制动系统计算说明书

合集下载

制动器设计-计算说明书

制动器设计-计算说明书

制动器设计-计算说明书三、课程设计过程(一)设计制动器的要求:1、具有良好的制动效能—其评价指标有:制动距离、制动减速度、制动力和制动时间。

2、操纵轻便—即操纵制动系统所需的力不应过大。

对于人力液压制动系最大踏板力不大于(500N )(轿车)和700N (货车),踏板行程货车不大于150mm ,轿车不大于120mm 。

3、制动稳定性好—即制动时,前后车轮制动力分配合理,左右车轮上的制动力矩基本相等,汽车不跑偏、不甩尾;磨损后间隙应能调整!4、制动平顺性好—制动力矩能迅速而平稳的增加,也能迅速而彻底的解除。

5、散热性好—即连续制动好,摩擦片的抗“热衰退”能力要高(指摩擦片抵抗因高温分解变质引起的摩擦系数降低);水湿后恢复能力快。

6、对挂车的制动系,还要求挂车的制动作用略早于主车;挂车自行脱钩时能自动进行应急制动。

(二)制动器设计的计算过程:设计条件:车重2t ,重量分配60%、40%,轮胎型175/75R14,时速70km/h ,最大刹车距离11m 。

1. 汽车所需制动力矩的计算根据已知条件,汽车所需制动力矩:M=G/g ·j ·r k (N ·m ) 206.321j )(v S ?=(m/s 2)式中:r k —轮胎最大半径 (m);S —实际制动距离 (m);v 0 —制动初速度 (km/h)。

217018211 3.6j ??=?=(m/s 2) m=G/g=2000kg查表可知,r k 取0.300m 。

M=G/g ·j ·r k =2000·18·0.300=10800(N ·m )前轮子上的制动器所需提供的制动力矩:M ’=M/2?60%=3240(N ·m )为确保安全起见,取安全系数为 1.20,则M ’’=1.20M ’=3888(N ·m )2. 制动器主要参数的确定(1)制动盘的直径D制动盘直径D 希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。

制动系统计算说明书

制动系统计算说明书

制动器的计算分析整车参数2、制动器的计算分析前制动器制动力前制动器规格为ɸ310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。

当工作压力为P=6×105Pa时,前制动器产生的制动力:F1=2*A c*L/a*BF*ɳ*R/R e*P桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为F1=3255kgf以上各式中:A c—气室有效面积L—调整臂长度a—凸轮基圆直径BF—制动器效能因数R—制动鼓半径R e—车轮滚动半径ɳ—制动系效率P—工作压力后制动器制动力后制动器规格为ɸ310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。

当工作压力为P=6×105Pa时,前制动器产生的制动力:F2=2*A c*L/a*BF*ɳ*R/R e*P桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为F2 =3467kgf满载制动时的地面附着力满载制动时的地面附着力是地面能够提供给车轮的最大制动力,正常情况下制动气制动力大于地面附着力是判断整车制动力是否足够的一个标准。

地面附着力除了与整车参数有关之外,还与地面的附着系数有关,在正常的沥青路面上制动时,附着系数ϕ值一般在~之间,我们现在按照路面附着系数为来计算前后地面附着力:Fϕ前=G×ϕ+G×ϕ2满1=2200×+6000××=2002kgfFϕ后=G满2×ϕ-G×ϕ23800×××==1487kgf因为前面计算的前后制动器最大制动力分别为F1=3255kgfF2=3467kgf3、制动器热容量、比摩擦力的计算分析单个制动器的比能量耗散率的计算分析前制动器的衬片面积A1=2×πR1××L1=式中(L1=100mm摩擦片的宽度w1=110°)后制动器的衬片面积A2=2×πR2××L2=式中(L2=100m m 摩擦片的宽度w2=)比能量耗散率e1=β=e2=β=上式中:G—满载汽车总质量V1—制动初速度,计算时取V1=18m/sβ—满载制动力分配系数t—制动时间,计算时取t=鼓式制动器的比能量耗散率以不大于mm2为宜,故该制动器的比能量耗散率满足要求。

载货汽车底盘总体及制动器的设计毕业设计说明书

载货汽车底盘总体及制动器的设计毕业设计说明书

1绪论1.1制动器介绍制动器是汽车制动系的主要部件,其功用是使汽车以适当的减速度行驶至直停车;在下坡时,使汽车保持稳定车速;使汽车可靠地停在原地或坡道上。

汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置。

前者用来保证前两项功能,后者用来保证第三项功能。

汽车制动性能主要由三方面面来评价:制动效能、制动效能的恒定性、制动时汽车的方向稳定性。

制动器主要有摩擦式、液力式和电磁式等几种形式。

电磁式制动器虽有作用滞后性好,易于连接而且接头可靠等优点,但因成本高,只在一部分总质量较大的商用车上用作车轮制动器或缓速器;液力式制动器一般只用做缓速器。

目前广泛应用的仍为摩擦式制动器。

摩擦式制动器按摩擦副结构形式不同,可分为鼓式和盘式两大类。

前者的摩擦副中的旋转元件为制动鼓,其工作面为圆柱面;后者的旋转元件则为圆盘状制动盘以端面为工作面。

鼓式制动器有内张型和外束型两种。

根据促动蹄促动装置的不同可分为轮缸式制动器、楔式制动器和凸轮制动器。

轮缸式制动器因采用液压式促动装置使其结构复杂,密封性能要求提高,增加了造成本。

凸轮式制动器结构简单,易加工,刚性好,并且质量轻,操纵力低,有良好的防污染和防潮能力,成本相对低廉,比较经济。

加上我国现有的基本国情,鼓式制动器仍具有很大的应用空间。

尤其是在大中型、需要较大制动力的车辆,使用鼓式制动器较能满足其要求。

1.2汽车制动系概论汽车制动系是用于行驶中的汽车减速或停车,使下坡行驶的汽车的车速保持稳定以及使已停驶的汽车在原地驻留不动的机构。

汽车制动系直接影响着汽车行驶的安全性和停车的可靠性。

随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,停车可靠,汽车制动系的工作可靠性显得日益重要。

也只有制动性能良好,制动系工作可靠的汽车,才能充分发挥其动力性能。

汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置;牵引汽车还应有自动制动装置。

汽车制动系统设计说明书

汽车制动系统设计说明书

目录1、汽车制动系统概述及设计要求 (4)1.1 概述 (4)1.1.1制动系统的组成 (4)1.1.2 制动系统的类型 (4)1.2 设计制动系统时应满足的要求 (5)2、整车性能参数: (6)3、制动器形式的选择 (6)4、鼓式与盘式制动器主要参数的确定 (8)4.1制动鼓内径D (8)4.2摩擦衬片宽度b和包角β (8)4.3摩擦衬片起始角 0 (9)4.4制动器中心到张开力0F作用线的距离e (10)4.5制动蹄支撑点位置坐标a和c (10)4.6摩擦片摩擦系数 (10)4.7制动盘直径D (10)4.8制动盘的厚度h (11)4.9摩擦衬块内外半径的确定 (11)4.10制动衬块工作面积A (11)5、鼓式制动器主要零部件的设计 (12)5.1制动蹄 (12)5.2制动鼓 (12)5.3摩擦衬片 (13)5.4摩擦材料 (14)5.5蹄与鼓之间的间隙自动调整装置 (14)5.6制动支承装置 (16)5.7制动轮缸 (16)5.8张开机构 (16)6、盘式制动器主要零部件设计计算 (17)6.1 滑动钳体 (17)6.2 固定支架 (17)6.3 制动盘 (17)6.4 制动块 (17)6.5同步附着系数的确定 (19)6.6地面对前、后轮的法向反作用力 (19)6.7制动力分配系数的确定β[]4 (20)6.8前、后制动器制动力矩的确定[]4 (20)6.9应急制动和驻车制动所需的制动力矩[]1 (21)6.9.1应急制动 (21)6.9.2驻车制动 (22)6.9.3衬片磨损特性的计算 (23)7、制动驱动机构的设计与计算 (25)7.1 制动驱动机构的形式 (25)7.2 分路系统 (26)7.3 液压制动驱动机构的设计计算 (28)7.3.1 制动轮缸直径的确定 (28)7.3.2 制动主缸直径的确定 (29)7.3.3制动踏板力p F和制动踏板工作行程p S (30)7.3.4真空助力器的设计计算 (31)8、制动性能分析 (31)8.1制动性能评价指标 (31)8.2 制动效能 (31)8.3 制动效能的恒定性 (32)8.4 制动时汽车的方向稳定性 (32)8.5制动器制动力分配曲线分析 (32)8.6制动减速度j和制动距离S (34)参考文献 (35)1、汽车制动系统概述及设计要求1.1 概述使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。

雷科智途商用车自动紧急制动系统(AEBS)用户使用手册说明书

雷科智途商用车自动紧急制动系统(AEBS)用户使用手册说明书

雷科智途商用车自动紧急制动系统(AEBS)用户使用手册理工雷科智途(北京)科技有限公司雷科智途商用车自动紧急制动系统(AEBS)(用户使用手册)雷科智途商用车自动紧急制动系统(AEBS),是基于视觉图像分析+毫米波雷达相结合的高科技驾驶辅助产品。

在汽车行驶前方出现对本车构成碰撞威胁的行人、车辆时,因驾驶人员疲劳或判断失误,或突发性疾病,未及时采取刹车减速措施,追尾或撞击行人事故不可避免发生时,AEBS能够提前向驾驶人员预警前方危险路况。

驾驶人员来不及采取措施将要发生紧急碰撞时,AEBS能够主动及时地采取相应的制动减速措施,保护人、车安全,避免恶性交通事故的发生。

欢迎使用雷科智途商用车自动紧急制动系统(AEBS)尊敬的用户:感谢您使用雷科智途商用车自动紧急制动系统装置,我们将为您提供安全、舒适的驾乘体验。

为了使您安全、有效地掌握本商用车自动紧急制动系统(AEBS)的使用方法,请您在使用本产品前仔细阅读此产品的用户使用手册,阅读后请妥善保管,以便日后查阅,谢谢您的合作与支持!声明请务必仔细阅读本产品用户使用手册及附带的所有资料,并按照本产品的用户使用手册中的使用方法、注意事项等规范操作使用。

这将有助于您遵守保修条款,并可延长本产品的使用寿命。

因违反本产品用户使用手册中的使用规则而造成的一切后果,均由用户自行承担全部责任。

本公司遵循持续发展的战略,因此保留对本产品的功能、界面和外形进行修改而不通知用户的权利和对本使用手册的内容有修改的权利。

因本产品软件版本的升级因素,描述和实际产品有出入,则以实际产品为主。

本手册版权归本公司所有,未经公司的书面许可,任何个人或单位不得以任何目的、任何形式或手段仿制、摘录、传播本产品的使用说明手册。

本产品用户使用手册的最终解释权归本公司所有目录1. 产品概述 (1)1.1. 产品简介 (1)1.2. 产品术语及定义 (2)1.3. 产品技术标准 (3)1.4. 产品适用范围 (3)1.5. 工作条件 (3)2. 产品组件 (4)2.1. 系统组成 (4)2.2. AEBS组件一(毫米波雷达系统) (5)2.3. AEBS组件二(智能光学传感器) (6)2.4. AEBS组件三(中央控制器) (7)2.5. AEBS组件五(智能刹车机器人) (10)2.6. AEBS组件六(显示终端) (11)3. 使用指南 (11)3.1. 开关系统 (11)3.2. 显示终端设置 (12)3.2.1. 报警音开关 (13)3.2.2. 工作模式切换 (13)3.2.3. TTC时间释义 (14)4. 常见故障及解决 (15)5. 售后服务 (16)6. 装箱清单 (16)7. 联系方式 (17)1. 产品概述1.1. 产品简介雷科智途商用车自动紧急制动系统(AEBS )集声、光、电、机为一体,在不改变原车结构的条件下,即可安装使用,且体积小,易于安装操作。

汽车制动系统设计说明书

汽车制动系统设计说明书

目录第一章绪论 (1)1.1 本次制动系统设计的意义 (2)1.2 本次制动系统应达到的目标 (2)1.3 本次制动系统设计容 (3)1.4 汽车制动系统的组成 (3)1.5 制动系统类型 (3)1.6 制动系工作原理 (3)第二章汽车制动系统方案确定 (4)2.1 汽车制动器形式的选择 (5)2.2 鼓式制动器的优点及其分类 (6)2.3 盘式制动器的缺点 (8)2.4 制动驱动机构的结构形式 (8)2.4.1 简单制动系 (9)2.4.2 动力制动系 (9)2.4.3 伺服制动系 (10)2.5 制动管路的形式选择 (10)2.6 液压制动主缸方案的设计 (12)第三章制动系统主要参数的确定 (14)3.1 轻型货车主要技术参数 (14)的确定 (14)3.2 同步附着系数的3.3 前、后轮制动力分配系数 的确定 (15)3.4 鼓式制动器主要参数的确定 (16)3.5 制动器制动力矩的确定 (18)3.6 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (20)3.7 鼓式制动器零部件的结构设计 (21)第四章液压制动驱动机构的设计计算 (24)4.1 制动轮缸直径d的确定 (24)的计算 (25)4.2 制动主缸直径d4.3 制动踏板力F (26)P4.4 制动踏板工作行程Sp (26)第五章制动性能分析 (27)5.1 制动性能评价指标 (27)5.2 制动效能 (27)5.3 制动效能的恒定性 (27)5.4 制动时汽车的方向稳定性 (28)5.5 前、后制动器制动力分配 (28)5.5.1 地面对前、后车轮的法向反作用力 (29)5.6 制动减速度j (29)5.7 制动距离S (29)5.8 摩擦衬片(衬块)的磨损特性计算 (30)5.9 汽车能够停留在极限上下坡角度计算 (32)第六章总结 (33)参考文献 (34)一.绪论汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。

汽车制动系统手册说明书

汽车制动系统手册说明书

SpecificationsTechnical Information*1 : RS, L S *2:GS-R *3:RS*4:LS,GS-Rpage 198page199Anti-lock Brake SystemThe Anti-lock Brake System (ABS)is standard equipment on the LS and GS-R models. It is not available on the RS model.The ABS works by measuring how fast the wheels are turning during braking and comparing their speed.If any wheel is rotating much slower than the others (on the verge of locking up and skidding),the system reduces hydraulic pressure to that wheel's brake caliper. When that wheel's speed matches the other wheels, the system applies normal hydraulic pressure. This can take place several times per second at each wheel. You feel the ABS working as rapid pulsations in the brake pedal.Each wheel has a wheel speed sensor assembly. As the wheel rotates, the sensor sends electrical pulses to the ABS control unit. The pulse frequency varies with the wheel speed.The electrical output of the ABS control unit is connected to the modulator/solenoid unit. During braking, the ABS control unit monitors the pulse frequencies from the four wheels. When the control unit detects a wheel locking up, it energizes the appropriate solenoid in the modulator/solenoid unit. There are three solenoids: one for each front wheel, and one for the rear wheels. The energized solenoid reduces hydraulic pres-sure to one side of a modulatorvalve. This, in turn, reduces hydrau-lic pressure in the brake line going to the affected wheel. When that wheel speeds up because of the re-duced braking effort, the controlunit de-energizes the solenoid. This builds hydraulic pressure on the modulator valve. The pressure in-creases in the hydraulic line to the wheel.For the system to react quickly, the modulator/solenoid unit must have brake fluid under high pressure.This is supplied by an accumulator that is pressurized by an electric pump. A pressure-sensing switch on the accumulator controls this pump.The control unit also contains error detection circuitry. It monitors the operation of the wheel sensors,solenoids, pump, and electronics. If the control unit detects any faults,it shuts off power to the pump motor and solenoids. The light on the instrument panel comes on.The brakes then work like aconventional system without anti-lock capabilities.Technical InformationSupplemental Restraint SystemThe SRS includes the steering wheel airbag assembly, sensors in the dashboard, and a control unit with sensors behind the center console.(All models except the Canadian RS model)The system also has a dashboard-mounted airbag assembly for the passenger.The sensors are decelerometers,set to trigger in a severe frontal impact that generates more force than a 25 mile per hour crash into a parked vehicle of similar size. For the SRS to activate, at least two sensors must trigger. This duplica-tion is to prevent accidental activa-tion.When the control unit receives trigger signals from at least two sensors, it sends voltage to the airbag. The control unit stores this charge in capacitors to insure reliability even if a severe impact damages the car's battery or electrical connections.The electrical charge sent to the airbag assembly ignites its propel-lant, which burns instantaneously.The gas produced by the burning propellant inflates the airbag instantly.The airbag is vented so it stays inflated for only an instant and does not block the driver's vision.Smoke from the burned propellant comes out of the airbag and into the car's interior. This is normal and does not mean there is a fire.The airbag collapses onto the driver's lap.The airbag must be replaced after it is activated. After use, your Acura dealer must check the complete Supplemental Restraint System and replace the airbag assembly.To ensure long-term reliability, the SRS uses gold-plated electrical connections throughout. Exposed components are sealed with epoxy.The control unit monitors the SRS circuitry whenever the ignition is ON (II). If the control unit senses any faults, it turns on the SRS indicator light on the instrument panel. Take the car to your Acura dealer to diagnose and repair the system as soon as possible.The SRS needs no regular mainte-nance other than an inspection by your Acura dealer ten years after manufacture.Technical InformationEmission ControlsThe burning of gasoline in your car's engine produces several by-products. Some of these are carbon monoxide (CO), oxides of nitrogen (NOx) and hydrocarbons (HC).Gasoline evaporating from the tank also produces hydrocarbons. Con-trolling the production of NOx, CO,and HC is important to the environ-ment. Under certain conditions of sunlight and climate, NOx and HC react to form photochemical "smog."Carbon monoxide does not contri-bute to smog creation, but it is a poisonous gas.The Clean Air ActThe United States Clean Air Act*sets standards for automobile emissions. It also requires that automobile manufacturers explain to owners how their emission controls work and what to do to maintain them. This sectionsummarizes how the emission con-trols work. Scheduled maintenance is on page 125.* In Canada, Acura vehicles comply with the Canadian Motor Vehicle Safety Standards (CMVSS) for Emissions valid at the time they are manufactured.Crankcase Emission Control SystemYour car has a Positive Crankcase Ventilation System. This keeps gasses that build up in the engine's crankcase from going into the atmosphere. The Positive Crank-case Ventilation valve routes them from the crankcase back to the intake manifold. They are then drawn into the engine and burned.Evaporative Emission Control SystemAs gasoline evaporates in the fuel tank, an evaporative emissioncontrol canister filled with charcoal adsorbs the vapor. It is stored in this canister while the engine is off.After the engine is started andwarmed up, the vapor is drawn into the engine and burned during driving.Technical InformationEmission ControlsExhaust Emission Controls The exhaust emission controls include three systems: PGM-FI,Ignition Timing Control and Three Way Catalytic Converter. These three systems work together to control the engine's combustion and minimize the amount of HC,CO, and NOx that comes out the tailpipe. The exhaust emission control systems are separate from the crankcase and evaporative emission control systems.PGM-FI SystemThe PGM-FI System uses sequen-tial multiport fuel injection.It has three subsystems: Air Intake,Engine Control, and Fuel Control.The Engine Control Module (ECM)uses various sensors to determine how much air is going into the engine. It then controls how much fuel to inject under all operating conditions.Ignition Timing Control System This system constantly adjusts the ignition timing, reducing the amount of HC, CO and NOx produced.Three Way Catalytic Converter The three way catalytic converter is in the exhaust system. Through chemical reactions, it converts HC,CO, and NOx in the engine's exhaust to carbon dioxide (CO 2),dinitrogen (N 2), and water vapor.Replacement PartsThe emission control systems are designed and certified to work to-gether in reducing emissions to levels that comply with the Clean Air Act. To make sure the emis-sions remain low, you should use only new genuine Acura replace-ment parts or their equivalent for repairs. Using lower quality parts may increase the emissions from your car.The emissions control systems are covered by warranties separate from the rest of your car. Read your warranty manual for more information.Technical InformationThree Way Catalytic ConverterThe three way catalytic converter contains platinum, palladium and rhodium. These metals serve as catalysts, promoting chemical reactions to convert the exhaust gasses without affecting the metals.The catalytic converter is referred to as a three-way catalyst, since it acts on HC, CO, and NOx. A re-placement unit must be an original Acura part or its equivalent.The three way catalytic converter must operate at a high temperature for the chemical reactions to take place. It can set on fire any com-bustible materials that come near it.Park your car away from high grass, dry leaves, or other flamma-bles.A defective three way catalytic converter contributes to air pollution, and can impair yourengine's performance. Follow these guidelines to protect your car'sthree way catalytic converter.Always use unleaded gasoline.Even a small amount of leaded gasoline can contaminate the catalyst metals, making the three way catalytic converter inef-fective.Keep the engine tuned-up.Have your car diagnosed and repaired if it is misfiring, back-firing, stalling, or otherwise not running properly.Technical InformationTHREE WAY CATALYTIC CONVERTER。

汽车制动系统计算

汽车制动系统计算


b.
F1
Gb L hg
jd1 max
F1 m
g b L hg

F 2
Ga L hg
j d 2 max
F 2 m
g a L hg

S
1 3.6
(t1
t2 ) v 2
v2 25.92 jmax

a
2
b
L
g g
0 .8
各个设计方案均能满足法规对行车制动性能的要求,同时也满足设计要求。 4 ) 助施力器失效时,制动力完全由人力操纵踏板产生,最大踏板力要求:N1类车700N。 加
△g2—鼓式制动器的蹄、鼓间隙
△g3—鼓式制动器摩擦衬片的厚度公差
(3)储油壶总容量Vmax
空载同步附着系数
0
车满载同步附着系数
' 0

标杆
方案
P201-NAM-SD-DP-G3-2
选配方案(四轮盘式)
Fif
Fir
图2 车型的I曲线与β线 ©版权归江淮汽车股份有限公司所有 未经授权禁止复制
第 4 页,共 13 页
制动系统方案设计计算说明书
P201-NAM-SD-DP-G3-2
通 过 1、在空载状态下,地面附着系数为0.8,标杆管路压力达到6MPa,管路压力达到5MPa,选 配方案管路压力达到5MPa,制动器发生抱死,此时后轴早于前轴抱死,这时整车稳定性非常差 。需要ABS进行调节。
n1、n2—前、后制动器单侧油缸数目(仅对盘式制动器而言)
Kv—考虑软管膨胀时的主缸容积系数,汽车设计推荐:轿车 =1.1,货车 =1.3
其中 要根据制动器的类型、参考同类车型确定,对鼓式制动器:汽车设计推荐δ=2-2.5mm;汽车工 程手册推荐3.5-5.5(考虑软管膨胀量及磨损间隙不能自调的影响),公司目前车型均可实现间隙
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制动器的计算分析
整车参数
2、制动器的计算分析
2.1前制动器制动力
前制动器规格为ɸ310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。

当工作压力为P=6×105Pa时,前制动器产生的制动力:
F1=2*A c*L/a*BF*ɳ*R/R e*P
桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为F1=3255kgf
以上各式中:A c—气室有效面积L—调整臂长度
a—凸轮基圆直径BF—制动器效能因数
R—制动鼓半径R e—车轮滚动半径
ɳ—制动系效率P—工作压力
2.2后制动器制动力
后制动器规格为ɸ310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。

当工作压力为P=6×105Pa时,前制动器产生的制动力:
F2=2*A c*L/a*BF*ɳ*R/R e*P
桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为
F2 =3467kgf
2.3满载制动时的地面附着力
满载制动时的地面附着力是地面能够提供给车轮的最大制动力,正常情况下制动气制动力大于地面附着力是判断整车制动力是否足够的一个标准。

地面附着力除了与整车参数有关之外,还与地面的附着系数有关,在正常的沥青路面上制动时,附着系数ϕ值一般在0.5~0.8之间,我们现在按照路面附着系数为0.7来计算前后地面附着力:F ϕ前=G 满1×ϕ+G hg
L
×ϕ
2
=2200×0.7+6000×
6123300
×
0.7
2
=2002kgf
F ϕ
后=G 满2×ϕ-G
hg
L
×ϕ2
=
3800×0.7-6000×
946
3300
×
0.7
2
=1487kgf
因为前面计算的前后制动器最大制动力分别为
F1=3255kgf
F2=3467kgf
3、制动器热容量、比摩擦力的计算分析 3.1单个制动器的比能量耗散率的计算分析 前制动器的衬片面积A 1=2×πR 1×
w1180
×L 1=mm 2
式中(L 1=100mm 摩擦片的宽度 w 1=110°) 后制动器的衬片面积A 2=2×πR 2×
w2180
×L 2=mm 2
式中(L 2=100m m 摩擦片的宽度 w2=) 比能量耗散率
e 1=GV 124tA 1
β= e 2=
GV 1
24tA 2
β=
上式中:G —满载汽车总质量
V 1—制动初速度,计算时取V 1=18m/s β—满载制动力分配系数 t —制动时间,计算时取t=3.06s
鼓式制动器的比能量耗散率以不大于1.8W/mm 2为宜,故该制动器的比能量耗散率满足要求。

3.2单个制动器的比摩擦力计算分析 计算时取制动减速度j=0.6g 制动力F=G*j=6000×0.6=3600kgf 前制动力F 1=F*β=3600×0.48=1728kgf 后制动力F 2=F*(1-β)=1872kgf
前制动力矩M1= F1*R e=1728*0.38=648
后制动力矩M2= F2*R e=702
单个前制动器的比摩擦力
单个前制动器的比摩擦力
= ⁄
f01= M12⁄
RA1
单个后制动器的比摩擦力
= ⁄
f02= M22⁄
R2
在j=0.6g时,鼓式制动器的比摩擦力以不大于0.48N/mm2为宜,故该制动器的比摩擦力满足要求。

四、整车行车制动性能计算分析
本车满载状态下载荷G=6000kg,总重大于3.5T,属于N2类货车,下面结合GB12676-1999的相关要求进行行车制动的性能计算分析。

1、同步附着系数的计算
==
空、满载制动力分配系数β=F1
F
空、满载时同步附着系数
==
ϕ0空=L∗β−L2
h g
ϕ0满=L∗β−L2
==
h g
根据GB12676-1999对N2类车的要求:在初速度V=60km/h时,制动距离和平均减速度必须满足:
S max=0.15V+V2130
⁄=36.69m
MSDD min=5m/s2
实际地面附着系数取ɸ=0.7,因为实际地面附着系数比满载同步附着系数(ϕ0满=)大,根据计算公式:
当ϕ≥ϕ0时,S=0.2
3.6
u a0+u a0
2
25.92j
,j=φ∗g∗L1
L(1−β)+φ∗h g
上式中:S为制动距离,j为制动减速度,u a0=60km/h 把整车数据和以上计算数据代入公式中可得:
S=0.2
3.6u a0+u a0
2
25.92j
=0.2
3.6
×60+60
2
25.92×5.25
=29.8m
j=φ∗g∗L1
L(1−β)+φ∗h g =0.7∗9.8∗1540
3300∗0.48+0.7∗612
=5.25m/s2
2.满载前回路失效时制动性能计算
根据GB12676-1999对N2类车的要求,
在初速度为50km/h应急制动时,制动距离和平均减速度必须满足:
S max=0.15V+2V2115
⁄=51m
MSDD min=2.2m/s2
实际地面附着系数取ϕ=0.7,根据计算公式:
S=0.2
3.6u a0+u a0
2
25.92j
=0.2
3.6
×50+50
2
25.92×2.8
=37.2m
j=φ∗g∗L1
L+φ∗h g =0.7∗9.8∗1540
3300+0.7∗612
=2.8 m/s2
3.满载后回路失效时制动效能计算
同理,我们根据公式可以计算后回路失效时:
S=0.2
3.6u a0+u a0
2
25.92j
=
j=φ∗g∗L1
L+φ∗h g
=
可见满载时整车行车制动性能()满足GB12676-1999法规要求。

4.制动力的分配特性
对于最大总质量大于3.5T的双轴货车,根据ECE
法规对利用附着系数曲线有下列相关要求:
(1)利用附着系数在0.2~0.8之间,制动强度应满足:z≥0.1+0.85(ϕ-0.2)
(2)对于制动强度在0.15~0.30之间,若各车轴的附着系数利用曲线位于公式ϕ=Z±0.08确定的与理想附着系数利用直线平行的两条直线之间,则认为满足法规要求。

对于制动强度Z≥0.3,若后轴附着系数利用曲线能满足公式Z≥0.3+0.74(ϕ-038),则认为也满足法规要求。

(3)利用附着系数与制动强度的关系
未加感载阀时空满载制动力分配系数β=F1
F
=
利用计算公式
前轴的利用附着系数:ϕf=L∗(1−β)∗Z
L2+Z∗h g
后轴的附着利用系数:ϕf=L∗β∗Z
L1−Z∗h g
带入不同Z值计算前、后轴的利用附着系数值,并根据计算结果作出图 2 所示的利用附着系数与制动强度关系曲线如图2所示:。

相关文档
最新文档