3级数敛散性判定与证明

合集下载

级 数

级     数

n1
上定理的作用:
任意项级数
正项级数


定义:若 un 收敛, 则称 un 为绝对收敛;
n1
n1



若 un 发散,而 un 收敛, 则称 un 为条件收敛.
n1
n1
n1


判别级数
n1
s
i n
nn
2
的收敛性.


sin n n2

1 n2
,
Hale Waihona Puke 而 1 收敛, n2n1
sin n 收敛, n2 n1 故由定理知原级数绝对收敛.
(1)

(1

cos


n1
n
n sin a (a 0,常数)
n1
n


n
n

n1 3n 1

lim n n
un
lim n n 3n 1
1 3
1
幂级数及其收敛性

定义: 形如 an ( x x0 )n的级数称为幂级数.

n1
31n收敛,
3n n 1
3n

lim
n
1
1

n 3n
故原级数收敛.

1,
比值审敛法(达朗贝尔 D’Alembert 判别法):

设 un
n1
是正项级数,如果lim un1 n un


(数或
)
则 1时级数收敛; 1 时级数发散; 1时失效.

而级数
1 发散,
n1 n 1

高数二 8.2数项级数的审敛性

高数二 8.2数项级数的审敛性


级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
b.条件是充分的,而非必要.

un
2
(1)n 2n
3 2n
vn ,
级数 un
n1
2 (1)n
n1
2n
收敛,

un1 un
2 (1)n1 2(2 (1)n )
an ,
lim
n
a2n
1, 6
lim
n
a2n1
3, 2
lim un1 u n
n1
n1
莱布尼茨定理 如果交错级数满足条件:
(ⅰ)un
un1
(n
1,2,3,)
;(ⅱ)lim n
un
0,
则级数收敛,且其和s u1,其余项rn 的绝对值
rn un1.
证明 un1 un 0, s2n (u1 u2 ) (u3 u4 ) (u2n1 u2n )
数列 s2n是单调增加的 , 又 s2n u1 (u2 u3 ) (u2n2 u2n1 ) u2n
审敛法
2、正项级数及其审敛法
(1).定义如: 果级数 un中各项均有un 0,
n1
这种级数称为正项级数.
(2).正项级数收敛的充要条件s:1 s2 sn
部分和数列{sn }为单调增加数列.
定理
正项级数收敛 部分和所成的数列sn有界.
(3).比较审敛法 设 un和vn均为正项级数,
n1
是正项级数,如果lim un1 n un
(数或
)
则 1时级数收敛; 1 时级数发散; 1时失效.
证明 当为有限数时, 对 0,

7-2数项级数的审敛法

7-2数项级数的审敛法

·复习 1 级数的概念。

2 级数的敛散性。

3 级数的性质。

·引入 正像数列一样,对于级数也有两个问题应当研究一是它是否收敛,二是如果收敛,它的和等于什么。

一般情况下要判断一个级数的敛散性,只利用级数收敛和发散的定义和性质,常常是很困难的,因此需要建立判定级数敛散性的判别法。

我们先来考察正项级数的敛散性。

·讲解新课7-2 常数项级数的审敛法(一)一 正项级数及其审敛法定义 如果级数∑∞=1n n u 的每一项都是非负数,即0n u ≥,(1,2)n = ,那么称级数∑∞=1n n u 为正项级数.如果级数∑∞=1n n u 是一个正项级数,那么它的部分和数列{}n S 是一个单调增加数列:12......n S S S ≤≤≤≤,如果数列{}n S 有界,即n S 总不大于某一个常数M ,根据单调有界数列必有极限的准则,正项级数∑∞=1n n u 必收敛于和S ,且n S S M ≤≤;反之,如果正项级数∑∞=1n n u 收敛于和S ,即lim n x S S →∞=,根据有极限的数列必是有界数列的性质可知:∑∞=1n n u 有界,因此可得如下结论:定理 正项级数∑∞=1n n u 收敛的充分必要条件是:它的部分和数列单调有界。

由此定理可知:如果正项级数∑∞=1n n u 发散,则当n →∞时,它的部分和数列n S →∞,即:1n n u ∞==+∞∑1 比较审敛法设有两个正项级数1n n u ∞=∑和1n n v ∞=∑,如果n u ≤n v ),3,2,1( =n 成立,那么(1)若级数1n n v ∞=∑收敛,则级数∑∞=1n n u 也收敛.(2)若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.用比较判别法时,需要适当地选取一个已知其收敛性的级数作为比较的基准,最常被选用作基准级数的是等比级数和p -级数。

定义 当0p >时 ,11111123L L ppppn nn∞==+++++∑.称为 p -级数特别地:当1p =时,p -级数是调和级数11n n∞=∑。

数项级数的敛散性判别法-数项级数敛散性判别法

数项级数的敛散性判别法-数项级数敛散性判别法

1 2 n 1
,
显然收敛。
综上所述,原级数收敛。
内容小结
1. 利用部分和数列的极限判别级数的敛散性 2. 利用正项级数判别法
必要条件 nl im un 0 满足
不满足 发 散
比值判别法
lim
n
un u
1 n
根值判别法 nl im nun
1
1
比较判别法
1 不定 部分和极限
用它法判别 积分判别法
S2n 是单调递增有界数列, 故 n l i m S2nSu1 又 n l iS 2 m n 1 n l i(S m 2 n u 2 n 1 )nl im S2n S
故级数收敛于S, 且 S u1, Sn的余项: rnSSn ( u n 1 u n 2 ) r n u n 1 u n 2 un1
但 p1, 级数发散 .
机动 目录 上页 下页 返回 结束
例5. 讨论级数 nxn1 (x0) 的敛散性 .
n1
解: lim un1 lim(n1)xn x
n un
n n x n1
根据定理4可知:
当 0x1时 ,级数收敛 ;
当x1时,级数发散 ;
当x1时,级数n发散.
n1
机动 目录 上页 下页 返回 结束
(1) 当0 < l <∞时, 取l,由定理 2 可知 u n 与 v n
同时收敛或同时发散 ;
n 1 n 1
(2) 当l = 0时, 利 u n ( l用 ) v n ( n N ) 由定,理2 知
若 v n 收敛 , 则un也收敛;
n 1
n1
(3) 当l = ∞时, 存在 NZ,当nN时, un 1 , 即
n 1

p判别法级数敛散性证明

p判别法级数敛散性证明

p判别法级数敛散性证明证明方法如下:一、即当p≤1p≤1时,有1np≥1n1np≥1n,调和级数是发散的,按照比较审敛法:若vnvn是发散的,在n>N,总有un≥vnun≥vn,则unun也是发散的。

调和级数1n1n是发散的,那么p级数也是发散的。

二、当p>1时,证明的思路大概就是对于每一个整数,取一个邻域区间,使邻域区间间x∈[k,k−1]x∈[k,k−1]使得某个函数在[k,k−1][k,k −1]邻域区间内的积分小于1xp1xp在这个邻域区间的积分。

然后目的当然是通过积分求指数原函数解决问题。

这个证明的比较函数取的很巧妙,令k−1≤x≤kk−1≤x≤k,那么1kp≤1xp1kp≤1xp.利用比较审敛法的感觉,应该找一个比p级数的一般式大的收敛数列,证明p级数收敛。

这个就有点反套路了。

1kp=∫kk−11kpdx(这里是对x积分而不是k)≤∫kk−11xp1kp=∫k−1k1kpdx(这里是对x积分而不是k)≤∫k−1k1xp其中(k=2,3....)(k=2,3....)讨论级数和,用k的形式代表p级数,并且用一个大于它的函数来求得极限。

sn=1+∑k=2n1kp(p级数)≤1+∑k=2n∫k−1k1xp=1+∫n11xpdxsn=1+∑k=2n1kp(p级数)≤1+∑k=2n∫kk−11xp=1+∫1n1xpdx。

这里利用积分区间的可加性:∫D1f(x)dx+∫D2f(x)dx=∫D1+D2f(x)dx。

扩展资料:1. 级数将数列unun 的项u1,u2,…,un,…u1,u2,…,un,…,依次用加号连接起来的函数。

数项级数的简称。

如:u1+u2+…+un+…u1+u2+…+un+…,简写为∑un∑un ,unun 称为级数的通项,记Sn=∑unSn=∑un 称之为级数的部分和。

如果当n→∞n→∞时,数列有极限,则说级数收敛,并以SS 为其和,记为∑un=S∑un=S ;否则就说级数发散。

于一些特殊正项级数敛散性的判别法

于一些特殊正项级数敛散性的判别法
3.期刊论文 冯云霞 正项级数敛散性判别法的比较 -中国科技信息2009,""(17)
级数是高等数学教学中的一个重要内容,而正项级数又是级数的重要组成部分,判别正项级数敛散性的方法很多,文章主要讨论了正项别方法,使级数敛散性的判别变得更为简单.
4.期刊论文 刘羽 正项级数敛散性的判别法研究 -网络财富2009,""(23)
下载时间:2010年8月11日
6.期刊论文 李晓康 正项级数敛散性的一个判别法则 -汉中师范学院学报2004,22(6)
利用正项级数的基本定理、比较判别法及p-级数的敛散性,给出了正项级数敛散性的一个判别法则,并给出了实例.
7.期刊论文 贾达明.范新华 正项级数敛散性的一种简易判别法 -昌吉学院学报2002,""(3)
本文讨论正项级数敛散性的判别方法,在柯西积分判别法的基础上,运用积分判别法来证明一系列定理,得到关于正项级数敛散性的一些简易判别法 ,并用此法来解决一些相关问题.
2.期刊论文 阎家灏 正项级数敛散性的一种审敛法 -兰州工业高等专科学校学报2004,11(4)
判定正项级数敛散性有多种方法,D'Alembert判别法(或称比值审敛法)是其中比较适用的判别方法.基于D'Alembert判别法,利用正项级数部分和数列 有界必收敛的原理,论证了两个定理,得到了适用判别正项级数的项是单调递减的这类正项级数敛散性的一种精细审敛法.
判定级数的敛散性是级数的首要问题,在研究其它短数的敛散性时,常常归结为研究正项级数的敛散性.人们已经创造了很多判定正项级数敛散性的方 法,其中,比较审敛法适应于一切正项级数.然而,恰当的比较对象要实际寻找出来很难.本文给出了一种简单而有效的审敛方法,这种方法不仅可以替代用 比较审敛法判定一些级数的敛散性,还可以帮助我们猜想一个级数的敛散性,因而给我们再用其它方法判定一个级数的敛散性提供正确的思路.

关于数项级数敛散性的判定

关于数项级数敛散性的判定

关于数项级数敛散性的判定摘要:就数项级数敛散性的判定进行了深入细致的分析、探究与总结,重点论述了正项级数及一般项级数的敛散性判别方法,提出了数项级数敛散性判定的一般步骤,以及判定过程中需要注意的一些问题。

使得对数项级数敛散性的知识有了更深的认识,提高了解题能力。

关键词:数项级数;正项级数;交错级数;一般项级数;敛散性 引言:无穷级数是高等数学的一个重要组成部分,是研究“ 无穷项相加” 的理论 ,它是表示函数、研究函数的性质以及进行数值计算的一种工具。

如今,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的有力工具,而应用的前提是级数收敛,所以其收敛性的判别就显得十分重要,判断级数敛散的理论和方法很多,本文的根本目的是对数项级数敛散性的判定进行深入的研究与总结。

1.预备知识: 1.1级数的定义及性质定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式......21++++n u u u称为数项级数。

其中n u 称为该数项级数的通项。

数项级数的前n 项之和记为:∑=+++==nk n k n u u u u S 121...。

称为数项级数第n 个部分和。

定义2:若数项级数的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称数项级数收敛。

若{}n S 是发散数列,则称数项级数发散。

即:n n S ∞→lim 不存在或为∞。

性质:(1)级数收敛的柯西准则:级数收敛的充要条件:0>∀ε,0>∃N ,使得当N m >以及对任意正整数P ,都有 ε<++++++p m m m u u u (21)推论:级数收敛的必要条件:若级数收敛,则0lim =∞→n n u 。

(2)设有两收敛级数n u s ∑=,n v ∑=σ,则其和与差)(n n v u ±∑也收敛,并且σ±=±∑s v un n)(。

级数的收敛与发散

级数的收敛与发散

1 (1) sin ; n n 1


二、比式判别法和根式判别法
定理12.7(比式判别法)设 un 为正项级数,且
存在某正整数
N0
及常数 q(0 q 1)
un 1 (1)若对一切 n N0,成立不等式 u q n
则级数 un 收敛;
un1 (2)若对一切 n N0,成立不等式 1 un 则级数 un 发散。

级数
n 1

1 发散. n( n 1)
比较原则的极限形式:
un l, 设 un 与 v n 都是正项级数, 如果 lim n v n n 1 n 1




则(1) 当 0 l 时, 二级数有相同的敛散性;
(2) 当 l 0 时,若
v n 收敛, 则 un 收敛; n 1
推论(比式判别法的极限形式)
un 1 (数或 ) 设 un 是正项级数,如果 lim n u n 1 n
则 1时级数收敛; 1 时级数发散; 1 时失效.

证明 当为有限数时, 对 0,
un1 N , 当n N时, 有 , un
n dx 1 设 p 1, 由图可知 p n1 p n x 1 1 1 sn 1 p p p 2 3 n 2 dx n dx o 1 1 p n1 p x x
y
y
1 ( p 1) xp
1
2
3
4
x
1 1
n
dx 1 1 1 (1 p1 ) 1 p 1 x p1 n p1
(n N )
由比较原则的推论, 得证.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档