集合间的并集交集运算练习题(含答案)
集合的基本运算交集并集练习题

集合的基本运算交集并集练习题1.1. 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系: A?{1,3,5},B?{2,4,6},C??1,2,3,4,5,6?;A?{xx是有理数},B?{xx是无理数},用Venn图分别表示上面各组中的3组集合。
思考:上述每组集合中,A,B,C之间均有怎样的关系?1、交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,叫作集合A、B的交集。
记作:A∩B 读作:“A交B” 。
即:A∩B={x|x∈A,且x∈B}用Venn图表示:常见的3种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:A∩B与A、B、B∩A的关系?A∩A=A∩?=A∩BB∩AA∩B=A ? A∩B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∩B=;2、A={等腰三角形},B={直角三角形},则A∩B=3、A={x|x>3},B={x|x 2、并集定义:一般地,由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与集合B 的并集,记作A∪B,读作:“A 并B”即A∪B={x|x∈A或x∈B}。
用Venn图表示:说明:定义中要注意“所有”和“或者”这两个条件。
讨论:A∪B与集合A、B有什么特殊的关系?A∪A=, A∪Ф=, A∪B∪AA∪B=A? , A∪B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∪B=2、设A ={锐角三角形},B={钝角三角形},则A∪B=;3、A={x|x>3},B={x|x 3、一些特殊结论⑴若A?B,则A∩B=A;⑵若B?A,则A∪B=A;⑶若A,B两集合中,B=?,,则A∩?=?, A∪?=A。
1求A∪B。
2、设A={x|x>-2},B={x|x3、已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R}。
高中数学第一章集合1.2集合之间的关系与运算1.2.2.1交集与并集bb高一数学

.
解析:由题意得A={x|x>a},B={x|x>2},
因为A∪B=B,所以A⊆B.
在数轴上分别表示出集合A,B,如图所示,
则实数a必须在2的右边或与2重合,所以a≥2.
答案:a≥2
12/13/2021
5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=
解析:由于A∩B={2,3},则3∈B,又B={2,m,4},则m=3.
事实上有:A∩(B∪C)=(A∩B)∪(A∩C);
A∪(B∩C)=(A∪B)∩(A∪C).
12/13/2021
一
二
三
3.填写下表:
交集的运算性质
A∩B=B∩A
A∩A=A
A∩⌀=⌀∩A=⌀
如果 A⊆B,则 A∩B=A
并集的运算性质
A∪B=B∪A
A∪A=A
A∪⌀=⌀∪A=A
如果 A⊆B,则 A∪B=B
3.做一做:已知集合M={x|-2≤x<2},N={0,1,2},则M∩N等于(
A.{0}
B.{1}
C.{0,1,2}
D.{0,1}
解析:按照交集的定义求解即可.
M∩N={x|-2≤x<2}∩{0,1,2}={0,1}.
故选D.
答案:D
12/13/2021
)
一
二
三
二、并集
【问题思考】
1.集合A∪B中的元素个数如何确定?
提示:(1)当两个集合无公共元素时,A∪B的元素个数为这两个集
合元素个数之和;
(2)当两个集合有公共元素时,根据集合元素的互异性,同时属于A
和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个
《交集并集练习》课件

运算方法
对于任意两个集合A和B, 可以通过合并两个集合中 的元素来得到并集A∪B。
交、并集运算的结合律和交换律
结合律
交集和并集运算都满足结合律,这意 味着在组合多个集合进行交或并运算 时,可以任意改变运算的顺序。
交换律
交集和并集运算都满足交换律,这意 味着在组合多个集合进行交或并运算 时,可以任意交换集合的位置。
总Байду номын сангаас词
题目1
答案解析
题目2
答案解析
这些题目考察了交集和 并集的基本概念,难度 较低,适合初学者练习 。
设集合A={1,2,3,4}, 集合 B={3,4,5,6}, 求A∩B和 A∪B。
集合A和集合B的交集 A∩B={3,4},表示集合A 和集合B共有的元素;集 合A和集合B的并集 A∪B={1,2,3,4,5,6},表 示集合A和集合B所有元 素的集合。
体积的交集
当两个集合分别表示三维空间中的体积时,它们的交集表 示同时属于这两个体积的所有点,即两个体积的交集是由 它们共同拥有的所有点组成的集合。
02
并集的概念与性质
并集的定义
并集的定义
设A、B是两个集合,由所有属于集合A或属于集合B的元素所组成的集合,称 为A与B的并集,记作A∪B。
并集的数学符号表示
《交集并集练习》PPT课 件
• 交集的概念与性质 • 并集的概念与性质 • 交集与并集的运算 • 交集并集的练习题 • 练习题答案解析
01
交集的概念与性质
交集的定义
交集的定义
两个集合A和B的交集记作A∩B,是由 同时属于A和B的所有元素组成的集合 。
交集的数学符号表示
交集的描述性定义
集合A和B的交集包含所有既属于A又 属于B的元素。
1.3.1 集合的基本运算(交并)

课堂练习
3 设 = {|是等腰三角形}, = {|是直角三角形},
求 ∩ 和 ∪
4 设 = {|是幸福农场的汽车}, = {|是幸福农场的货车},
求 ∪
课堂练习
5 已知集合A = {x|x > −2} B = {x|x < 3} 求A ∩ B,A ∪ B
且 ∪ = 求实数的取值范围.
课堂练习
8 设 = | 2 + + = 0 , = | 2 + + 15 = 0 ,
又 ∪ = 3,5 , ∩ = 3 ,求实数,和的值。
课堂小结
课堂小结
1
集合运算
ቊ
并运算
A
A∪B
= x x A或 x B
B={x|x是新华中学今年在校的高一级同学},
C={x|x是新华中学今年在校的高一级B的所有元素组成的集
合,称为A与B的交集,记作A∩B,(读作“A交B”),即
A∩B={x|x∈A,且x∈B}
用Venn图表示:
A
A∩B
B
典例分析
例题:
3 新华中学开运动会,设
A={x|x是新华中学高一年级参加百米赛跑的同学},
B={x|x是新华中学高一年级参加跳高比赛的同学},
求A∩B.
典例分析
4 设平面内直线l1 上的点的集合为L1,直线l2上的点的集合为L2,
试用集合的运算表示l1, l2的位置关系。
解: (1)直线l1 , l2
相交于一点P可表示为
L1 ∩ L2 = {点P};
A
B
-4 -3 -2 -1 0 1 2 3 4
A∪B
新课讲授
补充:
集合及其运算2

集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x|-3<x≤5},N ={x|-5<x<5},则M∩N=________.2.已知集合A ={1,2,3},B ={2,m ,4},A∩B={2,3},则m =________.3.设集合A ={x|2≤x<4},B ={x|3x -7≥8-2x},则A ∪B =__________.4.集合P ={x ∈Z |0≤x<3},M ={x ∈Z |x 2≤9},则P∩M=________.5.集合M ={y|y =x 2-1,x ∈R },集合N ={x|y =9-x 2,x ∈R },则M∩N=________.[典型例题]题型一 与集合有关的运算例1. 设A ={x|2x 2-px +q =0},B ={x|6x 2+(p +2)x +5+q =0},若A∩B=⎩⎨⎧⎭⎬⎫12, 求A ∪B.变式:设全集是实数集R ,A ={x|2x 2-7x +3≤0},B ={x|x 2-4>0}.求A∩B;A ∪B ;(∁R A)∩B;(∁R A)∩(∁R B);A ∪(∁R B)题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的人百分率最多是多少,最少是多少?题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.题型四分类讨论思想在集合运算中的应用例4设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁R A)∩B=B,求实数a的取值范围.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.4.已知集合A ={y|y =x 2-4x ,x ∈R },B ={y|y =-x 2+4x ,x ∈R },求A ∩B.5. 已知集合A ={x|5<x ≤6},集合 B ={x|m+1<x<2m-1},若A ∩B φ≠,求实数m 的取值范围.[反思总结][课后检测]1.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数为________.2.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =____.3.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.4. 已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若9∈(A ∩B ),则实数a =________.5.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.6.设M={a|a=(2,0)+m(0,1),m∈R}和N={b|b=(1,1)+n(1,-1),n∈R}都是元素为向量的集合,则M∩N=________.7.已知集合A={x|y=x2-5x-14},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}.(1)求A∩B;(2)若A∪C=A,求实数m的取值范围.8.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N =________.答案 {x |-3<x <5}解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.2.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________.答案 3解析 ∵A ∩B ={2,3},∴3∈B ,∴m =3.3.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B =__________.{x |x ≥2}4.集合P ={x ∈Z |0≤x <3},M ={x ∈Z |x 2≤9},则P ∩M =________.答案 {0,1,2}解析 由题意知:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},∴P ∩M ={0,1,2}5.集合M ={y |y =x 2-1,x ∈R },集合N ={x |y =9-x 2,x ∈R },则M ∩N =________.答案 [-1,3]解析 ∵y =x 2-1≥-1,∴M =[-1,+∞)[典型例题]题型一 方程解集的运算例1.设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B =⎩⎨⎧⎭⎬⎫12,求A ∪B . 【解析】 ∵A ∩B =⎩⎨⎧⎭⎬⎫12,∴12∈A ,12∈B .将12分别代入方程2x 2-px +q =0及6x 2+(p +2)x +5+q =0,联立得方程组⎩⎨⎧ 12-12p +q =0,32+12(p +2)+5+q =0,解得⎩⎪⎨⎪⎧p =-7,q =-4, ∴A ={x |2x 2+7x -4=0}=⎩⎨⎧⎭⎬⎫-4,12, B ={x |6x 2-5x +1=0}=⎩⎨⎧⎭⎬⎫12,13, ∴A ∪B =⎩⎨⎧⎭⎬⎫12,13,-4.题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?解析由题意知,同时参加三个小组的人数为0,令同时参加数学、化学人数为x人.20-x+6+5+4+9-x+x=36,x=8.答案8变式:变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的百分率最多是多少,最少是多少?53%,8%题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A ={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.解析依题意及韦恩图可得,B∩(∁U A)={5,6}.答案{5,6}题型四 分类讨论思想在集合运算中的应用例4设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解题导引 解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.解 (1)A ={x |12≤x ≤3}. 当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2}, A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3}. 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0. 综上可得,a 的取值范围为a ≥-14.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.解析:由题易知P ∩Q ={2}.答案:{2}2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.解析:∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},则(∁U A )∩(∁U B )={7,9}.答案:{7,9}3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.解析:集合S 表示直线y =1上的点,集合T 表示直线x =1上的点,S ∩T 表示直线y=1与直线x=1的交点.答案:{(1,1)}4.已知集合A={y|y=x2-4x,x∈R},B={y|y=-x2+4x,x∈R},求A∩B.A={y|y=(x-2)2-4,x∈R}={y|y≥-4,y∈R},B={y|y=-(x-2)2+4,x∈R}={y|y≤4,y∈R},所以A∩B={y|-4≤y≤4,y∈R}.≠,求实数m的取值范围.5. 已知集合A={x|5<x≤6},集合 B={x|m+1<x<2m-1},若A∩Bφ35<<m[反思总结][课后检测]1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为________.答案 4解析由题意知B的元素至少含有3,因此集合B可能为{3}、{1,3}、{2,3}、{1,2,3}.2.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=____.答案 1解析∵3∈B,由于a2+4≥4,∴a+2=3,即a=1.3.设全集U=A∪B={x∈N*|lg x<1},若A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=______________.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若9∈(A∩B),则实数a=________.[自主解答](1)集合{z|z=x+y,x∈A,y∈B}={-1,1,3}.故所求集合中元素的个数为3.(2)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9.∴a =5或a =±3.当a =5时,A ={-4,9,25},B ={0,-4,9},符合题意;当a =3时,A ={-4,5,9},B 不满足集合中元素的互异性,故a ≠3;当a =-3时,A ={-4,-7,9},B ={-8,4,9},符合题意.∴a =5或a =-3.[答案] (1)3 (2)5或-35.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.解析:A ∩B 中元素的个数就是函数y =|ln x |的图象与椭圆x 29+y 24=1的交点个数,如图所示.由图可知,函数图象和椭圆有两个交点,即A ∩B 中有两个元素,故A ∩B 的子集有22=4个.答案:46.设M ={a |a =(2,0)+m (0,1),m ∈R }和N ={b |b =(1,1)+n (1,-1),n ∈R }都是元素为向量的集合,则M ∩N =________.解析:设c =(x ,y )∈M ∩N ,则有(x ,y )=(2,0)+m (0,1)=(1,1)+n (1,-1),即(2,m )=(1+n,1-n ),所以⎩⎪⎨⎪⎧2=1+n ,m =1-n ,由此解得n =1,m =0,(x ,y )=(2,0), 即M ∩N ={(2,0)}.答案:{(2,0)}7.已知集合A ={x |y =x 2-5x -14},集合B ={x |y =lg(-x 2-7x -12)},集合C ={x |m +1≤x ≤2m -1}.(1)求A ∩B ;(2)若A ∪C =A ,求实数m 的取值范围.解:(1)∵A =(-∞,-2]∪[7,+∞),B =(-4,-3),∴A ∩B =(-4,-3).(2)∵A ∪C =A ,∴C ⊆A .①C =∅,2m -1<m +1,∴m <2.②C ≠∅,则⎩⎪⎨⎪⎧ m ≥2,2m -1≤-2,或⎩⎪⎨⎪⎧m ≥2,m +1≥7, 解得m ≥6.综上可得,实数m 的取值范围是m <2或m ≥6.8.设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.A ={x |x 2-3x +2=0}={1,2}.(1)∵A ∩B ={2},∴2∈B .将x =2代入B 中的方程,得a 2+4a +3=0,∴a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件.综上所述,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3),∵A ∪B =A ,∴B ⊆A ,∴①当Δ<0,即a <-3时,B =Ø,满足条件;②当Δ=0,即a =-3时,B ={2},满足条件;③当Δ>0,即a >-3时,只有B =A ={1,2}满足条件,则由根与系数的关系得:即 无解.综上所述,a 的取值范围是a ≤-3.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,4.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}.(1)若A ⊆B ,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围;(3)若A ∩B ={x |3<x <4},求a 的取值范围.解:∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)若A ⊆B ,当a =0时,B =∅,显然不成立;当a >0时,B ={x |a <x <3a },应满足⎩⎪⎨⎪⎧a ≤2,3a ≥4⇒43≤a ≤2; 当a <0时,B ={x |3a <x <a },应满足⎩⎪⎨⎪⎧3a ≤2,a ≥4,此时不等式组无解, ∴当A ⊆B 时,43≤a ≤2. (2)∵要满足A ∩B =∅,当a =0时,B =∅满足条件;当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2.∴0<a ≤23或a ≥4; 当a <0时,B ={x |3a <x <a },a ≤2或3a ≥4.∴a <0时成立,综上所述,a ≤23或a ≥4时,A ∩B =∅. (3)要满足A ∩B ={x |3<x <4},显然a =3.2.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,求实数m 的取值范围.正解 由x 2-3x -10≤0,解得-2≤x ≤5,即A ={x |-2≤x ≤5}.因为A ∪B =A ,所以B ⊆A .①若B ≠Ø,则2m -1≥m +1,解得m ≥2.又B ⊆A ,所以解得-3≤m ≤3.所以2≤m ≤3.②若B =Ø,则2m -1<m +1,解得m <2.综合①②可知,m 的取值范围为(-∞,3].6.(2013·南京四校联考)已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________.解析:由条件得m ∈Q ,即-1<m <34,从而整数m =0. 答案:07.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.解析:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).答案:(-∞,-1]∪(0,1)11.(满分14分)A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.解:∵A ∩B ={x |1<x <3},∴b =3,又A ∪B ={x |x >-2},∴-2<a ≤-1,又A ∩B ={x |1<x <3},∴-1≤a <1,∴a =-1.14. 已知A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-mx +2=0},且A ∪B =A ,A ∩C =C ,求实数a 及m 的值.解 ∵A ={1,2},B ={x |(x -1)[x -(a -1)]=0},又A∪B=A,∴B⊆A.∴a-1=2⇒a=3(此时A=B),或a-1=1⇒a=2(此时B={1}).由A∩C=C⇒C⊆A,从而C=A或C=∅(若C={1}或C={2}时,可检验不符合题意).当C=A时,m=3;当C=∅时,Δ=m2-8<0⇒-22<m<2 2.综上可知a=2或a=3,m=3或-22<m<2 2.。
人教版数学高一单元测试卷第6课时集合的并集、交集、补集的综合运算含解析

(1)求A∪B,(A)∩B;
(2)若C⊆B,求实数a的取值范围.
解:(1)A∪B={x|2<x<10}.
∵A={x|x≤2或x≥7},
∴(A)∩B={x|7≤x<10}.
(2)①当C=∅时,满足C⊆B,此时5-a≥a,得a≤;
答案:{x|x≤-2或x≥6}
解析:(A∪B)={x|-2<x<6}
又U=R,所以可得∁U(A∪B)={x|x≤-2或x≥6}.
8.如图所示,阴影部分表示的集合为________.
答案:(A∪B)∪(A∩B)解析:阴影部分有两类:(1)(A∪B);(2)A∩B.
9.设集合M={x|x>1,x∈R},N={y|y=2x2,x∈R},P={(x,y)|y=x-1,x∈R,y∈R},则(M)∩N=________,M∩P=________.
答案:{x|0≤x≤1}∅
解析:因为M={x|x>1,x∈R},所以M={x|x≤1,x∈R},又N={y|y=2x2,x∈R}={y|y≥0},所以(M)∩N={x|0≤x≤1}.因为M={x|x>1,x∈R}表达数集,而P={(x,y)|y=x-1,x∈R,y∈R}表示点集,所以M∩P=∅.
三、解答题(本大题共4小题,共45分)
3.设全集U=Z,集合A={-1,1,2},B={-1,1},则A∩(B)为()
A.{1,2} B.{1}
C.{2} D.{-1,1}
答案:C
解析:因为U=Z,B={-1,1},所以B为除-1,1外的所有整数的集合,而A={-1,1,2},所以A∩(B)={2}.
2019-2020学年高一数学人教A版必修1练习:1.1.3 第1课时 并集和交集 Word版含解析.pdf

1.1.3 集合的基本运算第1课时 并集和交集课后篇巩固提升基础巩固1.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}M和N,如图所示,则M∪N={x|x<-5,或x>-3}.2.(2018全国3高考,理1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.已知集合A={x|x=2n-3,n∈N},B={-3,1,4,7,10},则集合A∩B中元素的个数为( )A.5B.4C.3D.2,当n=0时,2n-3=-3;当n=2时,2n-3=1;当n=5时,2n-3=7.所以A∩B={-3,1,7}.故选C.4.若A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}{1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.5.已知集合S={直角三角形},集合P={等腰三角形},则S∩P= .∩P表示集合S和集合P的公共元素组成的集合,故S∩P={等腰直角三角形}.等腰直角三角形}6.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m= .A∩B={2,3},则3∈B,又B={2,m,4},则m=3.7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是 .A,B,如图所示,因为A∪B=R,则在数轴上实数a与1重合或在1的左边,所以a≤1.≤18.已知集合A=,集合B={x|2x-1<3},求A ∩B ,A ∪B.{x |{3-x >0,3x +6>0}得-2<x<3,{3-x >0,3x +6>0,即A={x|-2<x<3}.解不等式2x-1<3,得x<2,即B={x|x<2},在数轴上分别表示集合A ,B ,如图所示.则A ∩B={x|-2<x<2},A ∪B={x|x<3}.9.已知集合M={x|2x-4=0},集合N={x|x 2-3x+m=0},(1)当m=2时,求M ∩N ,M ∪N ;(2)当M ∩N=⌀时,求实数m 的取值范围.由题意得,M={2},当m=2时,N={x|x 2-3x+2=0}={1,2},则M ∩N={2},M ∪N={1,2}.(2)M={2}≠⌀,则2不是方程x 2-3x+m=0的解,所以4-6+m ≠0,即m ≠2.所以实数m 的取值范围为m ≠2.能力提升1.设集合A={1,2,4},B={x|x 2-4x+m=0}.若A ∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}A ∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x 2-4x+3=0}={1,3}.故选C .2.已知集合A={x|-3≤x ≤8},B={x|x>a },若A ∩B ≠⌀,则a 的取值范围是( )A.a<8B.a>8C.a>-3D.-3<a ≤8{x|-3≤x ≤8},B={x|x>a },要使A ∩B ≠⌀,借助数轴可知a<8.3.设A ,B 是非空集合,定义A*B={x|x ∈A ∪B 且x ∉A ∩B },已知A={x|0≤x ≤3},B={x|x ≥1},则A*B 等于( )A.{x|1≤x<3}B.{x|1≤x ≤3}C.{x|0≤x<1或x>3}D.{x|0≤x ≤1或x ≥3},A ∪B={x|x ≥0},A ∩B={x|1≤x ≤3},则A*B={x|0≤x<1或x>3}.4.已知集合M={(x ,y )|x+y=2},N={(x ,y )|x-y=4},那么集合M ∩N= .解得{x +y =2,x -y =4,{x =3,y =-1.∴M ∩N={(3,-1)}.-1)}5.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b },且A ∪B=R ,A ∩B={x|5<x ≤6},则2a-b= .,可知a=1,b=6,2a-b=-4.46.若集合A={x|3ax-1=0},B={x|x 2-5x+4=0},且A ∪B=B ,则a 的值是 .B={1,4},A ∪B=B ,∴A ⊆B.当a=0时,A=⌀,符合题意;当a ≠0时,A=,{13a }∴=1或=4,13a 13a ∴a=或a=.13112综上,a=0,.13,1120,13,1127.设集合A={x|-1≤x ≤2},B={x|x 2-(2m+1)x+2m<0}.(1)当m<时,化简集合B ;12(2)若A ∪B=A ,求实数m 的取值范围.x 2-(2m+1)x+2m<0,得(x-1)(x-2m )<0.(1)当m<时,2m<1,12∴集合B={x|2m<x<1}.(2)若A ∪B=A ,则B ⊆A ,①当m<时,B={x|2m<x<1},12此时-1≤2m<1,解得-≤m<;1212②当m=时,B=⌀,有B ⊆A 成立;12③当m>时,B={x|1<x<2m },12此时1<2m ≤2,解得<m ≤1.12综上所述,所求m 的取值范围是.{m |-12≤m ≤1}8.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?A ,B ,C ,同时参加数学和化学小组的有x 人,由题意可得如图所示的Venn 图.由全班共36名同学参加课外探究小组可得(26-6-x )+6+(15-10)+4+(13-4-x )+x=36,解得x=8,即同时参加数学和化学小组的有8人.。
3.1 交集与并集 学案(含答案)

3.1 交集与并集学案(含答案)3集合的基本运算3.1交集与并集学习目标1.理解并集.交集的概念.2.会用符号.Venn图和数轴表示并集.交集.3.会求简单集合的并集和交集.知识点一交集1.定义一般地,由既属于集合A又属于集合B的所有元素组成的集合,称为A与B的交集,记作AB读作“A交B”.2.交集的符号语言表示为ABx|xA且xB.3.图形语言,阴影部分为AB.4.性质ABBA,ABA,ABB;特别地,AAA,A.知识点二并集1.定义一般地,由属于集合A或属于集合B的所有元素组成的集合,称为集合A与B的并集,记作AB读作“A并B”.2.并集的符号语言表示为ABx|xA或xB.3.图形语言,,阴影部分为AB.4.性质ABBA,AAB,BAB;特别地,AAA,AA.1.若xAB,则xAB.2.如果把A,B用Venn图表示为两个圆,则两圆必须相交,交集才存在.3.若A,B中分别有2个元素,则AB中必有4个元素.4.对于任意两个集合A,B,若ABAB,则AB.题型一交集及其运算例11已知集合A1,2,3,Bx|x1x20,xZ,则AB等于A.1B.2C.1,2D.1,2,3考点交集的概念及运算题点有限集合的交集运算答案B解析B,AB.2若集合Ax|5x2,Bx|3x3,则AB等于A.x|3x2B.x|5x2C.x|3x3D.x|5x3考点交集的概念及运算题点无限集合的交集运算答案A解析在数轴上将集合A,B表示出来,如图所示,由交集的定义可得AB为图中阴影部分,即ABx|3x2,故选A.反思感悟求集合AB的步骤1首先要搞清集合A,B的代表元素是什么;2把所求交集的集合用集合符号表示出来,写成“AB”的形式;3把化简后的集合A,B的所有公共元素都写出来即可.跟踪训练11设集合Ax|xN,x4,Bx|xN,x1,则AB________.2集合Ax|x2或2x0,Bx|0x2或x5,则AB________.3集合Ax,y|yx2,Bx,y|yx3,则AB________.答案12,3,42x|x5或x23解析1因为Ax|xN,x40,1,2,3,4,Bx|xN,x1,所以AB2,3,4.2易知ABx|x5或x2.3解方程组无解,AB.题型二并集及其运算例21设集合A1,2,3,B2,3,4,则AB 等于A.1,2,3,4B.1,2,3C.2,3,4D.1,3,4考点并集的概念及运算题点有限集合的并集运算答案A解析A1,2,3,B2,3,4,AB1,2,3,4.故选A.2Ax|1x2,Bx|1x3,求AB.考点并集的概念及运算题点无限集合的并集运算解如图由图知ABx|1x3.反思感悟有限集求并集就是把两个集合中的元素合并,重复的保留一个;用不等式表示的,常借助数轴求并集.由于AB中的元素至少属于A,B之一,所以从数轴上看,至少被一道横线覆盖的数均属于并集.跟踪训练21A2,0,2,Bx|x2x20,求AB.考点并集的概念及运算题点有限集合的并集运算解B1,2,AB2,1,0,2.2Ax|1x2,Bx|x1或x3,求AB.考点并集的概念及运算题点无限集合的并集运算解如图由图知ABx|x2或x3.利用集合并集.交集性质求参数典例已知Ax|2axa3,Bx|x1或x5,若ABB,求a的取值范围.考点集合的交集.并集性质及应用题点利用集合的交集.并集性质求参数的取值范围解ABBAB.当2aa3,即a3时,A,满足AB.当2aa3,即a3时,A6,满足AB.当2aa3,即a3时,要使AB,需或解得a4或a3.综上,a的取值范围是a|a3a|a3.延伸探究已知Ax|2axa3,Bx|1x5,则是否存在实数a使得ABB,若存在,求出a的取值范围;若不存在,说明理由.解ABB即BA,这样的a不存在.素养评析1在利用交集.并集的性质解题时,常常会遇到ABA,ABB这类问题,解答时常借助于交集.并集的定义及上节学习的集合间的关系去分析,如ABAAB,ABBAB等.2当集合BA时,如果集合A是一个确定的集合,而集合B不确定,运算时要考虑B的情况,切不可漏掉.3在这里理解运算对象,掌握运算法则,探究运算思路,求得运算结果,充分体现了数学运算的数学核心素养.1.已知集合M1,0,1,N0,1,2,则MN等于A.1,0,1B.1,0,1,2C.1,0,2D.0,1考点并集的概念及运算题点有限集合的并集运算答案B2.已知集合Ax|x22x0,B0,1,2,则AB等于A.0B.0,1C.0,2D.0,1,2考点交集的概念及运算题点有限集合的交集运算答案C3.已知集合Ax|x1,Bx|0x2,则AB等于A.x|x0B.x|x1C.x|1x2D.x|0x2考点并集的概念及运算题点无限集合的并集运算答案A4.已知集合Ax|x0,Bx|x1,则AB等于A.B.x|x1C.x|0x1D.x|0x1考点交集的概念及运算题点无限集合的交集运算答案A5.已知集合A1,3,,B1,m,ABA,则m等于A.0或B.0或3C.1或D.1或3考点集合的交集.并集性质及应用题点利用集合的交集.并集性质求参数的值答案B1.在解决有关集合运算的题目时,关键是准确理解题目中符号语言的含义,善于将其转化为文字语言.2.集合的运算可以用Venn图帮助思考,实数集合的交集.并集运算可借助数轴求解,体现了数形结合思想的应用.3.对于给出集合是否为空集,集合中的元素个数是否确定,都是常见的讨论点,解题时要注意分类讨论思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 1.1.3 课时4
一、选择题
1.若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B =( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2}
D .{0}
解析 由并集的概念,可得A ∪B ={0,1,2,3,4}. 答案 A
2.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( ) A .x =3,y =-1 B .(3,-1) C .{3,-1}
D .{(3,-1)}
解析 ∵要求集合M 与N 的公共元素, ∴⎩⎪⎨
⎪⎧
x +y =2x -y =4
解得⎩⎪⎨
⎪⎧
x =3
y =-1
∴M ∩N ={(3,-1)},选D .
答案 D
3.设全集U =R ,A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2
+x -6=0},则右图中阴影部分表示的集合为( )
A .{2}
B .{3}
C .{-3,2}
D .{-2,3}
解析 注意到集合A 中的元素为自然数,因此易知A ={1,2,3,4,5,6,7,8,9,10},而直接解集合B 中的方程可知B ={-3,2},因此阴影部分显然表示的是A ∩B ={2},选A .
答案 A
4.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3
D .4
解析 直接列出满足条件的M 集合有{a 1,a 2}、{a 1,a 2,a 4},因此选B .
答案 B 二、填空题
5.[2015·福建六校高一联考]已知集合A ={1,3,m },
B ={3,4},A ∪B ={1,2,3,4},则m =________.
解析 由题意易知2∈(A ∪B ),且2∉B ,∴2∈A ,∴m =2. 答案 2
6.设集合A ={-3,0,1},B ={t 2
-t +1}.若A ∪B =A ,则t =________. 解析 由A ∪B =A 知B ⊆A , ∴t 2
-t +1=-3 ① 或t 2-t +1=0 ② 或t 2-t +1=1
③
①无解;②无解;③t =0或t =1. 答案 0或1
7.已知集合P ={-1,a +b ,ab },集合Q =⎩
⎨⎧
⎭
⎬⎫
0,b a
,a -b ,若P ∪Q =P ∩Q ,则a -b =
________.
解析 由P ∪Q =P ∩Q 易知P =Q ,由Q 集合可知a 和b 均不为0,因此ab ≠0,于是必须
a +
b =0,所以易得b
a
=-1,因此又必得ab =a -b ,代入b =-a 解得a =-2.所以b =2,因
此得到a -b =-4.
答案 -4 三、解答题
8.已知集合A ={x |0≤x -m ≤3},B ={x |x <0或x >3},试分别求出满足下列条件的实数
m 的取值范围.
(1)A ∩B =∅; (2)A ∪B =B .
解 ∵A ={x |0≤x -m ≤3}, ∴A ={x |m ≤x ≤m +3}.
(1)当A ∩B =∅时,有⎩⎪⎨
⎪⎧
m ≥0,
m +3≤3,
解得m =0.
(2)当A ∪B =B 时,则A ⊆B ,∴有m >3或m +3<0,解得m <-3或m >3.
∴m 的取值范围为{m |m >3或m <-3}.
9.[2015·衡水高一调研]已知集合A ={-1,1},B ={x |x 2
-2ax +b =0},若B ≠∅且A ∪B =A ,求a ,b 的值.
解 B ≠∅且A ∪B =A ,所以B ≠∅且B ⊆A ,故B 存在两种情况: (1)当B 含有两个元素时,B =A ={-1,1},此时a =0,b =-1; (2)当B 含有一个元素时,Δ=4a 2
-4b =0,∴a 2
=b . 若B ={1}时,有a 2
-2a +1=0,∴a =1,b =1. 若B ={-1}时,有a 2+2a +1=0,∴a =-1,b =1.
综上:⎩
⎪⎨
⎪⎧
a =0,
b =-1或⎩
⎪⎨
⎪⎧
a =1,
b =1或⎩
⎪⎨
⎪⎧
a =-1,
b =1.。