高中数学模型解题法

合集下载

高中数学通用模型解题方法及技巧

高中数学通用模型解题方法及技巧

高中数学通用模型解题方法及技巧有许多的高中生是特别的想知道,高中数学通用模型的解题方法和技巧有哪些的,我整理了相关信息,盼望会对大家有所关心!高中数学通用模型解题有什么高考数学经典解题技巧一、选择题解答模型策略近几年来,陕西高考数学试题中选择题为10道,分值50分,占总分的33.3%。

注意多个学问点的小型综合,渗逶各种数学思想和方法,体现基础学问求深度的考基础考力量的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。

精确是解答选择题的先决条件。

选择题不设中间分,一步失误,造成错选,全题无分。

所以应认真审题、深化分析、正确推演、谨防疏漏;初选后仔细检验,确保精确。

快速是赢得时间,猎取高分的秘诀。

高考中考生“超时失分”是造成低分的一大因素。

对于选择题的答题时间,应当掌握在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。

一般地,选择题解答的策略是:①娴熟把握各种基本题型的一般解法。

②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,敏捷运用特例法、筛选法、图解法等选择题的常用解法与技巧。

③挖掘题目“共性”,寻求简便解法,充分利用选择支的示意作用,快速地作出正确的选择。

二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。

陕西高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。

依据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求同学填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。

由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题消失。

二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。

在解答填空题时,基本要求就是:正确、快速、合理、简捷。

高中数学抛物线的一个重要模型(模型解题法)

高中数学抛物线的一个重要模型(模型解题法)

DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。

过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。

在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。

例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。

高中数学解题模型有哪些

高中数学解题模型有哪些

高中数学解题模型有哪些?
1.数量关系模型:单价X数量=总价速度X时间=路程
2.方程——等量关系模型包括正反比例
3.运算定律:运算定律成为简便运算的模型
模型1:元素与集合模型
模型2:函数性质模型
模型3:分式函数模型
模型4:抽象函数模型
模型5:函数应用模型
模型6:等面积变换模型
模型7:等体积变换模型
模型8:线面平行转化模型
模型9:垂直转化模型
模型10:法向量与对称模型
模型11:阿圆与米勒问题模型
模型12:条件结构模型
模型13:循环结构模型
模型14:古典概型与几何概型
模型15:角模型
模型16:三角函数模型
模型17:向量模型
模型18:边角互化解三角形模型
模型19:化归为等差等比数列解决递推数列的问题模型模型20:构造函数模型解决不等式问题
模型21:解析几何中的最值模型。

高中数学解题方法-----导数大题的常用找点技巧和常见模型

高中数学解题方法-----导数大题的常用找点技巧和常见模型

x
min
当 时, , 0 < a <1
( ) f
( −1)
=
a e2
+
a
− e
2
+1=
a
+
ea
+ e2
e2

2
>0
, f
ln
3
− a
a
=
a
3 a
2 −1
+
(a

2)
3 a
−1

ln
3 a
−1
=
3 a
−1−
ln
3 a
−1
>
0
其中 , ,所以 在 和 上各有一个零点 1 −1 < ln
(2)若 f (x) 有两个零点,求a 的取值范围.
解析:( ) ( )( ) 1 f '( x) = 2ae2x + (a − 2) ex −1 = 2ex +1 aex −1
若 a ≤ 0 ,则 f '(x) < 0 恒成立,所以 f ( x) 在 R 上递减;
若 ,令 ,得 a > 0
f '( x) = 0 ex = 1 , x = ln 1 .
f (x) < 0 a > 0 min
f
(x) min
=
f
ln
1 1 a = 1− a
− ln
1 a
<0.
构造函数 g ( x) =1− x − ln x , x > 0 . 易得 g '( x) = −1− 1 < 0 ,所以 g ( x) =1− x − ln x 单调递减. x

高中数学解题大模型

高中数学解题大模型

高中数学解题大模型随着高中数学的不断发展,解题技巧也在不断的深入探索。

高中数学的解题是一门系统性的研究,解题模型也是一个重要的组成部分。

解题模型是指用某种格式或形式,把问题解决的方法表达出来,且表达形式应当比较完整,从而使问题得到解决。

在解题模型的研究中,有一系列常用的、核心的解题模型,这些模型在高中数学解题中都有其重要的作用。

下面将介绍几种最常用的解题模型。

1、概率解题模型。

概率解题模型用来解决概率的计算问题,其基本形式为:某事件的概率=此事件的发生的次数/可能发生的所有事件的次数。

概率解题模型在高中数学中有着广泛的应用。

2、数列解题模型。

数列解题模型是高中数学解题中最重要的一种模型,用来解决数列的求和、求平均数等问题。

这种模型一般采用数列通项公式的形式,通过构造数列公式,对一定规律的数列求出其求和、求平均数等关键数据。

3、二次函数解题模型。

二次函数解题模型是高中数学中常见的一种解题模型,指的是将二次函数的图像、周长、最大值、最小值、极值点、凹凸性等问题,用二次函数的函数表达式或变量关系来解决。

4、排列组合计算模型。

排列组合计算模型是指从所有可能的排列组合中选出满足某一要求的排列组合的个数,此类问题通常采用“排列组合数公式”的形式进行求解。

5、几何解题模型。

几何解题模型是指用直线、圆、三角形、椭圆等图形的性质来解决几何问题的模型,其中最重要的两个性质是“相似性”和“平行性”。

通过这两个性质,一些复杂的几何问题可以被轻松解决。

6、比例解题模型。

比例解题模型是指用比例关系解决问题的模型,它是高中数学中最常用的解题模型之一,它可以用来解决比例关系问题,如比例结合题、比例平分题、比例比较题等。

7、函数解题模型。

函数解题模型是指用函数的单调性和凹凸性来解决函数的一类问题,它是高中数学解题中常用的一种模型,有着广泛的应用。

以上就是高中数学解题模型大全,在高中数学解题中,这些模型都有重要的作用,对于学生们,要掌握这些模型,把它们正确的应用到解题中,以便解决问题。

高中数学模型法解题-滑轮组-函数模型

高中数学模型法解题-滑轮组-函数模型

高中数学模型法解题-滑轮组-函数模型1. 引言滑轮组是高中数学中常见的问题类型之一,它涉及到力的作用和力的传递。

通过建立函数模型,我们可以解决滑轮组问题,计算力的大小和方向。

2. 滑轮组问题的解题步骤解决滑轮组问题可以遵循以下几个步骤:2.1 确定系统受力情况首先,我们需要确定滑轮组系统中受到的力,包括外力和内力。

外力可以是给定的力或者需要求解的力,而内力通常是滑轮组中不同部分之间的相互作用力。

2.2 建立受力方程根据受力情况,我们可以建立各个滑轮和绳子的受力方程。

利用牛顿第二定律和力的平衡条件,我们可以得到一系列的方程。

2.3 建立关系式根据滑轮组的几何关系和运动规律,我们可以建立各个滑轮和绳子之间的关系式。

这些关系式可以是绳子的长度关系、绳子与滑轮的接触关系等。

2.4 建立函数模型根据步骤2和步骤3的结果,我们可以建立滑轮组问题的函数模型。

函数模型可以包括力与角度、力与绳长等关系。

2.5 求解问题利用建立的函数模型,我们可以求解出需要计算的力的大小和方向,或者其他与问题相关的量。

3. 示例设有一个包含三个滑轮的滑轮组,绳子上施加了一个外力F1,求解绳子上的张力。

以下是解题步骤:3.1 确定系统受力情况绳子上的力分为外力和内力。

外力为F1,内力为绳子间的拉力T1、T2、T3。

3.2 建立受力方程根据牛顿第二定律和力的平衡条件,可以建立以下方程:T1 + T2 = 2T3T1 + T2 - F1 = 03.3 建立关系式滑轮组中的滑轮与绳子之间的关系可以表示为:L1 = 2L3L1 + L2 + L3 = L其中L1、L2、L3为绳子的长度,L为绳子的总长度。

3.4 建立函数模型根据步骤3中的关系式,我们可以将T1、T2、T3与绳子的长度L1、L2、L3联系起来,建立函数模型。

3.5 求解问题利用建立的函数模型,我们可以求解出绳子上的张力T1、T2、T3。

4. 总结通过建立函数模型,我们可以解决高中数学中关于滑轮组的问题。

143个高中高频数学解题模型

143个高中高频数学解题模型

143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。

解一元一次方程的方法主要有求解法和图解法。

2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。

二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。

解一元二次方程的方法主要有配方法和求根公式。

2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。

解一元二次不等式的方法主要有因式分解法和图像法。

三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。

解二元二次方程的方法主要有配方法和消元法。

2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。

解二元二次不等式的方法主要有图解法和代数法。

四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。

2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。

五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。

2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。

六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。

模型解题法 高中数学 模型十五 角模型

模型解题法 高中数学 模型十五 角模型

模型十五角模型(一)单角模型我们在解决三角函数问题的时候经常遇到这样一类题目:题目只涉及一个未知角或者已知非特殊角,通过二倍或者与已知特殊角的组合,加上各种三角函数的综合使用,使得题目形式变化多各类,丰富多彩,那么在相关的题目中是如何体现这种角的组合,以及三角函数的综合使用的呢?例1 化简y=).A.−sin2−cos2B.sin2+cos2C.sin2−cos2D.−sin2+cos2例2 已知1+tanα1−tanα=3+22,求:(1)sinα+2cosα2sinα−cosα;(2)3cos2π−α+sin(π+α)⋅cosπ−α+2sin2(α−π)的值.例3(1)设cos(−x)=cos x,则x的取值范围是____;(2)设cos(−x)=cos x,则x的取值范围是____;(3)设sin(−x)=sin x,则x的取值范围是____;(4)设sin(−x)=sin x,则x的取值范围是____.例4已知sinθ+cosθ=15,θ∈0,π,则tanθ=____.例5已知关于x的方程2x2−3+1 x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)sin2θsinθ−cosθ+cosθ1−tanθ的值;(2)m的值;(3)方程的两根及θ的值.模型归纳有关三角函数的运算,当只出现一个未知角,但伴随与特殊角的组合或多种三角函数综合使用使三角运算丰富多样,要解决这些问题,我们需要掌握一个基本原则,那就是“化简”,使用的公式包括同角三角函数基本关系式和诱导公式.同角三角函数基本关系式有两个:sin2α+cos2α=1,tanα=sinαcosα.在使用同角三角函数基本关系式的时候需要注意:(1)多种函数同时出现时,要正切化弦;(2)正余弦互求时,通过角的范围确定正负.诱导公式比较多,总的口诀是:“奇变偶不变,符号看象限”,其中“奇偶”是指在未知角上附加的角是π2的多少倍,如果是奇数倍,名称需要改变,如果是偶数倍,名称不改变;“符号看象限”是指借助当未知角为锐角时,组合角所在象限所决定的三角函数的正负,来确定是否添加负号.例如sin(π2+α)中,未知角α上附加的角符号看象限是π2的一倍(奇数倍),因此名称改变,另外当α为锐角时,π2+α为第二象限角,sin(π2+α)>0,因此sin(π2+α)=cos α.这类题目的解题模型是:用诱导公式将角统一,排除特殊附加角的干扰→使用同角三角基本关系式,尽量做到:函数种类、项数减少,次数降低,分式化为整式,无理式化为有理式→保留结果:数字或者最简的三角函数式模型演练1.已知cos(π+α)=−35,α为第四象限角,则sin(−2π+α)=( ).A.35B.−45C.±45 D .35 2.已知tan x =13,求(1)2sin x−cos x sin x +cos x ;(2)2sin 2x +sin x cos x .(二)多角模型我们解决完一个角的三角函数问题之后,开始研究多个角的和或差的三角函数,这种问题不仅在题设和问题构造上变化多样,而且综合使用正弦、余弦和正切函数的和角或差角公式,使问题难度加大,能够发现和研究多个角之间的关系,以及研究不同角三角函数值之间的关系是解决多角问题的关键,那么在具体的题目当中,是如何构建多角问题,以及如何考查和、差角公式呢?例1 求cos 10°sin 50° tan 10°− 3 的值.例2 已知tan α+β =7,tan α⋅tan β=35, 求sin α的值.例3 若α∈ 0,π ,cos α+π6 =35,求sin α的值.例4 已知π2<β<α<3π4,cos α−β =1213,sin(α+β)=−35,求sin α的值. 例5 已知sin(x +y )=13,sin x −y =15, 求tan x tan y 的值.例6 已知sin α=55,sin β= 1010, 且α,β都是锐角,求α+β的值.例7 已知tan(α−β)=12,tan β=−17, 且α,β∈ 0,π , 求2α−β的值.模型归纳对于角之间的关系,我们应该辩证地来看,比如当把α+β看成α与β的和不方便解决问题时,也可以把α看成α+β与β的差,再如2α−β可以看成α乘以2再与β作差,也可以看成α与α−β的和,或者看成α−β的2倍与β的和等等.对于多角三角函数的关系问题,主要是对和差角公式的结构的研究,比如,sinα−β=sinαcosβ−cosαsinβ中共涉及到三个角α−β、α和β,五个三角函数sinα−β、sinα、cosβ和sinβ,没有涉及α−β的余弦,针对这一特点,我们将未知(待求)于等式左侧,两个已知(条件)于等式右侧.对于弦函数和切函数同时出现的时候,除非出现弦函数齐次式,一般都需要将切函数化为弦函数.对于给值求角的题目,通常是借助角的某一个三角函数来求,需要注意两点:(1)三角函数种类的选用,以不造成多解可能为宜,比如当角的范围为0,π时,尽量不选用正弦,因为正弦值求完之后如果不等于,确定它是锐角或钝角比较麻烦,可以考虑使用余弦;(3)三角函数值算完以后,尽量确定该角尽量小的一个范围,以确定该角的具体取值.对于同一个角的正弦和余弦的组合,我们通常是逆向使用和差角的正余弦公式,以达到化简的目的,比如sinα+3cosα=2sin α+π3等.这类题目的解题模型是:分析各个角之间的和或者差的关系,注意辩证使用→根据题目条件和特点,结合角之间的关系选用恰当的和差角公式→根据选用公式的结构特点,使用恰当的运算技巧,进行相关运算模型演练1.锐角α,β满足cosα=45,cos(α+β)=35,则sinβ=().A.1725B.35C.725D.152.已知cosα−cosβ=12,sinα−sinβ=−13, 则cosα−β=().A.5972B.5173C.1336D.12133.已知sinα+sinβ+sinγ=0, 则cos(β−γ)=().A.−1B.−12C.12D. 1(三)倍角模型二倍关系是两个角之间一种非常特殊的关系,二倍角公式是三角函数的一种重要变形,其表现形式多样,有时比较直接,有时不是特别明显,二倍角公式及其变形公式是解决三角函数问题的一种重要手段,也是考查的一个重要内容.那么二倍关系在题目当中如何体现,二倍角公式又是如何考查的呢?精选例题例1求值:cosπ5cos2π5.例2已知α为锐角,且tan12,求sin2αcosα−sinαsin2αcos2α的值.例3化简:1+cosθ−sinθ1−sinθ−cosθ+1−cosθ−sinθ1−sinθ+cosθ.例4 求函数sin2x+2sin x cos x+3cos2x的最大值,及相应x的值.例5 己知sin2θ=a,θ∈π2,3π4,那么sinθ+cosθ=____.模型归纳对于二倍角的余弦公式,我们需要记住几个重要变形:1+cos2α=2cos2α,1−cos2α=2sin2α,cos2α=1+cos2α2,sin2α=1−cos2α2等,另外我们需要了解二倍角公式及其变形公式的结构特点是:协调角的倍数和三角函数的次数的关系,如cos2α=2cos2α−1等号左边角2倍,三角发次数1次,等号右边角1倍,三角函数次数2次.了解这一特点,我们可以权据题目的要求,在倍数与次数之间进行转化,比如例4,减小次数,增大倍数.对于二倍角的正弦公式sin22α=2sinαcosα,我们关注角倍数与三角函数次数情报同时,我们还应关另一个细节,就是关于三角函数的名称,等号左侧只有一个正弦,等号右侧一个正弦,一个余弦,这就意味着:正向使用公式,派生出一个余弦;逆向使用公式,隐藏掉一个余弦.比如例1,题目所涉及两个角有2倍关系,可以考虑使用二倍角公式,另外以余弦形式出现,可以考虑逆向使用二倍角正弦公式,以求将余弦逐个隐藏.我们还应记住几个和1有关的二倍角公式变形:1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2这类题目的解题模型是:根据题目的结构特点,确定已知与待求之间角的关系:倍角关系选择适当的二倍角公式或变形公式先利用公式进行变形转化,再将复杂式子化简或求值模型演练1.若25π≤α<3π,则2+2cosα+1−sinα−sinα2+cosα2可化简为A.0B.2cosα2−sinα2C.−2cosα2−sinα2D.2cosα22.已知f x=1+x,当π≤θ<54π时,f sin2θ−f−sin2θ为A. 2sinθ B.−2sinθ C.−2cosθD. 2cosθ3.cos2π15cos4π15cos8π15cos16π15的值为____.(四)三角函数线模型模型思考三角函数线是借助有向线段来表示三角函数的方法,是三角函数的图形表示,但是我们在做题的时候,单纯使用三角函数线有时并不是十分快捷,为了快捷有效地解决问题,我们可以考虑将三角函数线进行改造,得到改良后的三角函数线即我们所说的“大风车”模型,那么什么是“大风车”,“大风车”又该如使使用以及解决什么问题呢?精选例题例1 求满足sinα>12的角α的取值范围.例2 若A是△ABC的内角,则sin A+cos A的取值范围是____.例3 由不等式组sinα−cosα<0cosα+sinα>0,所确定的角的α取值范围是____.例4 如果α是第三象限角,且满足1+sinα=cosα2+sinα2,那么α2是A.第四象限角B.第三象限角C.第二象限角D.第一象限角例5 设0≤α<π2,比较sinα与cosα的大小关系.例6 设α,β是第二象限角,那么下列结论正确的是()A.tanα>tanβB.tanα<tanβC.cosα>sinαD.cosα<sinα例7 已知sinα>cosβ,那么下列结论成立的是()A.若α,β是第一象限角,cosα>cosβB.若α,β是第二象限角,tanα>tanβC.若α,β是第三象限角,cosα>cosβD.若α,β是第四象限角,tanα>tanβ例8 若α,β为锐角,且cosα>sinβ,则()A.α+β<π2B. α+β>π2C. α+β=π2D. α<β模型归纳通过分析,我们可以发现借助“大风车”图示,可以快捷有效地进行同角不同函数或不同角同一三角函数的大小比较或解决取值范围的问题.我们将各种“大风车”总结如下:(1)正弦特点是:左右对称,向上集中.(2)余弦特点是:上下对称,向右集中.(3)正切特点是:单向旋转,上下无穷(4)sinα+cosα特点是:左下最小,右上集中(5)sinα−cosα特点是:右下最小,左上集中这类题目的解题模型是:确定比较项:同角不同函数或同函数不同角通过选定的比较项,确定适归的“大风车”模型通过模型比较不同角或不同函数值的大小确定角或三角函数值的取值范围(五)和“1”有关的三角函数模型模型思考数字1作为数字的基本单位,在三角函数的运算中却有着广泛的应用,无论是特殊角三角函数值还是三角公式,无处不有1的影子,发现它,利用它,可以快速有效地解决在关三角函数的问题.那么,1是如何在题目中藏身,又是如何发挥它的作用的呢?精选例题例1 已知sin4α+cos4α=1,那么sinα+cosα=____.例2 已知sinα+cosβ=1,cosα+cosβ=1,则sinα+cosα=____.例3 已知sinθ+sin2θ=1,则cos2θ+cos4θ+cos6θ=____.例4 表达式1+sin2θ−cos2θ1+sin2θ+cos2θ可以化简为()A.tanθB.1tanθC.sinθD.2sinθ例5 化简:1+tan15°1−tan15°.例6 如果a sin x+cos x=1,b sin x−cos x=1,且x≠kπ (k为整数)那么ab等于A.−1B.0C.0.5D.1例7 已知sinαsinβ=1,则cosα+β=()A.−1B.0C.1D.±1例8 已知sinα+sinβ=2,求sin(α−β)的值.模型归纳对和“1”有关的公式与性质作一梳理:(1)特殊角sinπ2=1,cos0=1,tanπ4=1等等;(2)一般规律sin2α+cos2α=1,sinα≤1,cosα≤1等等;(3)公式变形1+sin2α=sinα+cosα2,1−sin2α=sinα−cosα2,1+cos2α=2cos2α,1−cos2α=2sin2α等等.这类题目的解题模型是分析题目:抓住特殊角或特殊值根据特殊角或特值的特点,选择适归的三角公式将特殊角或特殊值代入相关表达式计算模型演练=____.1.已知sin x+cos x=1,则sin x−cos x1+sin x cos x2.在△ABC中,若tan A⋅tan B>1,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学模型解题法
高中数学模型解题理念
数学模型解题首先需要明确以下六大理念(原则):
理念之一——理论化原则。

解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有
价值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的!
理论之二——个性化原则。

倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。

因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。

理论之三——能力化原则。

只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则
无力聚合!因此,充分训练我们的发散思维能力,尽情地展
开我们联想与想象的翅膀,才能在创新的天空自由地翱翔!
理论之四——示范化原则。

任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。

关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。

理论之五——形式化原则。

哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。

理论之六——习惯性原则。

关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。

这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。

第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。

第三个层次,主动的解题,就是对
题目的设计进行思考,如何通过增删条件,改变提问等方法确立结论成立的最少条件、获得最深结论,即如何以本题目为原型进行变式训练,或进行引申、演变、拓展、推广等等。

高中数学模型解策略设计
具体解释:关于解题策略:实质上就是通过审题来构思、探究解题思路的思维过程。

解题必须充分运用条件和尽可能满足结论的需要,因而,通过审题全面掌握题意了解题的基础与首要任务。

那么,审题要从哪些方面进行呢?这里有五点建议:
(1)初步地全面理解题意(理解它的每一个字、词、每一句话),能清楚地理解全部条件和结论;
(2)准确地作出必要的图形,包括示意图;
(3)必要时,要把语言和不宜于直接计算的算式化为能直接计算的算式,把不便于进行数学处理的语言化为便于进行数学处理的语言;
(4)发现比较隐蔽的条件;
(5)根据题目的特征提供的启示(信息)预见主要步骤或主要原则。

这五项要求,前三项式基本的,后两项是较高的。

“数学模型解题法”解释
对于此“数学模型解题法”,需要明确其具体含义,主要有二:
一、“正向发散”:即分析解决问题的思维策略模型的探究与构建,是直接的、正向的、尽情地发散的,而且往往是针对一个具体问题的;
二、“逆向聚合”:将一些“相似”“甚至看似”“联系不大”的大同小异甚至“小学科”(如几何、代数、向量
等不同范围与形式)的题目进行简化、抽象,并对其分析解
决方法进行系统的归纳,概括,从中抽出具有共性即共同的解题规律性的东西。

“数学模型解题法”模型的程序设计及其操作要义
第一步:审题、识模
观察题设条件与所求结论的结构特征,这主要从代数结构与几何结构两个方面进行,对此结构特征进行广泛地联想与想象,与头脑中已有的认知结构中相关或相似特征相联系,用所寻求的认知结构“相似性”来演绎、指导对于现有知识结构的调动与激活,旨在对题目的类型与模型进行探索与识别。

第二步:简化、建模
通过分析,舍弃繁杂与次要因素,抓住主要矛盾及主要因素建立数学模型,将原问题转化为规范的、可实际操作的数学问题。

第三步:解模、引申
① 制订解题策略,并实施解题计划;
② 可从不同角度进行一题多解训练,以便于充分地发散;
③ 引申推广,扩大战果,并作变式训练,以从广、深两个维度认识问题的本质和规律。

第四步:释模、还原
将数学问题结果进行解释还原、检验、反证,以回归原问题,并总结出分析问题、解决问题的统一思维模型。

高中数学模型解题法案例分析
教育家钱仲寒说,每节课都是给学生自学的示范。

例题教学也不例外,它是通过引导学生挖掘典型题目的潜在教育教学价值,从不同方面不同层次锻炼思维品质,培养思维能力,以此培养自主学习能力,其作用直接表现为:
① 对新授课中的定义、定理、公式的内涵与外延进行深化,连点成线,线组成面,由面成体,构建立体认知结构网络;
②丰富应用含义,增加应用层次;
③ 概括提炼数学方法,进而形成数学思想,增强数学应用意识。

相关文档
最新文档