可降阶的高阶微分方程,高阶线性微分方程及其通解结构.ppt

合集下载

第-节 高阶线性微分方程【高等数学PPT课件】

第-节 高阶线性微分方程【高等数学PPT课件】
其中 k按 i 不是特征根,是单根依次取0,1.
m maxl, n
Rm ( x),Qm ( x) 都是x的m次多项式, 其系数待定.
例4 设 y 5 y 6 y f ( x)
(1) f ( x) sin x 写出 y 的形式.
(2) f ( x) x cos x
Pm ( x) 为x的m次多项式. 其中 为常数,
分析: 设 y Q( x)ex 是原方程的解,则代入
原方程,整理得
Q (2 p)Q (2 p q)Q Pm ( x) ()
综上,对 f ( x) Pm ( x)ex 型
令 y x kQm ( x)ex
y p1( x) y p2 ( x) y f1( x) f2 ( x) 的特解.
定理5 若 y1( x), y2( x) 是方程(10)的两个解, 则 y1( x) y2( x) 是方程(9)的解.
例3 设 y1 x, y2 x 2 , y3 x3 是方程 y p1( x) y p2( x) y f ( x)
定理2 若 y1( x), y2( x)是方程(9)的两个线性无关
( y1 y2

常数) 的解,
则 C1 y1( x) C2 y2( x) 是 (9)的通解.
上述定理可推广到n阶线性齐次方程。
若已知方程 y p1( x) y p2( x) y 0 有一特解 y1( x), 要求其通解, 则只要再求出该方程的另一个与 y1( x) 线性无关的特解 y2 ( x) 即可. 用降阶法求 y2( x) :
第四节 高阶线性微分方程 二、线性齐次微分方程解的结构
二阶线性齐次微分方程:
y p1( x) y p2( x) y 0 ——(9) 定理1 若 y1( x), y2( x) 是方程(9)的两个解, 则

第三节 可降阶的高阶微分方程

第三节 可降阶的高阶微分方程

例5
求方程 yy′′ − y′2 0 的通解 。 =
dp 解 令 p = y′ ,则 y′′ = p 。 dy dp yp − p2 = 0 。 于是, 于是,原方程化为 dy dy = 0 ,故此时有解 y = C 。 若 p = 0 ,则 dx dp dy = 。 若 p ≠ 0 ,则原方程化为 p y dy p = 0 对应于 C1 = 0 = p = C1 y 。 两边积分,得 两边积分, dx y = C2 eC1x。 运用分离变量法, 运用分离变量法,得此方程的通解为
2 2
(***)
此处取负号是因为物体运动的方向与y轴的正向相反. 在(***)中令 y=R,就得到物体到达地面时的速度为
2 gR(l − R) v=− l
最后求物体落到地面所需的时间. 由(***)式有
1 1 dy = v = −R 2g − , y l dt
分离变量,得
1 l y dt = − dy. R 2g l − y
1 y′′ = 1 + y ′2 a
取原点 O 到点 A 的距离为定值 a ,即 |OA|= a ,则初始条件为:
y x =0 = a, y′ x =0 = 0.
故初值问题为
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
令 y ′ = p,
y′′ = p′ 代入上方程,得
dx = a 1 + p2 dp
1 2 p′ = 1+ p . a
x ln( p + 1 + p ) = + C1 a

一阶线性微分方程,可降阶的高阶微分方程

一阶线性微分方程,可降阶的高阶微分方程

y = Ce ∫

− P( x)dx
y+ 1. 一阶线性齐次方程 − ∫ P( x )dx ′ P ( x ) y ≡ 0∫ P( x )dx 非齐次方程通解 C + Q( x)e dx 非齐次方程通解 y = e
可分离变量


2.
一阶线性非 一阶线性非齐次方程
y′ + P( x) y = Q( x)
求解
1+ y ′ 2 (1) y′′ = ; 2y dy ′ dz dz dy dz 解:令 y ′ = z ,则 y ′′ = = = =z ,
dx
dx
dy dx
dy
dz 1+ z 2 2 zdz dy z = = , ,即 2 y dy 2 y 1+ z
积分,得 ln(1+ z 2 )= ln y + lnC , 1+ z 2 = C1 y . 积分,
x=e ∫
=e ∫
− P ( y )dy
1 dy y
∫ P( y)dydy] , [C + ∫ Q( y)e
3 −
[∫ y e

1 dy y
故原方程的通解为 x = y + Cy . 3
1 3 dy + C ] = y[ y + C ] , 3 1 4
二 、 Bernoulli(伯努利)方程的解法 ( 伯努利)
(2)
( x 2 + y 2 + 2 x − 2 y )dx + 2( y − 1)dy = 0 ;
y′ + y y ln y = 2 . x x
y y (2) y′ + ln y = 2 . x x 1 1 1 y′ + ln y = 2 , 解: y x x

可降阶的高阶微分方程

可降阶的高阶微分方程

三、形如y″=f(y,y′)型的微分方程
【例4】
求微分方程yy″-y′2-y′=0的通解. 解方程不显含自变量x,设y′=p,则
,代入方程得
在y≠0,p≠0时,约去p并整理,得
这是关于p的一阶线性微分方程,利用公式解之得 p=C1y-1,即y′=C1y-1,再分离变量并两端积分,便得方程 的通解为
这是一阶方程,设其通解为
因y′=p(x),于是
p=φ(x,C1),
dydx=φ(x,C1),
两端积分,得
y=∫φ(x,C1) dx+C2.
二、形如y″=f(x,y′)型的微分方程
【例2】
解方程xy″=y′lny′.
解设y′=p(x),则
,方程化为
分离变量,得
为所求方程的通解.
二、形如y″=f(x,y′)型的微分方程
【例3】
三、形如y″=f(y,y′)型的微分方程
方程 y″=f(y,y′)(6-19)
中不显含自变量x.为了求出它的解,我们令y′=p,并利用复合函数 的求导法则把y″化为对y的导数,即
这样,方程(6-19)就成为
这是一个关于y,p变量的一阶微分方程.设它的通解为 y′=p=φ(y,C1),
分离变量并积分,便得方程的通解为
可降阶的高阶 微分方程
一、形如y″=f(x)型的微分方程
对于微分方程
y″=f(x),
其右端仅含自变量x,如分得
y′=∫f(x)dx+C1,
y=∫(∫f(x)dx)dx+C1x +C2. 以此类推,对于n阶微分方程,连续积分n次,便得含
有n个任意常数的通解.
一、形如y″=f(x)型的微分方程
【例1】

高阶常系数线性微分方程

高阶常系数线性微分方程
得齐次方程的通解为 y (C1 C 2 x)e r1x ; 如 y 4 y 4 y 0
特征方程为 r 2 4r 4 0, r1 r2 2,
则通解为 y (C1 C2 x)e2x .
9
Ⅲ 有一对共轭复根 ( 0)
设特征根为 r1 i , r2 i ,
4
10-5 高阶常系数线性微分方程
定义 在n阶线性方程y(n) P1( x) y(n1) Pn1( x) y Pn( x) y f ( x)中,
如果未知函数y及其各阶导数y, y, , y(n)的系数全都是常数时,
则称该方程为常系数线性微分方程. 一般形式 : y(n) p1 y(n1) p2 y(n2) pn1 y pn y f ( x),
定义 由常系数齐次线性方程的特征方程的根确定其 通解的方法称为特征方程法.
11
例1 求方程 y 2 y y 0的通解.
解 特征方程为 r 2 2r 1 0 ,
解得 r1 r2 1 ,
故所求通解为 y (C1 C2 x)e x .
例2 求方程 y 2 y 5 y 0的通解.
Ⅱ 有两个相等的实根 ( 0)
特征根为 r1 r2
设另一特解为: y
p,
2 u2( x
)e
一特解为
, r1 x
将 y2 ,y2 ,y2代入原方程并化简得
y1 [
y2
e r1x , u( x)]
y1
u (2r1

p)u

(
r2 1

pr1

q)u

0,
知 u 0, 取 u( x) x, 则 y2 xer1x ,

可降阶高阶微分方程

可降阶高阶微分方程

n阶线性非奇次方程
y ( n ) + P1 ( x ) y ( n 1) + P2 ( x ) y ( n 2 ) + + Pn ( x ) y = 0
n阶线性奇次方程 下面以二阶方程为例,讨论高阶线性微分方程解的结构.
一. 二阶线性奇次方程解的结构 一般形式: y ′′ + P ( x ) y ′ + Q ( x ) y = 0, 显然, y = 0 是(2)的解. 讨论非平凡解: 定理1. 如果 y1 ( x), y2 ( x) 是(2)的两个解,则 y = C1 y1 ( x) + C2 y2 ( x) 也是(2)的解,其中 C1 ,C2 为任意常数. 证明: 由于 y1 ( x), y2 ( x)是(2)的两个解, 所以
∴C2 = 1
y = x3 + 3x + 1
三. y′′ = f ( y, y′) 型方程 如果方程不显含 x, dp = f ( y, p) 方程变为: p dy 解出这个以 y 为自变量的一阶方程的通解: 令 y′ = p , 则 y′′ =
dp dp dy dp = =p , dx dy dx dy
二. y′′ = f ( x, y′) 型方程 如果二阶方程不显含 y, 令 y′ = p ,则 y′′ = 方程变为: p′ = f ( x, p ) 解出这个一阶方程的通解: p = ( x, C1 ) 则原方程的通解为: 例:
dp = p′ dx
y = ∫ ( x, C1 ) dx + C2
的特解,则 y1 ( x) + y2 ( x) 是方程
y ′′ + P ( x ) y ′ + Q ( x ) y = f1 ( x ) + f 2 ( x ) ( 4)

可降阶的高阶微分方程

d x dt
d x dt
3 3
dx dt
y
y,
dy dx ,
2
2

dy dt

dy dx dx dt
d( y dy
d( y
dy dx
)
dx d x dt
)
y(
dy dx
) y
2
2
d y dx
2
2
,
dt
dx
7
F ( x , x , , x
( n)
) 0,
dx dt
y,
dy dx y,
把(3.1.6)代入(3.1.8),并记
得:
X 0 - x at y y
2
把 x 作为自变量,上式两边关于x 求导得:
-1 a dt dx yy - y y
2
,
19
dt dx
dy dt dt dx

yy ay
2
(3.1.9)
dx dt ) (
dp ,

设 y p, 则 y p
代入方程, 得
dy 2 p 1 dp 2 C 1 C1 0 , y p -1 2 y dy
dy dx 2 y

2 3
3
3
y
2

3
2x C2 C2
3 2 2
2 1 2 , 3 2 3
c1 ,
x c2e
c1t
(c2 0), 显然x0也是原方程的解.
1
故原方程的解为 x c2e c t .
13
微分方程
y
x0

【高数(下)课件】10-3可降阶的高阶微分方程


可降阶的高阶微分方程
2 y 2 2 x
2 1 2x y dx ln C1 2 2 x 2 2x
再由初始条件 y(1) 2 ,知
C1 2[1 ln( 1 2 )]
故所求解为
1 2x y ln 2[1 ln( 2 1)] 2 2x
可降阶的高阶微分方程
可降阶的高阶微分方程
3 x 2 y y 1 x 3
y
x 0
1, y x0 4
3
dy 4(1 x )dx y x 4 x C2
4
再由初始条件 y x0 1, 知C2 = 1 故所求解为
y x4 4 x 1可降阶的高阶微分方程可降阶的高阶微分方程
求微分方程 y 2 y 1 0 的积分曲线, 使该 1 积分曲线过点 0, , 且在该点的切线斜率为2. 2 解 方程 y 2 y 1 0 属y f ( y, y)型
1 p2 C1 y p C1 y 1
dy 即 C1 y 1 dx
属y f ( y, y)型
可分离变量方程
可降阶的高阶微分方程
dy dy dx C1 y 1 C1 y 1 dx
2 C1 y 1 x C 2 C1
三、y f ( y, y) 型的方程
特点 方程缺自变量x dy p p( y ) 解法 设 y dx 2 d p dp d y dp d y 则 y 2 p , 方程变成 d x dy d x dy dx dp p f ( y , p).这是关于变量y , p 的一阶方程. dy 设它的通解为 y p ( y, C1 ). 分离变量并积分, dy x C2 得通解为 ( y , C1 )

第五节可降阶的高阶微分方程

解法:设 y p( y) 则 y dp dy p dP ,
dy dx dy
代入原方程得到新函数P( y)的一阶方程, dy p( y) f ( y, p), dx 先求出P( y),然后求通解y.
例 4 求方程 yy y2 0 的通解.
解1 设 y p( y), 则 y p dP , dy
代入原方程得 y P dP P 2 0, 即 P( y dP P) 0,
dy
dy
由 y dP P 0, dy
可得 P C1 y,
dy dx
C1
y,
原方程通解为 y C2e c1x .
解2 原方程变为 y y , y y
两边积分,得 ln y ln y ln C1, 即 y C1 y,
当y 0,设y p,
y R2 (x C1 )2 C2 . (x C1 )2 ( y C2 )2 R2 .
四、小结
解法 通过代换将其化成较低阶的方程来求解.
补充题: 求方程 xyy xy2 yy 的通解.
解 xyy xy2 yy 同除以y 2得
yy xy2
x(
y2
)
y y
例 6 求曲线,它在任意点处的曲率都等于常数
K( 0). 解 设曲线y y( x),
当y 0,设y p,
则 | y | [1 ( y)2 ]3/2
K,
代入原方程得
dp (1 p2 )3/2
Kdx,
p
1
p2
K(x C1),
p
x C1
,
R2 (x C1)2
R 1 . K
y R2 (x C1)2 C2 .
5. xy y 2 xy .
练习答案
1. y3 y 1 0 .

可降阶的高阶微分方程

§10.3 可降阶的高阶微分方程
( n) y f ( x ) 型的微分方程 一.
二. y f ( x, y) 型的微分方程
三. y f ( y, y) 型的微分方程
教学目标
1. 掌握三种特殊高阶方程的求解方法.
机动
目录
上页
下页
返回
结束
从本节起,我们将讨论二阶及二阶以上的微分方程,即
y f ( x, y)
令 y p( x ), 则 y
dp dx
3.
y f ( y, y)
令 y p( y ),
dp 则 y p dy
16
机动 目录 上页 下页 返回 结束
2018/7/27
思考练习
1. 方程 y f ( y) 如何代换求解 ? 答: 令 y p( x ) 或 y p( y ) 均可. 一般说, 用前者方便些. 有时用后者方便 . 例如, y e
1 3 C1 ( x x ) C 2 3
以条件 y x0 1 , y x0 3 代入得 C1 3 , C2 1
故所求特解为 y x 3 3 x 1
19
机动 目录 上页 下页 返回 结束

p F ( x,C1 )
dy F ( x,C1 ) dx 这是个一阶微分方程,两端进行积分,便可得方程
(10.3.2)的通解为
y F ( x,C1 )dx C2
7
例2 求微分方程 xy y x 2 0 的通解. 解 由于方程中不显含未知函数 y ,是属于 y f ( x, y) 型. 设 y p, 则
y x 0 3 的特解.
解 令
p y 则原方程化为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档