后的浓度以及溶液的量有关。 稀释热分为微分稀释热和积分稀释热。将 1mol 溶剂添加到极大量的溶液 中, 或是在某一浓度的溶液中加入无限小量的溶剂, 溶液的浓度保持不变, 这样的热效应称为微分稀释热。若将一定量的溶剂加到含有 1mol 溶质的 溶剂中,所产生的热效应称为积分稀释热。 Lewis-Randdall 规则:理想混合物(理想溶液)中组分的逸度和它的摩尔 分数成正比。 理想气体混合物与理想混合物是两个不同的理想化模型,前者比后者更为 理想化。理想气体混合物必然也是气体理想混合物,反之,气体理想混合 物却不一定是理想气体混合物。 超额性质:是指在相同温度、压力和组成条件下真实溶液性质与理想溶液 性质之差,用 M 表示:M = M ---M . 正偏差:如果恒温的 p-x-y 图上的 p-x 曲线高于 Raoult 定律的 p-x 直线, 则各组分的或活度系数γ > 1,称为正偏差。 负偏差:如果 p-x-y 图上的 p-x 曲线低于 Raoult 定律 p-x 直线,则各组分 的活度系数γ <1,称为负偏差。 闪蒸:闪蒸是单级平衡分离过程。高于泡点压力的液体混合物,如果将其 压力降低至泡点压力与露点压力之间,就会出现部分汽化现象,即闪蒸。 气液平衡:是指常规条件下的气态组分与液态组分之间的平衡关系。汽液 平衡中,体系中至少有一种组分是不凝性气体,平衡温度可高于体系中某 一组分的临界温度。 封闭体系热力学第一定律:Δ U=Q+W 稳流体系热力学第一定律:Δ H+Δ u²/2+gΔ z=Q+W 稳流体系热力学第一定律可简化为:Δ H=Q+W Δ H=Q Δ H=0 Bernoulli 方程:Δ p/ρ +Δ u²/2+gΔ z = 0,使用条件:不可压缩的流体作 无摩擦的、且与外界环境没有轴功交换的流动。 热力学第二定律表达式:Δ S 孤立≥0,该式表明,自发进行的不可逆过 程只能向总熵增大的方向进行,直到总熵增大到最大值,体系达到平衡。 由于过程的不可逆性引起的熵产生为Δ Sg,Δ S 积累= 稳流系统熵平衡式为: 如果该稳流系统经 历的是可逆过程可简化为: 理想功: 即指在一定的条件下, 体系的状态变化按完全可逆的过程进行时, 理论上可能产生的最大功或者必须消耗的最小功。 封闭体系理想功:W =Δ U+p0Δ V-T0Δ S ,封闭体系的理想功仅与体系 变化前后的状态及环境的温度(T0)和压力(p0)有关,而与具体的变化途 径无关。 稳流过程的理想功:W=Δ H-T0Δ S , 稳流过程的理想功仅取决于体系的 初态与终态以及环境的温度 T0,而与具体的变化途径无关。理想功与可 逆功是有区别的,虽然两者都经历了完全可逆的变化,但理想功是可逆有 用功。 损失功 W :由于实际过程的不可逆性,导致在给定状态变化的实际过程 所产生(或所消耗)功 W 与经历相同状态变化的可逆过程所产生(或所 消耗) 的理想功 W 之间存在差值, 此差值即为损失功 W :W =W - W ,损失功也是过程可逆与否的标志。对于可逆过程,W =0;对于不 可逆过程,W >0。 热力学效率:理想功与实际值的比值。任何实际过程的热力学效率η 都 小于 1。 有效能:体系在一定状态下的有效能,就是体系从所处状态变化到与周围 环境处于热力学平衡时,对外界做出的最大有用功。也就是体系从所处状 态变化到基态过程中所做的理想功。 功、电能和机械能的有效能:Exw=W, 热量的有效能:Exq=W = Q,热量的有效能总是小于其能量, 冷量的有效能有可能大于其能量。 功的损失来源于:过程的不可逆性。 要降低流动过程的有效能损失,就应当尽量减小流动过程的推动力,也就 是减小流体流经管道的压力降。 过程热力学分析:利用热力学基本原理来分析和评价过程,称为过程热力 学分析。 化工过程热力学分析分类:能量衡算法、熵增法、有效能分析法。 能量衡算法只能反映能量数量的损失,不能反映有效能的损失,因而不能 真实反映能量损失的根本原因。只有在能量衡算的基础上,进行有效能分 析,才能找出能量损失的真正原因、大小和分布,为节能攻关指明正确的 方向和途径。

化工热力学必考重点

化工热力学必考重点

y i——混合气体中某组分的摩尔数 混合气体中某组分的摩尔数
四、热量衡算
无轴功交换,只有热交换过程的能量衡算称为热衡算 无轴功交换,只有热交换过程的能量衡算称为热衡算 稳流过程的热量衡算的基本关系式: 稳流过程的热量衡算的基本关系式:
∆h = q
∆H = Q
J/kg
热量衡算时应将生产过程中各种可能热效应考虑进去。 热量衡算时应将生产过程中各种可能热效应考虑进去。 生产中的四种热效应: 生产中的四种热效应: 显热――物流的温度变化 ① 显热 物流的温度变化 潜热――物流的相变化 ② 潜热 物流的相变化 混合热效应――多股物流混合 ③ 混合热效应 多股物流混合 反应热效应――化学反应产生 ④ 反应热效应 化学反应产生
2. 有效能
定义:一定形式的能量,可逆变化到给定环 ⑴定义:一定形式的能量,可逆变化到给定环 境状态相平衡时 相平衡时, 境状态相平衡时,理论上所能作出的最大有用 功。 无效能:理论上不能转化为有用功的能量。 无效能:理论上不能转化为有用功的能量。 ⑵能量的表达形式
对高质能量 对僵态能量 对低质能量 能量= 能量=有效能 僵态能量= 僵态能量=无效能 低质能量=有效能+ 低质能量=有效能+无效能
理想气体节流前后温度不变 实际气体节流前后温度有三种变化可能, 实际气体节流前后温度有三种变化可能, µJ-T >0 表示节流膨胀后气体温度下降; 表示节流膨胀后气体温度下降; µJ-T <0 表示节流膨胀后气体温度升高; 表示节流膨胀后气体温度升高; µJ-T =0 表示节流膨胀后气体温度不变; 表示节流膨胀后气体温度不变;
G = x1G1 + x2G2 + RT ( x1 ln x1 + x2 ln x2 ) Q x1 , x2 < 1则 ln x1和 ln x2都小于0

化工热力学复习最终版

化工热力学复习最终版

简答题1.为什么同系物的沸点和熔点随分子量的增加而增加?答:这是由于同系物具有相同的官能团,因此偶极距和第一电离势大致相同,但是极化率随分子量的增大而增大,而诱导作用和色散作用均随极化率的增大而增大,因而沸点、熔点增高,气化热和熔化热也增加。

注意:分子变大就加重,就不能灵活运动,因而需要更高的温度是分子具有更高的动能并无关系。

2.能否设计一套制冷实验装置获得绝对零度的低温?为什么?3.举例说明氢键及其作用。

答:(1)分子间熔沸点升高,分子内熔沸点降低,例如有分子内氢键的邻硝基苯酚熔点(45℃)比有分子间氢键的间位熔点(96℃)和对位熔点(114℃)都低。

(2) 溶解度增大。

HF和NH3在水中的溶解度比较大,就是这个缘故。

(3)粘度增大,例如甘油、磷酸等多羟基化合物,由于分子间有氢键,通常为粘稠状液体。

(4)密度液体分子间若形成氢键,有可能发生缔合现象,例如液态HF,在通常条件下,除了正常简HF分子外,还有通过氢键联系在一起的复杂分子(HF)n,分子缔合的结果会影响液体的密度。

4.根据热力学定律,谈谈怎样做到能量的合理利用?答:(1)防止能量无偿降级(2)采用最佳推动力的选择(3)合理组织能量多次利用,采用能量优化利用的原则5.Lennard-Jones位能函数在σ=r时是什么状态?答:Lennard-Jones 位能函数在σ时位能为零,此时吸引和排斥对位能的贡献相抵消,即排斥能和吸引能相等,此时的σ大约等于分子直径。

讨论题1. 根据所学的热力学知识,谈谈怎样做到能量的合理利用? 答:合理用能总的原则,按照用户所需要能量的数量和质量来供给,需要注意:(1)防止能量无偿降级:避免用高温热源加热低温物料,或者将高压蒸汽节流降温、降压使用,增加设备的绝热保温性能。

(2)采用最佳的工艺方案:推动力越大,速率越大,设备投资费用可以减少,但是有效能损失增加,能耗增加。

推动力减小,可减小有效能损失,降低能耗,但要增加产量需要增加设备,投资增大。

化工热力学复习题大题答案

化工热力学复习题大题答案

化工热力学复习题大题答案化工热力学复习题大题答案热力学是化工工程中一个重要的学科,它涉及到热量、能量和物质的转化与传递。

在化工工程中,热力学的应用十分广泛,因此掌握热力学的基本原理和计算方法对于化工工程师来说至关重要。

下面将给出一些化工热力学的复习题大题答案,希望能够帮助大家更好地理解和掌握热力学知识。

1. 一个封闭系统由两个子系统组成,它们之间通过一个绝热可逆壁隔开。

子系统1的体积为V1,温度为T1,子系统2的体积为V2,温度为T2。

求整个系统的熵变。

解答:根据热力学第二定律,一个绝热可逆过程中,熵不变。

因此,整个系统的熵变为0。

2. 一个理想气体从初始状态A经过一系列过程到达最终状态B。

过程1是等温过程,过程2是绝热过程,过程3是等容过程。

已知初始状态A的压力为P1,温度为T1,体积为V1,最终状态B的压力为P2,温度为T2,体积为V2。

求过程1、过程2和过程3的熵变。

解答:过程1是等温过程,根据理想气体的熵变公式,熵变为ΔS1 =nRln(V2/V1)。

过程2是绝热过程,根据理想气体的熵变公式,熵变为ΔS2 = 0。

过程3是等容过程,根据理想气体的熵变公式,熵变为ΔS3 = nCvln(T2/T1)。

3. 一个封闭系统由一个绝热可逆壁分成两个部分,每个部分包含1mol理想气体。

初始状态为A,温度为T1,体积为V1,最终状态为B,温度为T2,体积为V2。

求整个系统的熵变。

解答:根据热力学第二定律,一个绝热可逆过程中,熵不变。

因此,整个系统的熵变为0。

4. 一个理想气体从初始状态A经过一系列过程到达最终状态B。

过程1是等温过程,过程2是绝热过程,过程3是等压过程。

已知初始状态A的压力为P1,温度为T1,体积为V1,最终状态B的压力为P2,温度为T2,体积为V2。

求过程1、过程2和过程3的熵变。

解答:过程1是等温过程,根据理想气体的熵变公式,熵变为ΔS1 =nRln(V2/V1)。

过程2是绝热过程,根据理想气体的熵变公式,熵变为ΔS2 = 0。

化工热力学考试复习题定稿版

化工热力学考试复习题定稿版

化工热力学考试复习题精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】化工热力学标准化作业一一、是否题(正确划√号,错误划×号,并写清正确与错误的原因)1、纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

2、当压力大于临界压力时,纯物质就以液态存在。

3、由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。

4、纯物质的三相点随着所处的压力或温度不同而改变。

5、在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。

6、纯物质的平衡气化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零,7、气体混合物的virial系数,如B、C…,是温度的函数。

8*、virial方程和RK方程既可以应用于汽相,又可以用于液相。

9*、在virial方程中,virial系数反映了分子间的相互作用。

10*、Pitzer普遍化方法即为普遍化的压缩因子方法。

二、填空题1、T温度下的过热纯蒸气的压力p _____p s(T)。

2、表达纯物质的汽液平衡的准则有_____(吉氏函数)、__________(Claperyon方程)。

它们(能/不能)推广到其它类型的相相平衡。

3、Lydersen、Pitzer的三参数对应态原理的三个参数分别为___________、__________。

4、对于纯物质,一定温度下的泡点压力与露点压力是______的(相同/不同);一定温度下的泡点与露点,在p-T图上是______的(重叠/分开),而在p-V图上是______的(重叠/分开);泡点的轨迹称为___________,露点的轨迹称为___________,饱和汽、液相线与三相线所包围的区域称为___________;纯物质汽液平衡时,压力称为______,温度称为______。

化工热力学复习重点

化工热力学复习重点

化工热力学——复习重点一. 流体混合物(必背公式)重要的摩尔性质和偏摩尔性质摩尔性质M偏摩尔性质二. 化工过程能量分析(简答题)1. 稳态流动系统的热力学第一定律 [J/Kg]2. 常见稳流体系装置以及能量分析i M ∑==Ni ii x M M 1{}in P T i ti nM M ≠⎪⎪⎭⎫ ⎝⎛∂∂=,,RTG Ei γln ∑==Ni i i Ex RT G 1ln γ{}in P T i E i n RT nG ≠⎥⎦⎤⎢⎣⎡∂∂=,,)/(ln γf ln iiy f ˆln ∑==Ni i ii y fy f 1ˆln ln {}in P T i i i n f n y f≠⎪⎪⎭⎫ ⎝⎛∂∂=,,ln ˆln ϕln iϕˆln ∑==Ni i i y 1ˆln ln ϕϕ{}in P T i i n n ≠⎪⎪⎭⎫⎝⎛∂∂=,,ln ˆln ϕϕ三.蒸汽动力循环与制冷循环(简答题)1.蒸汽动力循环能量分析(Energy Analysis)Turbine汽轮机:1 –2表示过热蒸汽在汽轮机中的可逆绝热膨胀过程,对外所做轴功可由膨胀前后水蒸汽的焓值求出。

Condensor冷凝器:2 –3表示乏汽在冷凝器中的等温等压冷凝过程,放出的热量。

Pump水泵:3 –4表示冷凝水通过水泵由P3升压至P4的可逆绝热压缩过程,需要消耗的轴功。

把水看作是不可压缩流体,则Boiler锅炉:4 –1表示液体水在锅炉中被等压加热汽化成为过热蒸汽的过程。

工质在锅炉中吸收的热量。

2.制冷循环(单级制冷循环)能量分析(Energy Analysis) 1-2可逆绝热压缩过程:W s = H2-H1 kJ/kg2-4等压冷却、冷凝过程:q2 = H4 - H2 kJ/kg4-5节流膨胀过程:H5 = H45-1等压、等温蒸发过程:q0 = H1-H5 kJ/kg。

化工热力学总复习

化工热力学总复习

化工热力学总复习一.绪论1.化工热力学的研究内容:①测量关联与推算不同条件下物质的平衡性质熵焓,温度压强(纯物质),组成(混合物)②能量的计算建立在热力学第一,第二定律基础上③单元操作相应的相平衡组分逸度④物性及热力学性质状态方程2.热力学的研究方法:①微观热力学(统计热力学)②宏观热力学(经典热力学)研究体系达到平衡时的热力学性质,物系从一个状态到另一状态中间的变化。

无法研究速率问题二.流体的P-V-T关系1.几个概念①状态方程:描述流体P-V-T关系的函数式f(P.V.T)=0 称为状态方程②临界点:表示气液两相能共存的最高压力和温度的汽化线的另一个端点,称为临界点③超临界流体:高于临界压力和温度的区域内的流体车称为超临界流体(既不同于液体,又不同于气体,它的密度可以接近液体,但具有类似气体的体积可变性和传递性质。

可作为特殊的萃取溶剂和反应介质)2..状态方程的比较①.Van der Waals 方程:可用于气液两相,但是精度不高,实际应用较少。

常数随物质而异,由临界参数计算而得②.RK方程:适用于非极性和弱极性化合物,对多数强极性化合物的计算偏差较大。

能较成功的应用于气相,但对液相效果较差,不能用于气液相平衡的计算。

常数于流体特性有关,可由物质的临界参数计算③.SRK方程:计算精度比RK方程高,用于气液相平衡计算时精度较高,工程上应用广泛。

方程常数b与RK方程一致,但认为a不再是常数而是温度的函数④.PR方程:从SRK方程改进而来,精度更高,也是气液平衡工程计算的常用方程,预测液体摩尔体积的准确度较SRK明显提高。

方程参数利用纯物质的临界参数和偏心因子计算⑤.Virial方程:用于液相计算误差较大,不能用于气液相平衡计算。

其系数仅是温度的函数。

一般用普遍化方法估算。

目前尚未全部解决维里系数的数值⑥.M-H方程:方程准确度高,适用范围广,能用于包括非极性至强极性的化合物。

方程常数只需使用纯物质的临界参数及一点蒸汽压数据便可求得,是能从较少输入信息便可获得多种热力学性质的最优秀的状态方程之一3.Virial方程与virial系数①.从什么角度导出的维里方程?分子之间相互作用的受力②.维里方程为什么是纯理论方程?维里方程系用统计力学的方法推导而来,故而具有坚实的理论基础③.维里系数的确切的物理意义:第二维里系数是考虑到两个分子碰撞或相互作用导致的与理想行为的偏差,第三则是反映了三个分子碰撞所导致的非理想行为④.为什么维里方程可以截断?∵维里方程是无穷级数的形式,而实际应用时由于维里系数数据的缺乏,常使用近似成立的舍项形式,而多分子相互作用的概率很低,对Z的贡献逐项减小,∴可以截断⑤.什么时候截断误差大?什么时候使用二项截断式?压力越高,多分子碰撞的几率越大,引起的误差也越大;通常中,低压时取二项截断式⑥.维里系数取决于什么?对于一定物质而言,纯物质中维里系数仅取决于温度(混合物中取决于温度和各相组成)4.对比态原理及其应用①.对比态原理的对比态参数是什么意思?②.对比态有几个参数?哪几个?有三个;是对比温度Tr,对比压力Pr,和偏心因子ω③.偏心因子的概念?任一流体在Tr=0.7处的纵坐标lgP rS值与氩氪氙在同一条件下的lgPrS的差值④.什么时候ω=0?当流体是简单流体时,ω=0⑤.什么是简单流体?是惰性气体系球形分子的流体是简单流体5普遍化状态方程(由对比态原理推出的方程)①.状态方程的三个参数Tr Pr Vr②.两种普遍化计算方法维里系数法,普遍化压缩因子法③.Z0 Z1是谁的函数?是Pr ,Tr的复杂函数6.真实气体混合物的P-V-T关系①.混合物的P-V-T关系的状态方程的基本思路:利用纯物质的状态方程,推广应用到混合物,将A B等常数用混合物的常数代入(利用混合规则,即纯物质的性质及其组成来转化)②.混合维里系数中交叉项维里系数为什么会存在?不同的分子之间相互作用的影响③.维里系数下标的意义:B11,B22:纯物质的第二维里系数B12=B21:交叉第二维里系数,反映不同组分分子1,2之间的相互作用④.给出Σ公式进行展开,合并:B=ΣiΣjYiYjBij=y1y1B11+y1y2B12+y2y1B21+y2y2B227.液体的P-V-T性质①. 了解两个名词:修正的Rackett方程三.纯流体的热力学性质1.热力学性质间的关系①.两个概念:体积膨胀系数β等温压缩系数k②.剩余性质的定义:气体在真实状态下的热力学性质在同一温度,压力下当气体处于理想状态下热力学性质之间的差额③.计算剩余性质的目的:为了计算实际流体的热力学性质2.气体热力学性质的普遍化关系法①.计算剩余性质使用普遍化法时,把剩余性质变成谁的函数?Tr Pr Z PV=ZRT [Z:普遍化压缩因子]3.逸度和逸度系数①.为什么要引入逸度?为了修正什么?为了便于表达真实气体的自由焓,为了表征体系的逃逸趋势;为了修正压力②.什么是逸度系数?什么时候逸度系数=1?逸度系数是物质的逸度与其压力之比;[低压]理想气体时φi=1③.逸度系数的计算普遍化方法-----三参数(P V T)4.液体的逸度①.液体的逸度怎么定义?②.怎么计算液体逸度?通过液体饱和蒸汽压进行两次修正③.什么是Poynting因子?什么时候需要它?指数校正项称为Poynting因子;在高压下需要四.流体混合物的热力学性质1.化学位和偏摩尔性质①.偏摩尔体积的下标:(T,P,Nj) 混合后的偏摩尔体积与组成有关②.M Mi Mi 与Mt的名称③.摩尔与偏摩尔体积&性质之间的关系:M=Σ(XiMi)2.Gibbs-Duhem 方程x1dM1+x2dM2=0 从一个组分的偏摩尔性质推算另一个组分①.Gibbs-Duhem方程表示了谁与谁的关系:混合物性质M与混合物中各组分的偏摩尔性质Mi之间的依赖关系3.混合物的逸度和逸度系数①.两个区别:混合物的逸度-----混合物总压的修正混合物的组分逸度------对分压的修正②.混合物的组分逸度的定义:通过给出纯物质的逸度公式改写4.理想溶液和标准态①.什么是理想溶液?组成结构相似(同系物)②.如何计算理想溶液的逸度?(为了考试方便) Lewis-Randall定则5.活度与活度系数①.二者用来修正什么?用来修正摩尔浓度②.运用活度与活度系数可以说明什么?可以说明理想溶液(与真实溶液的区别?)6.超额性质①.超额性质的概念在相同的温度,压力和组成条件下真实溶液和理想溶液性质之差②.为什么只讲超额自由焓? ∵超额自由焓与活度系数一一对应③.引入超额性质的目的?为了计算活度系数④.超额自由焓的建模中为什么取消了压强?∵其研究对象是非理想液体溶液,而压强对液体的作用影响小,故而忽略了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工热力学一、重点1、临界点定义及表达式:维持气液平衡的最高温度和压力点。

c 0T T p V =∂⎛⎫= ⎪∂⎝⎭、220cT T p V =⎛⎫∂= ⎪∂⎝⎭。

2、Virial 方程体积表达式:231pV B C D Z RT V V V==++++压力表达式:231pVZ B p C p D p RT'''==++++3、偏心因子的定义及表达式:各种物质在0.7r T =时,纯态流体对比蒸汽压对数值与Ar ,Kr ,Xe 的值的偏差,即()0.7lg 1.00r s r T p ω==--。

物理意义:偏心因子表征物质的偏心度,即非球型分子偏离球对称的程度。

4、普遍化Virial 系数普遍化Virial 系数与普遍化压缩因子适用范围5、Prausnitz 混合规则6、熵的表达式的推导第一dS 方程当(),S S T V =时,则有因 V V V V Q TdS S C T T T T ∂∂⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 得 V VC S T T ∂⎛⎫= ⎪∂⎝⎭ 又 T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭所以 VVdT p dS C dV T T ∂⎛⎫=+ ⎪∂⎝⎭ 积分得到第二dS 方程当(),S S T p =时,则有因 p p C S T T ∂⎛⎫= ⎪∂⎝⎭ p TS V p T ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭所以 ppdT V dS C dp T T ∂⎛⎫=- ⎪∂⎝⎭ 积分得到第三dS 方程当(),S S p V =时,则有因为积分得到7、焓的表达式推导利用刚刚导出的三个dS方程来得到三个dH方程。

=+(1)dH TdS Vdp将第一dS方程代入(1)式并注意得到得到第一dH方程积分得到第二dH方程积分得到第三dH方程积分得到8、剩余性质的定义:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想状态下的热力学性质之间的差额。

式中M与M*分别为在相同温度和压力下,真实气体与理想气体的某一广度热力学性质的摩尔值,如V、U、H、S和G等。

9、普遍化Virial系数计算剩余熵和焓10、逸度及逸度系数的定义f。

对于真实气体,定义逸度iln i i dG RTd f = (等温)逸度系数的定义11、温熵图,即T S -图(以往试卷有类似题目)等干度线、等压线、等焓线、等比容线。

12、化学位、偏摩尔性质化学位:将无限小量的物质i 加到均相体系中而保持相均匀同时体系的熵和体积保持不变,体系内能变化与加入物质量的比值为物质i 在所处相中的势,称为化学位。

偏摩尔性质:在给定的T 、P 和其他物质的量不变时,向含有组分i 的无限多的溶液中加入1mol 的组分i 所引起的热力学性质的变化。

偏摩尔性质有三个重要的要素:①恒温、恒压;②广度性质(容量性质);③随某组分摩尔数的变化率。

13、混合物的组分逸度及逸度系数混合物中组分i 的逸度的定义为:ˆln i idG RT f = (等温) 混合物中组分i 的逸度系数的定义为:ˆˆi i f x pφ=混合物的逸度的定义为:ln dG RT f = (等温)混合物的逸度系数的定义为:f pφ=14、理想溶液的逸度,标准态(1)、以Lewis-Randall 定则为基础规定标准态:()1ˆlim i i i x iff LR f x →==。

(2)、以Henry 定律为基础规定标准态:()0ˆlim i i i x iff HL k x →==,其中ki 为henry 常数。

适用条件:在体系温度、压力下,溶液中各组分的纯物质聚集态相同,并且组分之间可以无限制混合时,各组分都以Lewis-Randall 定则为基础规定标准态。

在体系温度、压力下,溶液中各组分的纯物质聚集态不同,或者,组分之间不能无限制混合时,溶剂以Lewis-Randall 定则为基础规定标准态,溶质以Henry 定律为基础规定标准态。

15、混合过程性质:溶液的性质M 与构成溶液各组分在标准态时性质总和之差。

i i M M x M ∆=-∑,M i 是与混合物同温、同压下纯组分i 的摩尔性质。

混合物的摩尔性质与偏摩尔性质的关系:16、超额性质定义及表达式超额性质定义为相同的温度、压力和组成条件下真实溶液性质与理想溶液性质之差。

17、正规溶液和无热溶液的区分正规溶液:当极少量的一个组分从理想溶液迁移到有相同组成的真实溶液时,如果没有熵的变化,并且总的体积不变,此溶液称为正规溶液。

无热溶液:某些由分子大小相差甚远的组分构成的溶液,特别是聚合物溶液属此类型。

这类溶液0E H ≈,故称为无热溶液。

E E G TS =-。

18、相平衡的判据(1)、(),0T p dG =,它表明在给定的温度和压力条件下,平衡态就是所有可能变化达到的自由焓数值中最小的那个状态。

(2)、()1,2,,N i i i i αβπμμμ====,表明,N 个组分的系统内,若π个相在均一的温度、压力下达到平衡时,物系内的每一组分在所有各相中的化学位必定相同。

(3)、()ˆˆˆ1,2,,i i if f f i N αβπ====,说明,各相在同样的温度、压力下达到平衡时,每一个组分在各相中的逸度相等。

19、气液平衡的分类(1)、完全理想系:汽相—理想气体,液相—理想液体(2)、理想系:汽,液相—理想液体(VL 均服从LR )(3)、部分理想系:汽—理想气体,液相—非理想液体(4)、非理想系:20、理想功概念:理想功即指体系的状态变化是在一定的环境条件下按完全可逆的过程进行时,理论上可能产生的最大功或者必须消耗的最小功。

21、热力学效率T η:理想功与实际功的比值。

22、由Rankine 循环的示意图画温熵图23、通过通过改变蒸汽参数提高Rankine循环的热效率(1)、提高蒸汽的过热温度在相同的蒸汽压力下,提高蒸汽的过热温度时, 可提高平均吸热温度,增大作功量,提高循环的热效率,并且可以降低汽耗率。

同时乏气的干度增加,使透平机的相对内部效率也可提高。

但是蒸汽的最高温度受到金属材料性能的限制,不能无限地提高,一般过热蒸汽的最高温度以不超873K为宜。

(2)、提高蒸汽的压力当蒸汽压力提高时,热效率提高、而汽耗率下降。

但是随着压力的提高,乏汽的干度下降,即湿含量增加,因而会引起透乎机相对内部效率的降低。

还会使透平中最后几级的叶片受到磨蚀,缩短寿命。

乏汽的干度一般不应低于0.88。

另外,蒸汽压力的提高,不能超过水的临界压力,而且设备制造费用也会大幅上升。

24、节流膨胀过程、绝热膨胀过程节流膨胀:高压流体流过管道中一节流元件(如节流阀、孔板、毛细管等),迅速膨胀到低压的过程称为节流膨胀。

绝热膨胀:气体从高压向低压做绝热膨胀时,若通过膨胀机来实现,则可对外做功,如果过程是可逆的,称为等熵膨胀。

25、Gibbs-Duhem 方程Gibbs-Duhem 方程的一般形式:当T、P恒定时当 M=G 时 (),0i i T P x dG =∑ 二元系等温、等压条件下 二、题目1、正确写出下列热力学函数的定义式偏心因子:各种物质在0.7r T =时,纯态流体对比蒸汽压对数值与Ar ,Kr ,Xe 的值的偏差,即()0.7lg 1.00rs r T p ω==--。

偏心因子表征物质分子的偏心度,即非球型分子偏离球对称的程度。

剩余性质M R :所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想状态下的热力学性质之间的差额。

*R M M M =-。

可逆轴功21p s p W Vdp =⎰,对于液体在积分时V 一般可以视为常数。

微观熵S :热力学几率的量度,与体系内部分子运动混乱程度有关,ln S k =Ω。

宏观熵S :熵是表征系统混乱程度的量度,QdS Tδ=。

熵流f QS Tδ=⎰,流入体系为正,离开体系为负。

熵产g S :是体系内部不可逆性引起的熵变。

理想功id W :理想功即指体系的状态变化是在一定的环境条件下按完全可逆的过程进行时,理论上可能产生的最大功或者必须消耗的最小功0id W H T S =∆-∆。

损耗功L W :系统在相同的状态变化过程中,完全可逆过程的理想功与不可逆过程的实际功之差,L id S W W W =-。

有效能x E ,任何体系在一定状态下的有效能是体系与环境的作用,从所处的状态达到与环境相平衡的可逆过程中,对外界做的最大有用功称为该体系在该状态下的有用功。

热效率T η:理想功与实际功的比值。

()()==ac T id idT ac W W W W ηη产生功需要功。

产功过程热力学效率a η:产功设备在实际过程中提供的功与理想功的比值,它是过程热力学完善性的尺度,反映了过程可逆的程度。

()=aca idW W η产生功。

耗功过程热力学效率a η:理想功与耗功设备在实际过程中消耗的功的比值,它是过程热力学完善性的尺度,反映了过程可逆的程度。

()=ida acW W η需要功。

偏摩尔性质i M :在给定的T 、P 和其他物质的量不变时,向含有组分i 的无限多的溶液中加入1mol 的组分i 所引起的热力学性质的变化,()jn ,P ,T i i n nM M ⎪⎪⎭⎫ ⎝⎛∂∂=混合性质ΔM :溶液的性质M 与构成溶液各组分在标准态时性质总和之差,ii M x M M ∑-=∆。

超额性质M E :相同温度、压力和组成时,真实溶液与理想溶液混合性质之差,E id E idM M M M M M =-∆=∆-∆。

逸度:ln i i dG RTd f = (等温)。

逸度系数:ii f pϕ=。

组分逸度ˆif :温度为常数时,ˆln i i dG RTd f =,0ˆlim 1i P if y P →=组分逸度系数ˆˆi i f x pφ=;组分活度:活度定义为溶液中组分的逸度ˆif 对该组分在标准态时的逸度i f ︒之比,用ˆi a 表示,ˆˆiii f a f ︒=。

组分活度系数i γ:活度与摩尔百分数之比为活度系数,ˆˆˆˆii ii id ii i ia f f x x f f γ︒===。

2、问答题(1)、T-S 图与蒸汽动力循环图。

(2选1,见重点11与22)(2)、动量传递与热量传递的推导。

(2选1)动量传递过程:流体与设备和流体分子之间的摩擦和扰动导致熵增和不可逆。

和外界无热、功交换的过程,有得21P P VdS dP T V S dPT =-∆=-⎰无热、功交换但有压降的流动过程,必有功损耗,得流动过程中温度和比容变化不大流体压力差大致与流速成平方关系,因此损耗功大致与流速成平方关系;压力差恒定时,损耗功与T 0/T 成正比关系,流体温度越低,损耗功越大;损耗功与流体比容成正比关系,因此气体节流的损耗功比液体节流的损耗功大得多。

相关文档
最新文档