高等土力学l课件剑桥模型ppt课件

合集下载

高等土力学第一章 课件

高等土力学第一章  课件

土的动应力-应 变关系
土的动力性质分 类
地震工程中的土动力学问题
土的动力性质:土的动剪切强度、动压缩强度和阻尼比等 地震工程中的土动力学问题:地震引起的土体液化、震陷、滑坡等 土的动力学模型:土的动力学本构模型、数值模拟方法等 抗震设计方法:基于土动力学原理的抗震设计方法、土体加固技术等
抗震设计方法与措施
土的应力-应变关系
土的应变:土体变形的程度
土的应力:土体受到的压力 或拉力
土的应力-应变关系曲线: 描述土的应力与应变之间的
关系
土的应力-应变关系的影响 因素:如土的种类、含水率、
温度等
04
土的强度与稳定性
土的强度
土的强度定义:土体抵抗剪切破坏的极限能力
土的强度分类:天然强度、有效强度、瞬时强度
地下水渗流 对工程的影 响
排水设计的 基本原则和 方法
排水设施的 种类和特点
排水设施的 布置和设计 要点
排水设施的 施工和维护
渗流对土体稳定性的影响
渗流现象及其产生原因 渗流对土体稳定性的影响 土体排水与加固措施 实际工程中的应用与案例分析
06
土的动力性质与地 震工程
土的动力性质
土的动强度
土的动变形
土力学的基本原理和概念 土力学在土木工程中的应用范围 土力学在土木工程中的具体应用案例 高等土力学在土木工程中的重要性
高等土力学在水利工程中的应用
水利工程中的土压力问题:介绍土压力的 产生、分类和计算方法,以及在水利工程 中的应用。
水利工程中的渗流问题:介绍渗流的基本 原理、计算方法和在水利工程中的应用, 包括堤坝、水库等。
土的物理性质
土的分类:根据土的颗粒大小、矿物成分、结构等特点进行分类 土的物理性质指标:包括密度、含水量、孔隙率、塑性指数等,用于描述土的物理性质 土的力学性质:包括抗剪强度、压缩性、渗透性等,用于描述土在力作用下的行为 土的工程分类:根据土的工程性质和特点,将土分为不同的类型,以便于工程设计和施工

岩土塑性力学剑桥模型

岩土塑性力学剑桥模型
(6.3.15)
图 6 - 1 6 表 示 土 样 在 单 剪 时 的 变 形 情 况 。 土 样 高 为 H , 水 平 截 面 积 为 A . 剪 切 变 形 后 , 水 平 位 移 为 d u , 竖 向 位 移 为 d v, 如 图 6 - 1 6
中 所 示 。 在 剪 切 变 形 过 程 中 , 正 应 力 ’ 和 剪 应 力 所 做 的 功 等 于 - ’ 。假 设 由 于 摩 擦 所 产 生 的 能 量 消 耗 与 摩 擦 系
间中。正常固结土应力路径都在Roscoe面上,超固结状态用位于该面下面的点表示,在该面以上是不可能有点来表示
应力状态的。Roscoe面成为一个边界,在该面的面上或以下是可能的状态,在该面以上是不可能的状态, Roscoe面
称为状态边界面。超固结上样的应力路径在土样破坏时到达Hvorslev面,在土样破坏后应变增大时趋向临界状态。
有关,为了适用更一般的情况,采用等效的符号改写式6.3.17,得
(6.3.18)
式中负号是由于一 代表膨胀引起,这也是剑桥模型的假设之一 。
将 式 6 . 3 . 1 8 代 入 式 6 . 3 . 1 2 , 并 考 虑 = 0 , 得
(6.3.19)
结 合 式 6 . 3 . 9 , 式 6 . 3 .1 0 , 式 6 . 3 . 1 5 和 式 6 . 3 . 1 9 , 得 到 能 量 方 程
6.3剑桥模型
正常固结粘土的排水与不排水应力路径
超固结土样排水和不排水三轴实验破坏状态
各向等压加 载 与卸 载 试 验
超固结比对不 排 水 应 力路 径 的 影 响
6.3.3 完全的状态边界面
在p',q,v空间中,正常固结和超固结土样的应力路径不能超过 Roscoe面和Hvorslev面,处在这两个面包围的空

高等土力学

高等土力学

(7).土体变形完全是由空隙水排出和超静水压力消散引起的

土的本构关系
太沙基方程:
2u u Cv 2 z t
k C v 其中:固结系数 mv
mv
k
为常数

关系。

1 x ( y x ) E 1 y y ( z x ) E 1 z z ( y x ) E 2(1 ) xy xy E 2(1 ) yz yz E 2(1 ) zx zx E
可写为:
3 I1 2 I 2 I3 0
土的本构关系
应力不变量: 第一应力不变量 第二应力不变量
I1 x y z
2 2 2 I 2 x y y z z x xy yz zx
第三应力不变量
f c tan
c:粘聚强度
tan
:摩擦强度
影响土强度的因素: 1.颗粒矿物成分的影响 2.粗粒土颗粒的几何性质 3.土的组成 4.土的状态

5.土的结构
土的强度
有效应力原理: 作用在饱和土体上的总应力由两种介质承担,一种是:孔隙水压力,
另一种是:土颗粒组成的骨架上的有效应力,而土的抗剪强度由:有效
y
1 zy 2
1 xz 2 1 yz 2 z
故有6个分量是独立的:

x y z xy yz zx
土的本构关系
三个应变不变量
I1 x y z 1 2 3 1 2 I 2 x y y z z x ( xy 2 yz 2 zx ) 1 2 2 3 31 4 I 3 1 2 3

高等土力学本构关系.pptx

高等土力学本构关系.pptx

o 30
x
30
3
1
1 x
30 30
o
x 2
c cos
s in
6
y m
sin
2 y
3
第35页/共126页
z
N
xzl yzm z n第8页/共1z2N6页 3n 3
3
PN
1 3
2 1
2 2
2 3
xN、yN、zN在ON上的投影即为 N
N xNl yN m zN n 1l 2 2m2 3n2
1 3
1
2
3
I1 3
m
等斜面上的正应力
8
N
1 3
1
2
3
等斜面上的剪应力
8 N
by
y
N
xzl yzm zn
当abc为主应力面时
N 0; N PN
xN xl xym zxn Nl
yN xyl ym zyn N m
y
N
xzl
yzm zn Nn
第3页/共126页
x N
yx xz
xy
y N
yz
zx
zy 0
第15页/共126页
应力洛德角
1
洛德参数
2 2 1 3 1 3
R
P Q
毕肖甫常数 b 2 3
1 3
2
3
洛德角
tan
2 2 1 3
31 3
3
2b 1 3
洛德角与偏应力不变量之间的关系
sin 3
3 3 2
J3
J
3 2
2
第16页/共126页
应变与应变增量
应变状态

高等土力学-基于修正剑桥模型模拟理想三轴不排水试验

高等土力学-基于修正剑桥模型模拟理想三轴不排水试验

基于修正剑桥模型模拟理想三轴不排水试验——两种积分算法的对比分析(CZQ-SpringGod )1、修正剑桥模型在塑性功中考虑体积塑性应变的影响,根据屈服面一致性原则,假定屈服函数对硬化参数的偏导为0,就获得了以理想三轴不排水试验为基础的修正剑桥模型屈服函数:22(,)()0c q f p q p p p M =+-= (1) 其中3kkp σ=,ij ij ij s p σδ=-,212ij ij J s s =,q =M 为临界线斜率,c p 为前期固结压力。

硬化/软化法则:p c v c dp v d p ελκ=- (2) 式中p v ε为体积塑性应变,v 为比体积,λ为正常固结线斜率,κ为回弹线斜率。

由于不排水屈服面推导过程是基于硬化参数c p 偏导为0,也就是说不排水试验中硬化参数同体积塑性应变无关,屈服面不变化,而若引入硬化法则就同屈服面推导过程中的假定矛盾,因此计算时将模型处理为理想塑性模型。

2、显式和隐式两种积分格式考虑应变增量ε∆驱动下,第n 增量步到第n+1增量步之间的应力积分格式。

显式积分格式的推导参考文献[1],其中弹塑性矩阵中的塑性硬化模量H=0。

隐式积分格式推导如下:11()n n n p v v p p K εε++=+∆-∆ (3) 111(2)n p n n v c p p ε+++∆=Λ⋅- (4) 12()n n p ij ij ij ij s s G e e +=+∆-∆ (5) 1123n ij p n ij s e M ++∆=Λ (6) 111112(,)()0n n n n n c qf q p p p p M +++++=+-= (7)在这一组方程中没有硬化规律方程表明为理想塑性,并将式(3)-(7)合并化简得到:1112112122(2)06()(1)0n n n n v c n n n trial c p p K K p p G q p p p M Mε++++++⎧--∆+⋅Λ⋅-=⎪⎨+-+Λ=⎪⎩ (8) 式中3(2)(2)2n n trial ij ij ij ij q s G e s G e =+∆+∆ 求解(8)式方程组即可得到n+1增量步的各个增量。

高等土力学第一章 课件

高等土力学第一章  课件
添加副标题
高等土力学第一章课件
汇报人:
目录
CONTENTS
01 添加目录标题 03 土的应力与应变
02 土力学基本概念 04 土的强度与稳定性
05 土压力与挡土墙设 计
06 地基承载力与沉降 计算
07 特殊土工程性质与 处理方法
添加章节标题
土力学基本概念
土的气组成的自然体
黄土的工程分类:根据黄土的工程性质,可 以将黄土分为不同的类型,不同类型的黄土 在工程中的处理方法也有所不同。
黄土的处理方法:包括排水固结法、强夯 法、换填法等,这些方法可以有效地改善 黄土的工程性质,提高工程的稳定性和安 全性。
膨胀土工程性质与处理方法
膨胀土的定义与分类
膨胀土的工程性质
膨胀土的膨胀机理
土的应变:土体变形的大小 和方向
土的应力-应变关系曲线:描述 土的应力与应变之间关系的曲 线
土的应力:土体受到的力,包 括压应力、剪应力和弯应力等
土的应力-应变关系特点:非 线性和弹塑性等
土的强度与稳定性
土的强度
土的强度定义:土体抵抗剪切破坏的极限能力 土的强度分类:天然强度、残余强度、有效强度等 影响土强度的因素:土的成分、结构、应力历史、环境条件等 土的强度试验方法:直接剪切试验、三轴压缩试验、无侧限抗压试验等
稳定的能力。
地基承载力的影响 因素:包括土的物 理性质、力学性质、 地质条件、地下水 位、荷载大小和分
布等。
添加标题
添加标题
地基承载力与沉降 计算的关系:地基 承载力是影响建筑 物沉降的重要因素 之一,通过合理的 地基设计和沉降计 算,可以确保建筑 物的稳定性和安全
性。
添加标题
地基承载力与建筑 物安全性的关系: 地基承载力不足可 能导致建筑物沉降、 倾斜甚至倒塌,因 此在进行建筑设计 时,必须充分考虑 地基承载力的要求。

土的基本性质高等土力学课件

土的基本性质高等土力学课件

Bazant ZP, Oh BH. Microplane model for creep of anisotropic clay. J Eng Mech, ASCE, 1983.
59
蠕变微观机理
9次2×21点在二十面上的非正交对称分布
60
蠕变微观机理
9次2×21点在球面上的正交对称分布
61
蠕变微观机理
原因: 地基持力层为粉砂,下面为粉土和粘土 层,强度较低,变形较大。
1
2
3
4
1995年阪神地震大阪的街道路面液化
5
1999年台湾大地震中台中县由于液化引 起的楼房倒塌
6
赵洲桥
隋朝石工李春所建,他把石台砌筑于密 实的粗砂 层上,一千三百多年来估计沉 降仅几厘米。
7
提纲
土的构成 土的物理化学性质 土的基本力学性质 土的分类
11次2×33点在多面上的正交对称分布
62
变形
本构模型 固结理论
63
土的分类
64
塑性指数分类指标界限值及土类名称
0 13
7
国家建委TJ7-74规范 砂土
轻亚粘土
水利部土工实验6规范 砂土 砂壤土
10
17
亚粘土 粘土
壤土
粘土
交通部79规范 冶金部冶基规103-77
地质矿产部84规范
砂土 砂土 砂土
ij
f
.
(n)ds
.
ij ij
3
2
bijkm
s
1
.
k2 T
sh1
.
T
k1
f
(n)ds
. km
.
ij
57
蠕变微观机理

高等土力学第1.2.3章课件

高等土力学第1.2.3章课件

δ ij = 1 i = j
s1
= σ1

1 3
σ
kk
= σ1 −σm
s2 = σ 2 −σ m
主应力偏量
s3 = σ 3 − σ m
15
i= j
2.2 应力和应变 2.2.1 应力 偏应力张量的不变量
第一偏应力 不变量
J1 = Skk = S1 + S2 + S3 ≡ 0
第二偏应力
不变量
J2
=
1 2
三轴压缩: b=0;θ=-30o
应力洛德角与上述参数的关系 三轴拉伸:
tanθ = μσ = 2b −1
33
b=1.0;θ=+30o
应力洛德角和洛德参数都反映中主应 力和其他两个应力间的相对比例
25
2.2 应力和应变 2.2.1 应力
土力学中常用的三个应力(不)变量
p
=
1 3
(σ1
+σ2
+σ3)
[ ] q =
τ oct
=
1 3
⎡⎣(σ
1

σ
2
)2
+ (σ 2
− σ 3 )2
+ (σ 3
1
− σ1)2 ⎤⎦ 2
=
21
3
J
2
2
广义剪应力(等效剪应力)
q=
1 2
⎡⎣(σ1
− σ 2 )2
+ (σ2
−σ3)2
+ (σ3
1
−σ1)2 ⎤⎦ 2
=
3 2
τ
oct
=
3J2
20
2.2 应力和应变 2.2.1 应力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档