弹簧问题(能量)
机械能守恒弹簧能量和连接体问题

(1)当B的速度最大时,弹簧的伸长量; (2)B的最大速度.
[解析] (1)通过受力分析可知:当B的速度最大时,其加速度为 0,细绳上的拉力大小为F=4mgsin30°=2mg,此时弹簧处于伸长 状态,弹簧的伸长量为xA,满足
k xA=F-mg 则xA=
(2)开始时弹簧压缩的长度为:xB=
【举例应用】
物体从A到C的过程,由机械能守恒定律得:
由以上两式解得: A处的弹性势能为:
二、举例应用
4、如图所示,在倾角为θ的固定的光滑斜面上有 两个用轻质弹簧相连接的物块A 、B .它们的质量都为
m,弹簧的劲度系数为k , C为一固定挡板。系统处于静
止状态,开始时各段绳都处于伸直状态。现在挂钩上挂 一物体P,并从静止状态释放,已知它恰好使物体B离开 固定档板C, 但不继续上升(设斜面足够长和足够高)。 求:物体P的质量多大?
(1)物体C下降到速度最大时,地 面对B的支持力多大? (2)物体C下降的最大速度?
解析(1)C物体下降过程中,当C物体的加速度为0时,下落速 度最大, 对C: F=2.5mg
对A、B和弹簧整体:N=(2m+3m)g-F 则地面对B物体的支持力:N=2.5mg
(2)未加C时,A处于静止状态,设弹簧压缩量为x1 则有: 2mg=kx1 得 x1 =
做功的特点:与路径无关,只取决于初末状态弹簧形变量的 大小。这一点对于计算弹力的功和弹性势能的改变是非常重 要的,必须引起重视。
二、举例应用
1、如图所示,一轻质弹簧竖直放置,下端固定在水平面上, 上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端 被压缩到b位置.现将重球(视为质点)从高于a位置的c位置 沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以 下关于重球运动过程的正确说法应是( ).
高考物理弹簧之能量转化专题公开课课件(13张)

• 3)弹簧所获得的最大弹性势能Ep.
• 例4. 如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一 长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平 方向,AB管内有一原长为R、下端固定的轻质弹簧。投饵时,每次总将弹簧 长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼 饵弹射出去。设质量为m的鱼饵到达管口C时,对管壁的作用力恰好为零。 不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹 簧的弹性势能。
• (1)质量为m的鱼饵到达管口C时的速度大小v1; ((23))弹已簧知压 地缩 面到 与水0.5面R时相的距弹1.5性R势,能每次Ep;弹射时只
放置一粒鱼饵,鱼饵的质量在 到m之间变化, 且均能落到水面。则鱼饵落水时离管口最大
水平距离及最小距离
能量转化综合计算题中弹簧充当的角色
• 例3. 如图所示,在同一竖直平面内,一轻质弹簧下端固定在位置 E,上端恰好与水平线CD齐平,静止在倾角为θ=53°的光滑斜面 上.一长为L=1.8m的轻质细绳一端固定在O点上,另一端系一质 量为m=1kg的小球,将细绳拉至水平,使小球从位置A由静止释放, 小球到达最低点B时,细绳刚好被拉断.之后小球恰好沿着斜面 方向撞上弹簧上端并将弹簧压缩,最大压缩量为x=0.5m.取 g=10m/s2,sin53°=0.8,cos53°=0.6.求:
弹簧之能量转化专题
• 思考1:蹦极全程有哪些能量参与转化? • 思考2:从能量转化的角度说出弹簧的作用?
• 问题1:蹦极过程中人什么时候开始减速? • 问题2:什么时候弹性势能最大? • 问题3:若不计空气阻力及摩擦力,当弹性绳向上恢复原长 瞬间人的动能与弹性绳刚伸直瞬间相比有何变化?
物体拉弹簧能量守恒方程

物体拉弹簧能量守恒方程
当一个物体受到弹簧的拉力并移动时,能量守恒方程可以用来
描述这一过程。
假设弹簧的劲度系数为k,物体在弹簧上的位移为x。
在这种情况下,弹簧的势能可以表示为(1/2)kx^2。
当物体受到弹簧
的拉力移动时,它的动能可以表示为(1/2)mv^2,其中m是物体的质量,v是物体的速度。
根据能量守恒定律,系统的机械能在运动过程中保持不变。
因此,当物体受到弹簧的拉力移动时,弹簧的势能和物体的动能之和
保持不变。
这可以用以下方程表示:
(1/2)kx^2 + (1/2)mv^2 = E.
其中E表示系统的总机械能,它在整个过程中保持不变。
这个
方程描述了弹簧和物体之间的能量转化过程,其中弹簧的势能和物
体的动能相互转化,但它们的总和保持不变。
这个方程可以用来解决各种与弹簧和物体运动相关的问题,例
如计算物体在弹簧上的位移、速度或者弹簧的劲度系数等。
它是描
述弹簧振动和弹簧系统动力学行为的重要工具,能够帮助我们理解
和预测弹簧系统的运动规律。
总之,能量守恒方程在描述物体受到弹簧拉力移动时的能量转
化过程中起着重要作用,它是描述弹簧系统动力学行为的基础之一。
通过应用这个方程,我们可以更好地理解和分析弹簧系统的运动特性。
弹簧问题能量

弹簧的能量专题1、如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环•圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。
现让圆环由静止开始下滑,已知弹 簧原长为L ,圆环下滑到最大距离时弹簧的长度变为 2L (未超过弹性限度),则在圆环下滑到最大距离的过程中 ,圆环的机械能守恒F — kdmB.该过程中,物块 A 的速度逐渐增大A. B. 弹簧弹性势能变化了mgLC. D. 2、圆环下滑到最大距离时•所受合力为零圆环重力势能与弹簧弹性势能之和保持不变 如图所示,轻质弹簧一端固定,另一端与质量为 m 套在粗糙竖直固定杆 A 处的圆环相 连,弹簧水平且处于原长。
圆环从 A 处由静止开始下滑, 经过B 处的速度最大,到达 C 处的 速度为零,AC=h 。
圆环在C 处获得一竖直向上的速度 v ,恰好能回到 A;弹簧始终在弹性限度之内,重力加速度为 g ,则圆环d _____ 4A. 下滑过程中,加速度一直减小B. 下滑过程中,克服摩擦力做功为1 2 mv 4C. 在C 处,1 弹簧的弹性势能为1mv 2-mghD. 上滑经过 B 的速度大于下滑经过 B 的速度3、在倾角为 m ( m v m ),弹簧的劲度系数为 用一恒力F 沿斜面方向拉物块 为d ,速度为v .则()m 、0的光滑斜面上放有两个用轻弹簧相连接的物块 A 、B , k , C 为一固定挡板,系统处于静止状态, A 使之向上运动,当物块B 刚要离开C 时,物块A 运动的距离它们的质量分别为 如图所示.现开始 A.此时物块A 的加速度为R h CA 所受重力做功的功率为 m i gv弹簧弹性势能的增加量为120 — - m i v24、如图5-4-7所示,固定斜面的倾角 0 = 30°,物体A 与斜面之间的动摩擦因数□=#,轻弹簧下端固定在斜面底端, 弹簧处于原长时上端位于 C 点。
用一根不可伸长的轻绳通过轻 质光滑的定滑轮连接物体 A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2mB 的质量为m初始时物体A 到C 点的距离为L 。
高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
弹簧能量转化类问题

1.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m 。
当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m 。
挡板及弹簧质量不计,g 取10 m/s 2,sin37°=0.6,求: (1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm 。
【解析】(1)物体从开始位置A 点到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =12mv 20+mgl AD sin37①物体克服摩擦力产生的热量为:Q =F f x ② 其中x 为物体的路程,即x =5.4 m ③ F f =μmg cos37°④由能量守恒定律可得ΔE =Q ⑤ 由①②③④⑤式解得μ=0.52。
(2)由A 到C 的过程中,动能减少ΔE k ′=12mv 20⑥重力势能减少ΔE p ′=mgl AC sin37°⑦ 摩擦生热Q ′=F f l AC =μmg cos37°l AC ⑧由能量守恒定律得弹簧的最大弹性势能为: ΔE pm =ΔE k ′+ΔE p ′-Q ′⑨联立⑥⑦⑧⑨解得ΔE pm =24.5 J 。
【答案】(1)μ=0.52 (2)24.5 J 3.[2017·黄冈调研]如图所示,竖直平面内,长为L =2 m 的水平传送带AB 以v =5 m/s 顺时针传送,其右下方有固定光滑斜面CD ,斜面倾角θ=37°,顶点C 与传送带右端B 点竖直方向高度差h =0.45 m ,下端D 点固定一挡板。
一轻弹簧下端与挡板相连,上端自然伸长至E 点,且C 、E 相距0.4 m 。
现让质量m =2 kg 的小物块以v 0=2 m/s 的水平速度从A 点滑上传送带,小物块传送至B 点后飞出恰好落至斜面顶点C 且与斜面无碰撞,之后向下运动。
动量能量---弹簧类问题
我成功,因为我志在成功!一:形变量相同时,弹性势能相同1.如图所示,质量mB =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k =100N /m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA =1.6kg 的小球A 连接。
已知直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°。
初始时使小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的张力F 为45N 。
已知AO1=0.5m ,重力加速度g 取10m /s2,绳子不可伸长.现将小球A 从静止释放,则:(1)在释放小球A 之前弹簧的形变量;(2)若直线CO1与杆垂直,求物体A 运动到C 点的过程中绳子拉力对物体A 所做的功;(3)求小球A 运动到底端D 点时的速度。
二.两过程代换2.(20分)如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水 平地面上,弹簧的劲度系数为k ,木块A 和木块B 的质量均为m.(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高 度时,木块B 将离开水平地面.(2)若弹簧的劲度系数k 是未知的,将一物块C 从A 的正上方某位 置处无初速释放与A 相碰后,立即粘在一起(不再分离)向下运动,它 们到达最低点后又向上运动。
已知C 的质量为m 时,把它从距A 高H 处释放,则最终能使B 刚好要离开地面。
若C 的质量为2m,要使B 始终不离开地面,则释放时,C 距A 的高度h 不能超过多少? 三、完全压紧不能再压缩:3、如图6-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v0. (1)求弹簧所释放的势能ΔE.(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE ′是多少? (3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为2v0,A 的初速度v 应为多大?变式:如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为mA=1kg ,mB=1kg ,mC=2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失).现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在B 、C 之间的弹簧第一次恢复到原长时追上B ,并且与B 发生碰撞后粘在一起.求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值.四、弹簧中的临界问题:4、多过程分析(11分)在赛车场上,为了安全起见,在车道外围一定距离处一般都放有废旧的轮胎组成的围栏。
弹簧模型中能量问题
cm处自由下落到弹簧上,当物体压缩弹簧到距地面22cm
(不计空气阻力, 取g = l0m/s2) ;有 A.物体的动能为1J
(AC)
B.物块的重力势能为1.08J
C.弹簧的弹性势能为0.08J
D.物块的动能与重力势能之和为2.16J
8
课后练习:如图所示,质量均为m的A、B两球间有压缩的 处于锁定状态的轻、短弹簧(两球的大小尺寸和弹簧尺寸 都可忽略,它们整体可视为质点).若将它们放置在水平 面上竖直光滑的发射管内,解除锁定时.A球能上升的最大 高度为H.现在让两球包括锁定的弹簧从水平面出发,沿半 径为R的光滑半圆槽从右侧由静止开始下滑,至最低点时, 瞬间锁定解除,求A球离开圆槽后能上升的最大高度.
弹簧模型中的能量问题
1
例1:水平面上,A点左侧光滑、右侧粗糙(动摩擦因
数为µ)。在A点左侧,一原长轻弹簧,右端固定在墙
上,左端与静止的物块P接触。用恒力F将物块压缩至 O点时速度最大,此刻撤去恒力。已知物块的质量为 m ,重力加速度为g,弹簧的劲度系数为k。则撤去推 力后,物块能在粗糙的水平面上滑行多远?
O
A
4
例3:如图,质量为m1的物体A经一轻质弹簧与下方地面 上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B 都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端
连物体A,另一端连一轻挂钩。开始时各段绳
都处于伸直状态,A上方的一段绳沿竖直方向。
现在挂钩上挂一质量为m3的物体C并从静止状 态释放,已知它恰好能使B离开地面但不继续
a
b
3
例2:如图所示,一根轻弹簧竖直放置在地面上,上
端为O点,某人将质量为m 的物块放在弹簧上端O处,
使它缓慢下落到A处,放手后物块处于平衡状态,在
动量与能量综合问题归类分析
量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0
①
设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J
③
⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。
或
v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:
高中物理弹簧弹力问题(含答案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧的能量专题
1、如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环.圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。
现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到 最大距离的过程中
A .圆环的机械能守恒
B .弹簧弹性势能变化了mgL
C .圆环下滑到最大距离时.所受合力为零
D .圆环重力势能与弹簧弹性势能之和保持不变
2、如图所示,轻质弹簧一端固定,另一端与质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长。
圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC=h 。
圆环在C 处获得一竖直向上的速度v ,恰好能回到A ;弹簧始终在弹性限度之内,重力加速度为g ,则圆环
A .下滑过程中,加速度一直减小
B .下滑过程中,克服摩擦力做功为214
mv C .在C 处,弹簧的弹性势能为214
mv mgh D .上滑经过B 的速度大于下滑经过B 的速度
3、在倾角为θ的光滑斜面上放有两个用轻弹簧相连接的物块A 、B ,它们的质量分别为m 1、m 2(m 1<m 2),弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,如图所示.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,当物块B 刚要离开C 时,物块A 运动的距离为d ,速度为v .则( )
A .此时物块A 的加速度为F -kd m 1
B .该过程中,物块A 的速度逐渐增大
C .此时物块A 所受重力做功的功率为m 1gv
D .该过程中,弹簧弹性势能的增加量为
Fd -m 1gd sin θ-12m 1v 2
4、如图547所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点。
用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L 。
现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点。
已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:
图547
(1)物体A 向下运动刚到C 点时的速度;
(2)弹簧的最大压缩量;
(3)弹簧的最大弹性势能。
5、如图所示,质量m B =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k=100N/m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O 1、O 2后,另一端与套在光滑直杆顶端的、质量m A =1.6kg 的小球A 连接.已知
直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°.初始时使
小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的
张力F 为45N .已知AO 1=0.5m ,重力加速度g 取10m/s 2
,绳子
不可伸长.现将小球A 从静止释放,则:
(1)在释放小球A 之前弹簧的形变量;
(2)若直线CO 1与杆垂直,求物体A 运动到C 点的过程中绳子
拉力对物体A 所做的功;
(3)求小球A 运动到底端D 点时的速度.
6、如图所示,质量为m 1的物体A 经一轻质弹簧与下方斜面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,斜面是光滑的,其倾角为θ.A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿斜面方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开挡板但不继续上升.若将C 换成另一个质量为(m 1+m 3)的物体D ,仍从上述初始位置由静止状态释放,已知重力加速度为g .求:
(1)当B 刚离开挡板时物体A 的加速度
(2)当B 刚离开挡板时D 的速度大小是多少?
7、如图所示,倾角为θ的直角斜面体固定在水平地面上,其顶端固定有一轻质定滑轮,轻质弹簧和轻质细绳相连,一端接质量为m2的物块B,物块B放在地面上且使滑轮和物块间的细绳竖直,一端连接质量为m1的物块A,物块A放在光滑斜面上的P点保持静止,弹簧和斜面平行,此时弹簧具有的弹性势能为E p.不计定滑轮、细绳、弹簧的质量,不计斜面、滑轮的摩擦,已知弹簧劲度系数为k,P点到斜面底端的距离为L.现将物块A缓慢斜向上移动,直到弹簧刚恢复原长时的位置,并由静止释放物块A,当物块B刚要离开地面时,物块A的速度即变为零,求:在以后的运动过程中物块A最大速度的大小.
8、如图所示,倾角θ=37°的光滑且足够长的斜面固定在水平面上,在斜面顶端固定一个轮半径和质量不计的光滑定滑轮D,质量均为m=1kg的体A和B用一劲度系数Bk=240N/m 的轻弹簧连接,物体B被位于斜面底端且垂直于斜面P的挡板P挡住.用一不可伸长的轻绳使物体A跨过定滑轮与质量为M的小环C连接,小环C穿过竖直固定的光滑均匀细杆,当整个系统静止时,环C位于Q处,绳与细杆的夹角α=53°,且物体B对挡板P的压力恰好为零.图中SD水平且长度为d=0.2m,位置R与位置Q关于位置S对称,轻弹簧和定滑轮右侧的绳均与斜面平行.现让环C从位置R由静止释放,sin37°=0.6,cos37°=0.8,g取10m/s2.求:
(1)小环C的质量M;
(2)小环C通过位置S时的动能Ek及环从位置R运动到位置S的过程中轻绳对环做的功W T;
(3)小环C运动到位置Q的速率v.
9、如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡上的A点由静止开始下滑,经过时间t滑到斜坡上的B点,并与一减速弹簧相接触,滑板继续下滑距离x到达C点时速度减为零.已知斜坡的倾角为θ,重力加速度为g,滑板与人的总质量为m,滑板与沙的动摩擦因数为μ,不计弹簧的质量.求:
(1)定性说明滑板从接触弹簧到速度变为零的过程中加速度和速度的变化情况;
(2)由A到B过程中滑板克服摩擦力所做的功;
(3)由B到C过程中,人和滑板总共损失的机械能以及弹簧的最大弹性势能各为多大?
10、如图所示,AB是与水平方向成θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙,BP为圆心角等于143°,半径R=3m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一端在斜面上C点处,现有一质量m=4kg 的物块在外力作用下将弹簧缓慢压缩到D点后(不栓接)释放,物块经过C点时速度为18m/s,
=2m,物块与斜面CB部分之间的动摩擦因数μ=0.5,X BC=9m,P处安装一个竖直弹性薄挡板,小物块与挡板碰撞后以原速率弹回,sin37°=0.6,cos37°=0.8,g取10m/s2.
(1)物块从D点运动到C点的过程中,弹簧对物块所做的功;
(2)物块第一次到达P点的速度;
(3)物块第一次返回斜面后将弹簧压缩至最短点E(E为DC的中点),则此时弹簧的弹性势能;
(4)整个运动过程中,物块在斜面上运动时可以有多少次通过CB之间的M点(M与C
相距0.5m)。