相似理论与模型试验 课件
合集下载
相似理论与模型试验(第一讲)PPT课件

❖ 广义的“模拟”是指对自然现象的一种人 为的相似比拟技术;狭义的“模拟”是指不 同物理体系间的相似比拟技术,也称为异类 模拟。“仿真”常指不同物理体系间的相似 比拟技术,现今常指采用数学手段,利用计 算机数值分析方法对工程现象进行研究的一 项技术,故也称为“数值模拟”。
5
第一节 各种物理量的相似
为使模型流动能表现出实型流动的主要 现象和特性,并从模型流动上预测出实型流 动的结果,就必须使两者在流动上相似,即 两个互为相似流动的对应部位上对应物理量 都有一定的比例关系。
具体来说,两相似流动应几何相似 (Geometrical Similarity) 、运动相似 ( Kinematic Similarity )、 动力相似 (Dynamic Similarity)。两的流条动件相似应满足
16
1 Strouhal 相似准数 Sr=l/vt 表示时变惯性力和位变惯性力之比,反 映了流体运动随时间变化的情况
2 Froude 相似准数 Fr=v2/gl 表示惯性力和重力之比,反映了流体流 动中重力所起的影响程度
3 Euler 相似准数 Eu=p/v2 表示压力和惯性力的比值
17
4 Renolds 相似准数 Re=vl/= vl/ 表示惯性力和粘性力之比
6
一 几何相似(空间相似)
定义: 两流动的对应边长成同一比例,对应 角相等。
引入尺度比例系数 进而,面积比例系数
kl
lm lp
C
kA
Am Ap
kl2
模型流动用下标
m表示
原型流动用下标p
表示
体积比例系数
kV
Vm Vp
kl3
7
几何相似
模型与原型物理量相似
Hp
5
第一节 各种物理量的相似
为使模型流动能表现出实型流动的主要 现象和特性,并从模型流动上预测出实型流 动的结果,就必须使两者在流动上相似,即 两个互为相似流动的对应部位上对应物理量 都有一定的比例关系。
具体来说,两相似流动应几何相似 (Geometrical Similarity) 、运动相似 ( Kinematic Similarity )、 动力相似 (Dynamic Similarity)。两的流条动件相似应满足
16
1 Strouhal 相似准数 Sr=l/vt 表示时变惯性力和位变惯性力之比,反 映了流体运动随时间变化的情况
2 Froude 相似准数 Fr=v2/gl 表示惯性力和重力之比,反映了流体流 动中重力所起的影响程度
3 Euler 相似准数 Eu=p/v2 表示压力和惯性力的比值
17
4 Renolds 相似准数 Re=vl/= vl/ 表示惯性力和粘性力之比
6
一 几何相似(空间相似)
定义: 两流动的对应边长成同一比例,对应 角相等。
引入尺度比例系数 进而,面积比例系数
kl
lm lp
C
kA
Am Ap
kl2
模型流动用下标
m表示
原型流动用下标p
表示
体积比例系数
kV
Vm Vp
kl3
7
几何相似
模型与原型物理量相似
Hp
第十四章相似原理及模型试验简介

2
阻力
紊流阻力平方区
Frr 1
1 Cr 1 r 1, nr Lr / 6
层流区
Rer 1
3
弹性力
E KL2
Fr Er K r Lr
2
Fr t t 1 代入 m r ur
Ca
则
P vP 2
KP
M vM 2
KM
v2
K
Ca P Ca M Car 1
F ma FP Fr FM , mP mr mM , uP ur uM , t P t r t M
原型
FP m P duP du u mu du FP Fr FM mr m M r M r r m M M dt P dt r t M tr dt M
mr ur duM mr ur Fr FM mM = FM tr dt M tr
vr 2 v2P v2M 1 FrP FrM ( gr 1) gP LP gM LM gr Lr vr 2 v2 J 2 J r 2 1 Cr 1 r 1 P M RP RM C R C r Lr
2
阻力
Lr L tr r tr ur
ur
将各比尺代入
Fr t r 1 m r ur
则
Fr FP FM 1 2 2 r L2 v r2 P L2 v P M L2 v M r P M
FP FM 2 2 P L2 v P M L2 v M P M
把无因次数
2 FrP2 FrM vr 2 v2P v2M 1 g P LP J P g M LM J M JP JM gr Lr J r
相似理论与模型试验ppt课件

Sc
Sy St
Sk Sy
mp Sp
d 2 yp
dt
2 p
cp
dy p dt p
kpyp
pp
由上式得
SmSy St2
Sc S y St
SmSy St2
SkSy
SmSy St2
Sp
ScSt 1, Sm Sk St2 1, Sm S pSt2 1, SmSy
1
ct m
2
kt 2 m
3
pt 2 my
假若确定a1 , a4, a5,则:
n-k 个导出量的量纲可用基本量纲表示:
量纲表示:麦克斯韦尔符号,比如[L],[M],[T],表示长度,质量和时间的量纲。
对于具有分布质量部分,用质量密度ρ表示。 将上式代入模型系统,得:
将上式并与模型系统相比较,得相似准数如下
将各物理量的相似常数代入上式,即得相似条件
Pm Wm
(Lm am )
fm
Pmam2 6Em I
m
(3Lm
am )
则相似系统的结构相似常数为
SE
Em Ep
,
Sp
Pm Pp
, SM
Mm Mp
,
S
m p
,
S
f
fm fp
Sl
lm lp
am ap
hm hp
bm bp
, Sw
Sl3
Wm Wp
, SI
Sl4
Im Ip
,
将以上各式代入原型系统方程,
模型试验的理论基础——结构相似理论
2.2 模型的相似
基本概念
物理量和 物理现象 的相似
1. 物理量相似
材料工程《相似理论》课件

材料工程基础及设备多媒体课件
2、积分类比法
❖ 基本原理:置换法则
❖ 二个体系: ❖ 等比公式
1 1
2 2
c
1 1
2 2
1 1
c
lim
0
d d基础及设备多媒体课件
步骤:
写出描述现象的基本方程和单值条件 用方程中任意一项除以其他各项 各项中所有导数用积分类比项代替
❖ Ho 谐时性准数:H0=wτ/L
❖ Fo(Fourier)准数: 温度场、速度场随时间的变化关系
F0
a
l2
❖ Pr(Prandtl)准数:Pr=ν/a
分子动量扩散率与热扩散率之比;速度场与温度场的关系
❖ Pe(Peclet)准数
❖ Nu(Nusselt)准数
边界层内温度梯度与平均温度梯度之比;对流换热强度与
相似准数的数值不变。 ❖ 已定准则和待定准则(定性准则和非定性准则)
材料工程基础及设备多媒体课件
8.3.2 相 似 三 定 理
❖相似第一定理(相似正定理) 凡相似现象,对应部位上各同名相似准则分
别等值。 (规定了现象相似的必要条件)
❖相似第三定理(相似逆定理) 凡同类现象,当单值条件相似,对应部位的
材料工程基础及设备多媒体课件
8.3.1 基本概念
1、物理量相似 ❖ 标量场相似 ❖ 矢量场相似
相似倍数——Cφ
1 1
2 2
c
x
x
y
y
z
z
c
材料工程基础及设备多媒体课件
❖几何相似 ❖时间相似 ❖运动相似 ❖动力相似 ❖热相似
材料工程基础及设备多媒体课件
2、现象相似
❖ 描述现象各单值条件彼此相似的同类现象 ❖ 单值条件相似
第五章 相似理论与结构模型试验

2.2.6.边界条件和初始条件
在材料力学和弹性力学中,常用微分方程描
述结构的变形和内力,边界条件和初始条件是求 微分方程的必要条件。原型与模型采用相同组微 分方程和边界条件及初始条件描述。
2.2.6.1 边界条件
原型与模型在外界接触的区域内各种条件 保持相似。如支撑条件、约束情况、边界受力 等相似。
d 水泥砂浆
水泥砂浆被广泛地用来制作钢筋混凝土板壳等 薄壁
似,即模型与原模型结构对应部分的质量成比例 Sm=mm/mp或Sp=ρm/ρp 质量是密度与体积的乘积:
Sp=ρm vmvm/(ρpvpvp)=Sm/S3l
可见,在给定几何常数后,密度相似常数可以
由质量相似常数导出。
2.2.3.荷载相似
模型与原型在各对应点所受的荷载方向一
致,荷载大小成比例。集中荷载与力的量纲相
3.1 模型的类型分类
如按模型试验研究范围可分为:弹性模型试验、强
度模型试验。
如按试验模拟的程度分类:断面模型试验(平面),
半整体模型,整体模型试验。
如按试验加载方法分类:静力结构模型试验,动力
结构模型试验,等等。
3、模型设计
3.2 模型几何尺寸的确定
确定几何尺寸是关键的一步,主要应考虑: a、 模型的尺寸大小要适中,可行,对于与结构 物相互作用问题,应考虑影响范围。 b、 测量手段,应考虑传感器的大小和精确度要 求。当传感器精度不够时应加大模型尺寸。 c、 试验待求量应方便、可以实施 因此,设计时应综合考虑模型类型、制作条件及试 验等,才能确定出一个最优的几何尺寸。
1.3.模型试验特点
经济性好
特点
针对性强 数据准确
1.4.模型试验适用范围
1
《相似理论》课件 (2)

推荐系统
利用相似理论为用户提供个性化 的推荐服务,增强用户体验。
文本分类
通过相似度度量和聚类方法将文 本归类,加快信息处理速度。
图像处理
利用相似度度量和聚类方法提取 图像特征,实现图像分割和识别。
总结
广泛应用
相似理论在机器学习和数据 挖掘中得到广泛应用。
重要内容
相似度度量、相似降维和聚 类是相似理论的重要内容。
新兴领域
相似度网络是新兴领域,正 在快速发展和应用。
相似降维
主成分分析(PCA)
非负矩阵分解(NMF)
局部线性嵌入(LLeans聚类
2
层次聚类(Hierarchical Clustering)
3
DBSCAN聚类
相似度网络
1
社区检测(Community Detection)
2
网络嵌入(Network Embedding)
应用案例
《相似理论》PPT课件 (2)
相似理论课程旨在深入探讨相似度度量、相似降维和聚类方法,以及它们在 机器学习和数据挖掘中的应用。让我们一起开始这段精彩的学习之旅!
课程目的
理解相似理论的概念和基本原理 学会应用相似理论解决实际问题
掌握相似降维和聚类的方法
相似度度量
1 欧氏距离
2 余弦相似度
3 Jaccard相似系数
流体力学相似原理与PPT课件

Fm
ml
2 m
vm2
上式可写成
Fp Fm
p
l
2 p
v
2 p
m
l
2 m
vm2
—— 无量纲数
在相似原理中称为牛顿数Ne ∴ (Ne)p (Ne)m
Ne
F
l 2v 2
上式说明,两个流动动力相似,它们的牛顿数相等;反之两个 流动的牛顿数相等,则两个流动动力相似。
在相似原理中,两个动力相似流动中的无量纲数,如牛顿数,
第8页/共46页
§5-2 相似准则
雷诺准则 佛汝德准则 欧拉准则
第9页/共46页
§5-2 相似准则
在模型实验中,只要使其中起主导作用外力满足相似条件,就
能够基本上反映出流体的运动状态。
一、雷诺准则
作用在流体上的力主要是粘性力。
牛顿内摩擦定律
粘性力 粘性力比尺
T A du A du
(1)求模型的最小高度hm
对于分析气体阻力问题,可按雷诺准则计算。雷诺准则为
l v 1
由于 1 , 故
l
1
v
vm vp
hm
hp
l
hp
vp vm
1.5 1081000 1(m) 45 3600
第20页/共46页
(2)求原型汽车所受的阻力 由在推导牛顿数得到的力的比尺为
f l22v
第1页/共46页
一、几何相似
几何相似是指原型与模型的外形相似,其各对应角相等,而且 对应部分的线尺寸均成一定比例。
对应角相等 θp = θm 以角标p表示原型(prototype),m表示模型(model)。 线性尺寸成比例
l
lp lm
dp dm
第五章相似理论与量纲分析课件

压力P、重力G等。设作用在模型与原型流动对应流
体质点上的外力分别为Tm、Pm、Gm和Tp、Pp、Gp,
则
Tm Tp
Pm Pp
Gm Gp
Fm Fp
kF
式中F为合外力,kF称为力的比尺。将F=ma=ρVa 代入上式,得
kF
Fm Fp
mm am mpap
mVm am pVp a p
kkVka
Km
Kp
令 Ma v 为无量纲数,称为马赫数。上式可用马
c
赫数表示为
Mam Map
上式称为马赫相似准则。当可压缩气流流速接近 或超过声速时,实现流动相似要求相应的马赫数 相等。
5.1.3 模型实验 模型实验是根据相似原理,制成与原型几何相似的 模型进行实验研究,并以实验结果预测原型将要发 生的流动现象。 1. 模型律的选择
基本量纲是指具有独立性的,不能由其它基本量 纲的组合来表示的量纲。对不可压缩流体,基本量纲 共有三个:长度量纲L、时间量纲T和质量量纲M。
导出量纲是指由基本量纲组合来表示的量纲。 除长度、时间、质量和温度,其它物理量的量纲均为 导出量纲。
任意一个物理量x的量纲都可以用L、T、M这三 个基本量纲的指数乘积来表示,即
二、弗劳德相似准则 当流动受重力G作用时,由动力相似条件有
Gm ρmlm2vm2
Gp ρplp2vp2
Fm
Fp
ρmlm2vm2 ρplp2vp2
重力 G gV gl3
代入上式整理,约简后得
vm2 vp2 gmlm gplp
令 Fr v2 为无量纲数,称为弗劳德数。 gl
上式可用弗劳德数表示为
K
西数表示为
Cam Cap
上式称为柯西相似准则,该式表明两流动弹性力 相似时,模型与原型流动的柯西数相等。柯西数的 物理意义在于它反映了流动中惯性力和弹性力之比。 对于液体,柯西相似准则只应用在压缩性显著起作 用的流动中,例如水击现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习交流PPT
20
例1:单自由度系统有阻尼受迫振 动相似准数的导出。振动微分方 程如下:
d2y dy m c kyp
dt2 dt
解:对于原型系统振动微分方程
mp
d2yp dt2p
cp
dyp dtp
kpyp
pp
对于模型系统振动微分方程
mmdd2tym 2mcmddytm m学习k交m流yPm PT pm
St
tm tp
时间相似常数
学习交流PPT
14
6.边界条件相似
要求模型与原型在与外界接触的区域内的各种条 件(支承条件、约束条件和边界上的受力情况等) 保持相似。
与原型结构构 造相同的条件
7.初始条件相似-动力问题
要求模型与原型在初始时刻的运动参数相似。
初始几何位置、质点的位移、速度和加速度。模型
上的速度、加速度和原型的速度和加速度在对应的
➢相似常数:在两相似现象中,两个对应的物理量之比为 常数。
➢相似指标:由彼此相似现象中各相似常数组成的无量纲 量,彼此相似的现象都满足相似指标等于1的条件。
➢相似准数:在所有相似的现象中是一个不变量,无量纲 量,所有相似的系统相似准数应相等。
学习交流PPT
19
2.3.2 方程分析法
利用描述现象的基本微分方程组导出相似准数(判据)。
(3)
力相似常数
质量相学习似交常流P数PT
加速度相似常数
16
将(3)代入(2),与(1)相比有:
相似指标
SF SmSa
Fp
mpap
SF 1
(4)
SmSa
(4)式为判别模型与原型是否相似的条件,称为相似指标,若两 个物理系统现象相似,则它们的相似指标为1。
将(3)代入(4) Fp Fm idem mpap mmam
S
m p
E Em Pm P SES
S
m p
Gmm GPP
SGS
S
m p
S,SE,S,S,SG,S,S —正应力、弹性应 模变 量、 、正
剪应力、剪切应 模变 量和 、泊 剪松比数 的。 相似常
学习交流PPT
13
5.时间相似
对于结构的动力问题,在随时间变化的过程中,要 求模型与原型在对应时刻进行比较,要求相对应的 时间成比例。
SI
Im Ip
1 12
bm
h3 m
1 12
bp
h3 p
Sl4
学习交流PPT
10
2.质量相似
➢ 要求模型与原型结构对应部分质量成比例。 ➢ 质量之比称为质量相似常数。
质量密度相似常数
Sm
mm mp
S
m p
对于具有分布质量部分,用质量密度ρ表示。
S
Sm SV
Sm S3
l
学习交流PPT
11
3.荷载相似
无量纲值
称这一无量纲量为相似准数,也称相似判决,相似系统相似
准数相同
去掉角标,写成一般形式:
F idem
ma
学习交流PPT
17
第一相似定理:
彼此相似的现象,以相似常数组成的受现象制约的相 似指标等于1或相同文字组成的相似准数为一不变量。
已知系统相似
确定相似条件
学习交流PPT
18
几个重要概念小结
有标量也在对应点和对应时刻成比例
学习交流PPT
8
2.2.2 物理量的相似
1.几何相似 要求模型与原型结构之间所对应部分的尺寸成比例。 几何尺寸之比称为几何相似常数。
Sl
lm lp
bm bp
hm hp
Sl 几 何 相 似 常 数 l、 b、 h结 构 的 长 、 宽 、 高 三 个 方 向 的 线 性 尺 寸
学习交流PPT
6
模型试验的优点: 经济性好-模型尺寸小 针对性强-突出主要因素,略去次要因素 数据准确-室内试验 模型试验的应用:
代替大型结构试验或作为大型结构试验的辅助试验。 作为结构分析计算的辅助手段。 验证和发展结构计算理论。
模型试验的理论基础——结构相似理论
学习交流PPT
7
2.2 模型的相似
教学课程《实验应力分析》
第二章 结构相似理论
2012年11月16日
Байду номын сангаас
学习交流PPT
1
2.1 概述
力学分析
理论计算 实验研究
原型试验 模型试验
模型试验是将发生在原型中的力学过程,在物理相
似条件下,经缩小(或放大)后在模型上重演。对
模型中的力学参数进行测量、记录、分析,并根
据相似关系换算到原型中去,达到研究原型力学
m 、 p分 别 代 表 模 型 和 原 型
学习交流PPT
9
对一矩形截面,模型和原型结构的面积相似常数、 截面抵抗矩相似常数和惯性矩相似常数分别为
面积相似常数
截面抵抗矩相 似常数
惯性矩相似常 数相似常数
SA
Am Ap
hmbm hp bp
Sl2
SW
Wm Wp
1 6
bm
h2 m
1 6
bp
h2 p
Sl3
具体步骤:
➢第一步:将方程对于原型写出,加角标 p; ➢第二步:将方程对于模型写出,加角标 m; ➢第三步:定义模型和原型同名物理量间的相似常数; ➢第四步:将模型方程中各物理量以相似常数和原型中 对应物理量表示。 ➢第五步:比较原型与模型方程,消去原型方程中的各 物理量,即得到无量纲形式的相似指标和相应的相似准 数(判据)。
➢ 要求模型与原型在各对应点所受的荷载方向一致,
大小成比例。
集中荷载相似常数
Sp P Pm p A Am P m P SSl2
线荷载相似常数
S
S
S l
面荷载相似常数
Sq S
弯矩或扭矩相似常数
SM S Sl3
学习交流PPT
12
4.物理相似
要求模型与原型的各相应点的应力和应变、刚度 和变形间的关系相似。
2.2.1基本概念
1. 物理量相似
物理量和 物理现象 的相似
各种物理量,如几何,质量,力等。
2. 物理现象相似
是指除了几何相似之外,在进行物理过程的系统中, 在相应的地点(位置)和对应的时刻,模型与原型的 各相应物理量之间的比例应保持常数。
在两个系统中,所有向量在对应点和
对应时刻方向相同、大小成比例,所
过程的目的。
学习交流PPT
2
模型试验
Akashi Kaikyo Bridge, Japan
明石头海峡大桥,日本
学习交流PPT
3
模型试验
学习交流PPT
4
模型试验
航空航天领域
学习交流PPT
5
原型试验
日本,E-Defense振动系统, “足尺三维振动破坏实验设
施”
UCSD-NEES 室外振动台实验
位置和对应的时刻保持一定的比例,并且运动方向
一致。
学习交流PPT
15
2.3.结构相似定理
2.3.1.第一相似定理
以牛顿第二定律为例来说明第一相似定理性质
对于原型:
Fp Mpap
(1)
对于模型
Fm Mmam
(2)
如果模型与原型相似,则各对应物理量成比例:
Fm SF Fp
mm Smmp
am Saap