质点动力学
质点动力学

a2 b2
可见,质点的运动轨迹是以
a、b 为半轴的椭圆。对运动方
程求二阶导数,得加速度
13
aaxy
x a 2 cost y b 2 sint
2x 2 y
即
a axi ay j 2r
将上式代入公式中,得力在直角坐标轴上的投影
FFxy
max may
m 2x m 2 y
dv dt
积分。
如力是位置的函数,需进行变量置换
d v v d v , 再分离变量积分。 dt ds
16
[例3] 质量为m的质点沿水平x轴运动,加于质点上的水平为
F F0 cos t ,其中 F0, 均是常数,初始时 x0 0,v0 0 。
求质点运动规律。
解 研究质点在水平方向受力作用。建立质点运动微分方程
再积分一次
19
代入初始条件得 :
c1 v0 cos0 , c2 v0 sin 0 , c3 c4 0
则运动方程为:
则轨迹方程为:
xv0tcos0,yv0tsin0
y
xtg
0
1 2
g
v0
2
x02
c os2
0
1 2
gt
2
代入最高点A处值,得: d y dt
v0
sin 0
gt
0,
即
t v0 sin0
即 F Fxi Fy j m 2r
可见,F和点M的位置矢径r方向相反,F始终指向中心,其
大小与r的大小成正比,称之为向心力。
14
第二类问题:已知作用在质点上的力,求质点的运动(积 分问题)。
已知的作用力可能是常力,也可能是变力。变力可能是时 间、位置、速度或者同时是上述几种变量的函数。 解题步骤如下: ① 正确选择研究对象。 ② 正确进行受力分析,画出受力图。判断力是什么性质的力
理论力学第10章 质点动力学

y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。
质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
质点动力学知识点总结

质点动力学知识点总结1. 引言质点动力学是物理学中研究质点运动规律的分支,它是经典力学的基础。
本文档旨在总结质点动力学的核心知识点,包括牛顿运动定律、动量、动能、势能、功以及守恒定律等。
2. 牛顿运动定律2.1 牛顿第一定律(惯性定律)一个质点若未受外力,将保持静止状态或匀速直线运动。
2.2 牛顿第二定律(动力定律)质点的加速度与作用在其上的合外力成正比,与质点的质量成反比,加速度的方向与合外力的方向相同。
2.3 牛顿第三定律(作用与反作用定律)两个相互作用的质点之间的作用力和反作用力大小相等、方向相反。
3. 动量3.1 定义动量是质点的质量与其速度的乘积,是矢量量,表示为\( \vec{p} = m\vec{v} \)。
3.2 动量守恒定律在一个封闭系统中,若没有外力作用,系统内所有质点的动量之和保持不变。
4. 动能4.1 定义动能是质点由于运动而具有的能量,计算公式为\( K =\frac{1}{2}mv^2 \)。
4.2 动能定理合外力对质点所做的功等于质点动能的变化量。
5. 势能5.1 定义势能是质点由于位置或状态而具有的能量,与参考点的选择有关。
5.2 重力势能在重力场中,质点的重力势能计算公式为\( U = mgh \),其中\( h \)是质点相对于参考点的高度。
6. 功6.1 定义功是力在物体上作用时,由于物体的位移而对物体所做的工作,计算公式为\( W = \vec{F} \cdot \vec{d} \),其中\( \vec{F} \)是力,\( \vec{d} \)是在力的方向上的位移。
6.2 功的守恒在一个封闭系统中,若没有非保守力做功,系统内所有质点的机械能(动能与势能之和)保持不变。
7. 守恒定律7.1 机械能守恒定律在没有非保守力作用的封闭系统中,机械能守恒。
7.2 角动量守恒定律在一个封闭系统中,若没有外力矩作用,系统内所有质点的角动量之和保持不变。
8. 结论质点动力学是理解和描述宏观物体运动的基础。
《理论力学》第九章质点动力学

目
CONTENCT
录
• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω
笫二章质点动力学

F
13
四、力的分类
在目前的宇宙中,存在着四类基本的相互作用,所有的 运动现象的原因都逃不出这四类基本的力,各式各样的力只不 过是这四类基本力在不同情况下的不同表现.
四种力:万有引力,电磁力,强力和弱力
万有引力 电 磁 力
强力
弱力
适用范围 m
相互作用举 例
长程力
长程力
1015
1016
恒星结合在一 电子和原子核 质子和中子结 表征核子
起形成银河系 结合形成原子 合形成原子核 衰变的力
相对强度
1039
102
1
105
14
㈣ 牛顿运动定律应用
一、动力学的典型问题可归结为两类:
笫一类问题:己知作用于物体(质点)上的力,由力 学规律来决定该物体的运动情况或平衡状态.
笫二类问题:己知物体的运动情况或平衡状态,由 力学规律来推究作用于物体上各种力.
d 2
d 2
,
cos
d 2
1
整理以上方程可得:
dT N
1 dTd Td N
2
18
TA TB
dT T
0d
ln TA TB
TB TAe
讨论: 如果 0.25
则: 时, TB 0.46TA
2时, TB 0.21TA
10时, TB 0.00039TA
19
例题2-2 从实验知道,当物体速度不大时,可认为空 气阻力正比于物体的速度,问以初速度竖直向上运动 的物体,其速度将如何变化?
一、万有引力与重力
F
G
m1m2 r2
mr
1
m
2
重力:地球对表面物体的 万有引力mg
g
质点动力学知识点总结

质点动力学知识点总结基本概念:质点:具有质量但没有体积和形状的物体模型。
力:质点动力学研究的核心内容,包括恒力、变力和约束力。
运动方程:描述质点在外力作用下的运动规律的基本方程。
动量:描述质点运动状态的重要物理量,等于质点的质量乘以速度。
动能:描述质点运动状态的另一个重要物理量,等于质点的质量乘以速度的平方再乘以1/2。
势能:描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
角动量和角动量定理:与质点的旋转运动相关的物理量和定理。
基本理论:牛顿运动定律:描述了质点在作用力作用下运动的规律,即F=ma,其中F表示合外力,m表示质点的质量,a表示质点的加速度。
动量定理:通过动量的概念揭示了力与运动之间的内在联系,即合外力的冲量等于物体动量的变化量,表达式为Ft=mV-mv。
动能定理:引入动能的概念,建立了力学与能量之间的关系,即合外力做的功等于物体的动能的改变量,表达式为W=1/2mV^2-1/2mv^2。
分析方法:矢量方法:利用矢量运算符对问题进行矢量分析。
微分方程方法:将运动方程化为微分方程,然后求解微分方程获得运动规律。
能量方法:利用能量守恒定律等能量原理分析运动问题。
实际应用:军事方面:应用在导弹、卫星、航天器和飞机等领域,研究其受力情况和运动规律,从而提高军事制式的效率和效果。
经济方面:应用在金融市场和交通运输领域,分析市场变化和流动性,以及货运运输的效益和优化策略。
社会方面:研究城市交通拥堵问题、人口迁移以及城市规律,以提高城市的运作效率和质量。
总的来说,质点动力学涉及到质点的运动规律、动量、动能、势能等基本物理量的研究,以及相关的理论和实际应用。
通过学习和掌握质点动力学的知识,可以更好地理解物体在外力作用下的运动规律,以及如何利用这些规律解决实际问题。
质点动力学知识点总结

质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿出生于英国北部林肯郡的一个农民家庭。1661 年考上 剑桥大学特里尼蒂学校,1665 年毕业,这时正赶上鼠疫,牛顿 回家避疫两年,期间几乎考虑了他一生中所研究的各个方面, 特别是他一生中的几个重要贡献:万有引力定律、经典力学、 微积分和光学。
牛顿发现万有引力定律,建立了经典力学,他用一个公式将宇宙中最大天体的运动和 最小粒子的运动统一起来。宇宙变得如此清晰:任何一个运动都不是无故发生,都是长长 的一系列因果链条中的一个状态、一个环节,是可以精确描述的。人们打破几千年来神的 意志统治世界的思想,开始相信没有任何东西是智慧所不能确切知道的。相比于他的理论, 牛顿更伟大的贡献是使人们从此开始相信科学。
通常把重物作用于支持面的弹性力叫做压力。 而把支持面作用于重物的弹性力叫做支持力(或弹力)
2. 弹簧弹性力
弹簧水平放置,一端固定,另一端与质点相连,处于自由伸展状态, 以弹簧自由伸展时质点位置为坐标原点,沿弹簧轴线建立 O-x 轴, x 表 示质点坐标或对于原点的位移, F表示弹性力在轴上的投影,在弹 性限度内,由胡克定理:弹簧弹性 力的大小与物体相对于坐标原点的 位移成正比:
力的定义:力是一物体对另一物体的作用,是物体产生加速度的原因。
(2)提出了“惯性”的概念:物体保持原来运动状态不变的特性,是物体所固 有的。
(3)惯性运动:物体不受外力作用时所作的运动。
惯性参考系:牛顿第一定律成立的参考系称为惯性参考系。反之,
称为非惯性参考系。
注: (1)某参考系是否可看作惯性系,只能根据观察和实验来确定。
三、摩擦力:两相互接触的物体由于相对运动或有相对运动的 趋势,而在接触面间产生的一对阻止相对运动或相对运动趋势的 力
1. 摩擦力的大小决定于接触点总面积的大小,而不取决于表观接 触面积。
2. 摩擦力可分为静摩擦力和滑动摩擦力
(1)静摩擦力:
当相互接触的物体之间没有相互运动,而只是有相互运动的趋势 时,其摩擦力为静摩擦力。静摩擦始终与外力大小相等、方向相反, 即与运动趋势相反。静摩擦力有一最大值,称为最大静摩擦力:
§3.1 牛顿第一定律和惯性参考系
一、孤立质点 不受其它物体作用或离其它物体都足够远的质点(理想模型)。
二、牛顿第一定律 (惯性定律) 任何物体都保持静止或匀速直线运动状态,除非有作用于它上的力改
变这种状态。 使用范围:质点和惯性参考系。 对牛顿第一定律的理解:
(1)定性的说明了运动和力的关系:物体的运动并不需要力去维持,只有当 物体的运动状态(速度)发生变化即产生加速度时,才需要力的作用。
(2)力的独立作用原理
注: (1)对质点而言,在惯性系成立,定量描述力的作用效果。 (2)是瞬时作用规律
(3)第二定律分量形式
在直角坐标
Fx
max
m
d 2x dt 2
Fy
may
m
d2y dt 2
Fz
maz
m
d 2z dt 2
对于圆周运动
dv Ft mat m dt
Fn
man
v2 m
R
(4)根据第二定律分析运动学中的各种运动状态。
四、牛顿第三定律: 内容:两物体间的相互作用力总是大小相等而方向相反,即
F F /
注:(1)反映了力的来源:力来自物体与物体间的相互作用 (2)作用力和反作用力同时存在。 (3)分别作用于两个物体上,不能抵消。 (4) 属于同一种性质的力。
(5) 与运动状态无关
英国伟大的物理学家、数学家、天文学家。恩格斯说:“牛 顿由于发现了万有引力定律而创立了天文学,由于进行光的分 解而创立了科学的光学,由于创立了二项式定理和无限理论而 创立了科学的数学,由于认识了力学的本性而创立了科学的力 学。”的确,牛顿在自然科学领域里作了奠基性的贡献,堪称 科学巨匠。
F kx
式中负号表示方向与位移相反,k是弹簧的劲度系数,与弹簧的匝数, 直径,线径和材料等因素有关。
3、绳内的张力
张力:在张紧绳索上某位置作与绳垂直的假想截面, 将绳分成两侧,这两侧的相互作用力即该处绳的张力。
注意:处理问题时绳的伸长量不考虑。 原因:是由于绳索的拉伸形变而产生的,但形变量与原 长相比很小,可忽略不计。
重量:重力的大小,属相互作用范畴,与质点距地心的距离 和纬度有关; 质量:惯性大小的量度,在经典力学中是一恒量。(详见惯 性质量一节)
二、弹性力:物体在外力作用下发生形状改变同时,其内
部产生一种反抗外力企图恢复原来形状的力称为弹力.
弹力产生的条件:两物体:一要接触,二要形变.
弹力方向
:永远垂直于接触点的切面.
注: 静摩擦力的大小随外力的变化而变化。
最大静摩擦力: fsmax 0 N 0为静摩擦系数
(2)滑动摩擦力:
当物体相对于接触面 N
为滑动摩擦系数
实验表明,滑动摩擦系数与物体之间相对运动速度有关,如果没有特殊说 明,都认为滑动摩擦系数与相对速度无关,并认为最大静摩擦系数与滑动
牛顿是一个远远超过那个时代所有人智慧的科学巨人,他对真理的探索是如此痴迷, 以至于他的理论成果都是在别人的敦促下才公诸于世的,对牛顿来说创造本身就是最大的 乐趣。
§3-3 力学中常见的力
一、重力和重量
G
mg
重力:地球作用于质点的万有引力(视地球为惯性系); 方向:竖直向下;(重力的作用点在物体的重心上)
(2)在运动学中参考系的选则具有任意性,但在动力学中参考系的选则不具有 任意性。
三、牛顿第二定律
内容:在力的作用下质点获得的加速度的大小与力的大小成正比,与质点 的质量成反比,加速度的方向与力的方向相同。
F
ma
(1)牛顿第二定律既是动力学的基本规律;同时又可作为质量和力的定义, 据此可对质量和力进行测量。
常见的表现形式:
正压力(或支持力):与物体间的挤压有关,其方向垂直于 接触面(或切平面).
张力(又称拉力)
弹性力:即弹簧的弹性力
F kx
1. 压力(法向力) 支持力: 物体与另一物体表面接触,表面上的相互作
用力可分解为两个分量,一个与表面垂直,一个 与表面相切。垂直分量为 N 叫做法向力,而切向分 量叫摩擦力。