利用状态观测器实现状态反馈的系统设计
现代控制理论基础_周军_第五章状态反馈与状态观测器

5.1状态反馈与极点配置一、状态反馈系统的动态方程以单输入-多输出受控对象动态方程为例:(5-1)将对象状态向量通过待设计的参数矩阵即状态反馈行矩阵,负反馈至系统的参考输入,于是存在(5-2)这时便构成了状态反馈系统,见图5-1。
图5-1 状态反馈系统结构图(5-3)(5-4)式中v为纯量,为维向量,为维矩阵,为维向量,为维行矩阵,为维向量,为维矩阵。
为闭环状态阵,为闭环特征多项式。
二、用状态反馈使闭环极点配置在任意位置上的充要条件是:受控对象能控证明若式(5-1)所示对象可控,定可通过变换化为能控标准形,有若在变换后的状态空间内引维状态反馈矩阵:(5-5)其中分别为由状态变量引出的反馈系数,则变换后的状态反馈系统动态方程为:(5-6)(5-7)式中(5-8)该式与仍为能控标准形,故引入状态反馈后,系统能控性不变。
特征方程为:(5-9)显见,任意选择阵的个元素,可使特征方程的个系数满足规定要求,能保证特征值(即闭环极点)任意配置。
将逆变换代入式(5-6),可求出原状态空间内的状态反馈系统状态方程:(5-10)与式(5-3)相比,式(5-10)所示对象应引入状态反馈阵为:(5-11)需指出,当受控对象可控时,若不具有能控标准形形式,并不必象如上证明那样去化为能控标准形,只要直接计算状态反馈系统闭环特征多项式,这时,其系数为的函数,与给定极点的特征多项式系数相比较,便可确定。
能控的多输入-多输出系统,经如上类似分析可知,实现闭环极点任意配置的状态反馈阵K为维。
若受控对象不稳定,只要有能控性,完全可由状态反馈配置极点使系统稳定。
状态变量受控情况下,引入状态反馈表示增加一条反馈通路,它能改变反馈所包围环节的传递特性,即通过改变局部回路的极点来改变闭环极点配置。
不能控状态变量与控制量无关,即使引入状态反馈,对闭环极点位置也不会产生任何影响,这是因为传递函数只与系统能控、能观测部分有关的缘故。
若不能控状态变量是稳定的状态变量,那么系统还是能稳定的,否则,系统不稳定。
现代控制理论状态反馈和状态观测器的设计实验报告

现代控制理论状态反馈与状态观测器的设计实验报告
LT ac ker(AT ,CT , P)
或
LT place( AT ,CT , P)
其中 P 为给定的极点,L 为状态观测器的反馈阵。
例 3 已知开环系统
其中
x• Ax bu y Cx
0 1 0 0
A=
0
0
1
,b=
0
,C= 1
0
0
6 11 6 1
(1)
现代控制理论状态反馈与状态观测器的设计实验报告
其中 A : n n; B : n r;C :: m n
引入状态反馈,使进入该系统的信号为ຫໍສະໝຸດ u r Kx(2)
式中 r 为系统的外部参考输入,K 为 n n 矩阵、
可得状态反馈闭环系统的状态空间表达式为
(3) 可以证明,若给定系统就是完全能控的,则可以通过状态反馈实现系统
设计全维状态观测器,使观测器的闭环极点为-2 j2 3 ,-5、
解 为求出状态观测器的反馈矩阵 L,先为原系统构造一对偶
系统,
z AT C T n
w
BT
z
然后采用极点配置方法对对偶系统进行闭环极点位置的配置,得
到反馈阵 K,从而可由对偶原理得到原系统的状态观测器的反馈阵 L。
现代控制理论状态反馈与状态观测器的设计实验报告
K=acker(A,b,p) 式中,p 为给定的极点,K 为状态反馈阵。
对于多变量系统的极点配置,MATABLE 控制系统工具箱也给出了函数
place(),其调用格式为
K=place(A,B,P)
例2 已知系统的状态方程为
0 0 4 1 2 0
•
x
10
现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。
状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。
状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。
本文将分别介绍状态反馈器和状态观测器的设计原理和方法。
一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。
其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。
2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。
常用的设计方法有极点配置法、最优控制法等。
3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。
状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。
4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。
二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。
其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。
常用的设计方法有极点配置法、最优观测器法等。
3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。
状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。
4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。
现代控制实验--状态反馈器和状态观测器的设计

现代控制实验--状态反馈器和状态观测器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN状态反馈器和状态观测器的设计一、实验设备PC 计算机,MATLAB 软件,控制理论实验台,示波器二、实验目的(1)学习闭环系统极点配置定理及算法,学习全维状态观测器设计法;(2)掌握用极点配置的方法(3)掌握状态观测器设计方法(4)学会使用MATLAB工具进行初步的控制系统设计三、实验原理及相关知识(1)设系统的模型如式所示若系统可控,则必可用状态反馈的方法进行极点配置来改变系统性能。
引入状态反馈后系统模型如下式所示:(2)所给系统可观,则系统存在状态观测器四、实验内容(1)某系统状态方程如下10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =理想闭环系统的极点为[]123---.(1)采用 Ackermann 公式计算法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1; 3; -6];P=[-1 -2 -3];K=acker(A,B,P)Ac=A-B*Keig(Ac)(2)采用调用 place 函数法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6];eig(A)'P=[-1 -2 -3];K=place(A,B,P)eig(A-B*K)'(3)设计全维状态观测器,要求状态观测器的极点为[]---123代码:a=[0 1 0;0 0 1;-4 -3 -2];b=[1;3;-6];c=[1 0 0];p=[-1 -2 -3];a1=a';b1=c';c1=b';K=acker(a1,b1,p);h=(K)'ahc=a-h*c(2)已知系统状态方程为:10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =(1)求状态反馈增益阵K ,使反馈后闭环特征值为[-1 -2 -3];代码:A=[0 1 0;0 0 1;4 -3 -2];b=[1;3;-6];p=[-1 -2 -3];k=acker(A,b,p)A-b*keig(A-b*k)(2)检验引入状态反馈后的特征值与希望极点是否一致。
第13章 线性定常系统的状态反馈和状态观测器设计

第13章 线性定常系统的状态反馈和状态观测器设计 解 (1)系统的能控矩阵
因为rankUc=2,所以系统是能控的。 故可以通过状态反馈实现闭环系统极点的任意配置
第13章 线性定常系统的状态反馈和状态观测器设计 (2)期望闭环极点配置在-1,-2,由
第13章 线性定常系统的状态反馈和状态观测器设计
第13章 线性定常系统的状态反馈 和状态观测器设计
13.1 状态反馈与输出反馈 13.2 闭环系统的极点配置 13.3 状态观测器的设计
第13章 线性定常系统的状态反馈和状态观测器设计
13.1 状态反馈与输出反馈
13.1.1 状态反馈 状态反馈就是将系统的每一个状态变量乘以相应的反馈
得 (3)求状态反馈增益矩阵k,则
第13章 线性定常系统的状态反馈和状态观测器设计 (4)状态反馈系统模拟结构图如图13-4所示。
图13-4 状态反馈系统模拟结构图
第13章 线性定常系统的状态反馈和状态观测器设计
2.方法二 求解实际问题的状态反馈增益矩阵k 的步骤为: (1)计算能控性矩阵Uc,判断系统是否能控; (2)根据闭环系统的期望极点计算系统的期望特征多项 式:
13.4 带观测器的状态反馈系统
13.4.1 系统的结构和状态空间表达式 带观测器的状态反馈系统由三部分组成,即原系统、观
测器和控制器,如图13-7所示。
第13章 线性定常系统的状态反馈和状态观测器设计
图13-7 带状态观测器的反馈系统
第13章 线性定常系统的状态反馈和状态观测器设计 设能控能观测的受控系统为
绍,下面就其特点和应用方面略加讨论。 (1)状态反馈与输出反馈的共同特点是:反馈的引入并不
带观测器的状态反馈系统

C
0
SI
(
A 0
BK
)
BK
1
B
SI ( A LC)
0
根据分块求逆公式R0
S 1 R 1
T
0
R1ST 1
T 1
G(S) C
0SI (A BK)1
0
SI
(
A
BK)1 BK SI ( SI (A LC)1
A
LC
)1 B0
求得w(s) C SI ( A BK ) 1 B
wk (s)(直接状态反馈控制系统传递函数)
基于观察器旳状态反馈系统旳特征
结论1:带观察器状态反馈闭环系统旳传递函数等于直接状态反馈
闭环系统旳传递函数,或者说w(S)与是否采用观察器无关,观察器 旳引入不变化直接状态反馈旳传递函数矩阵。
实际上,因为观察器旳极点已全部被闭环系统旳零点相消 了,所以此类系统是不完全能控旳。但因为不能控旳状态是估
选取L
l1 l2
由于ˆ1,2=-10,10 观测器特征多项式:fˆ () I ( A LC)
l1 1 l2 6
2 (6 l1) 6l1 l2
综合举例
期望fˆ*() ( 10)( 10) 2 20 100
比较得,l1
14,l2
16,
L
14 16
全维观测器方程 xˆ ( A LC)xˆ Ly bu
N
C AC
,
均满秩。
(2)设计状态反馈K
选取K=k1 k2
闭环f () I ( A bK )
k1
1
6 k2
2 (6 k2 ) k1
期望f *() ( 4 j6)( 4 j6)
状态反馈观测 设计

状态反馈观测设计状态反馈观测器是一种用于估计系统状态的控制器组件。
它通过测量系统的输出和输入,并使用状态方程对系统状态进行估计。
以下是一个详细精确的状态反馈观测器设计步骤:1. 确定系统的状态方程:首先,需要确定系统的状态方程,通常采用线性时不变系统表示。
状态方程可以表示为:x' = Ax + Buy = Cx + Du其中,x是系统的状态向量,u是系统的输入向量,y是系统的输出向量,A、B、C和D是系统的系数矩阵。
2. 设计状态反馈控制器:使用控制理论中的状态反馈控制器设计方法,根据系统的要求和性能指标,选择合适的状态反馈增益矩阵K。
状态反馈控制器的输出可以表示为:u = -Kx3. 设计状态观测器:状态观测器的目标是估计系统的状态向量x。
根据系统的输出和输入,可以使用以下观测器方程进行状态估计:x̂' = A x̂ + Bu + L(y - C x̂)其中,x̂是状态观测器的估计状态向量,L是观测器增益矩阵。
4. 确定观测器增益矩阵L:观测器增益矩阵L的选择可以使用线性二次调节器(LQR)设计方法,根据系统的要求和性能指标,通过求解代数矩阵方程来确定L。
5. 实施状态反馈观测器:将状态反馈控制器和状态观测器结合在一起,形成一个状态反馈观测器控制系统。
系统的输入通过状态反馈控制器计算得到,系统的输出通过状态观测器估计得到,从而实现对系统状态的估计和控制。
6. 优化观测器性能:根据实际应用需求,可以通过调整观测器增益矩阵L来优化观测器的性能,例如减小状态估计误差、提高状态估计的收敛速度等。
以上是一个详细精确的状态反馈观测器设计过程。
根据具体的系统和应用需求,可能需要进行一些额外的步骤或调整来优化控制系统的性能。
第六章状态反馈和状态观测器1

G(s)
s(s
1 6)(s
12)
s3
1 18s 2
72s
综合指标为: % 5%;tS 0.5s,ep 0,试用状态反馈实现上述指标。
解:将极点配置为一对主导极点和一个非主导极点;根据二阶
系统的性能指标,求出 0.707,n 10。取 0.707,n 10
则,主导极点为:
s1,2 0.707 j7.07
变量,也没有增加系统的维数,但可以通过K阵的选择自由地改变闭环系统 的特征值,从而使系统达到所要求的性能。
6.1.2 输出反馈
输出反馈是将受控系统的输出变量,按照线性反馈规律反馈到输入端, 构成闭环系统。这种控制规律称为输出反馈。经典控制理论中所讨论的反馈 就是这种反馈,其结构图如下 :
r(t) u(t) B
r(t) u(t) B
x(t) x(t) C
y(t)
A
K
图中受控系统的状态空间表达式为 (A, B,C)的状态空间表达式为 0 x Ax Bu
y Cx
式中,A为n×n矩阵;B为n×r矩阵;C为m×n矩阵。
状态反馈控制律为
u r Kx
式中,r为r×1参考输入;K为r×n状态反馈阵。对单输入系统,K为1×n的 行向量。
sn rn1sn1 r0 0
实际系统与希望系统的特征方程的系数应当相一致。
3、状态反馈阵K的计算步骤 1)判断A,b能控性 2)写出实际的闭环特征方程(传递阵的分母为0的方程)
SI [A bK] 0
3)根据要配置的特征根,写出希望的特征方程
f (s) (s 1)(s n ) 0
4)对应实际的与希望的特征方程,求出K。
被控系统 模拟系统
x Ax Bu y Cx xˆ (A GC)xˆ Bu Gy yˆ Cxˆ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二十八 利用状态观测器实现状态反馈的系统设计
【实验地点】
【实验目的】
1、掌握用状态反馈进行极点配置的方法。
2、了解带有状态观测器的状态反馈系统。
3、练习控制性能比较与评估的方法。
【实验设备与软件】
1、MATLAB 软件。
2、labACT 实验箱。
【实验原理】
1、闭环系统的动态性能与系统的特征根密切相关,在状态空间的分析中可利用状态反馈来配置系统的闭环极点。
这种校正手段能提供更多的校正信息,在形成最优控制率、抑制或消除扰动影响、实现系统解耦等方面获得广泛应用。
2、为了实现状态反馈,需要状态变量的测量值,而在工程中,并不是状态变量都能测量到,而一般只有输出可测,因此希望利用系统的输入输出量构成对系统状态变量的估计。
解决的方法是用计算机构成一个与实际系统具有同样动态方程的模拟系统,用模拟系统的状态向量 作为系统状态向量 的估值。
状态观测器的状态和原系统的状态之间存在着误差,而引起误差的原因之一是无法使状态观测器的初态等于原系统的初态。
引进输出误差 的反馈是为了使状态估计误差尽可能快地衰减到零。
3、若系统是可控可观的,则可按极点配置的需要选择反馈增益阵k ,然后按观测器的动态要求选择H ,H 的选择并不影响配置好的闭环传递函数的极点。
因此系统的极点配置和观测器的设计可分开进行,这个原理称为分离定理。
【实验内容、方法、过程与分析】
1、实验内容
设控制系统如图1所示,要求设计状态反馈阵K ,使动态性能指标满足超调量%5%≤σ,峰值时间s t p 5.0≤。
图 1
由图可得系统传递函数关系为:
21()()0.051
X s X s s =+ (1) 12()()()U s X s X s s
-= (2) 1()()X s Y s = (3)
对上(1),(2),(3)化简并反变换:
1120.05()()()x t x t x t +=& (4)
21()()()x t x t u t +=& (5)
1()()x t y t = (6)
对上(4),(5),(6)列写状态方程形式(状态空间表达式):
112220200101x x u x x -⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦
&& (7) []1210x y x ⎡⎤=⎢⎥⎣⎦
(8) 实验仿真图
1.运算放大器描述系统
仿真运行图
2.状态反馈实现极点配置仿真模型
仿真运行图
3.状态观测器仿真模型
实验结果图
实验结论
通过本次实验,我们掌握用状态反馈进行极点配置的方法和了解带有状态观测器的状态反馈系统。
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。