第一章 函数 极限 连续
关于大学高等数学函数极限和连续

第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。
第一章 函数的极限与连续 小结

∆x →0
lim ∆y = 0 或 lim[ f ( x0 + ∆x) − f ( x0 )] = 0 ,
∆x → 0
则称函数 f ( x) 在点 x 0 连续, x 0 称为 f ( x) 的连续点。 或 设函数 f ( x) 在点 x 0 的某个邻域内有定义,若
x → x0
lim f ( x) = f ( x0 ) ,
六个常见的有界函数:
sin x ≤ 1, arcsin x ≤ arctan x <
cos x ≤ 1, (−∞, +∞); 0 ≤ arccos x ≤ π ,
第一章函数极限与连续总结

第一章函数极限与连续总结函数极限与连续是高等数学中的重要概念,对于函数的性质和特征有着深远的影响。
在第一章的学习中,我们主要学习了函数的极限以及连续的定义与性质。
本文将对第一章的内容进行总结。
函数的极限是研究函数在其中一点或其中一区间的变化趋势的工具。
当自变量趋近于其中一点或其中一区间时,函数的值也有可能趋近于其中一固定值,这个固定值就是函数的极限。
在函数的极限的概念中,我们主要学习了一些基本的性质和计算方法。
通过极限的四则运算法则,我们可以将复杂的函数进行简化和转化,从而更好地研究它们的性质。
我们还学习了一些常见的函数的极限值,如指数、对数、三角函数及其反函数的极限。
通过对函数的极限的学习,我们可以了解函数在其中一点或其中一区间的变化趋势,从而更好地理解函数的特征和性质。
极限的计算方法也有助于我们解决实际问题,比如利用极限来计算一些数列的极限,从而得到更加精确的近似值。
连续是函数的一个重要性质,它代表了函数图像的连贯性和平滑性。
连续函数的定义是:当自变量在其中一点或其中一区间内变化时,函数的值也会在同一点或同一区间内变化,并且不会有跳跃或断层的现象。
我们学习了一些常见的连续函数,并掌握了判断函数连续性的方法。
其中,我们主要研究了基本初等函数、分段函数和复合函数的连续性。
通过学习这些连续性的性质,我们可以更好地分析函数的行为和特点。
在函数极限和连续的学习中,我们还学习了一些重要的定理和概念。
例如,极限存在准则、函数极限的无穷大与无穷小、函数极限的唯一性等。
这些定理和概念帮助我们更好地理解和应用函数的极限和连续性。
总的来说,函数的极限和连续性是高等数学中重要的概念和工具。
通过学习函数的极限,我们可以更好地了解函数的性质和特征,对于求解实际问题和进行精确计算有着重要的作用。
而学习连续性则可以帮助我们判断函数的连贯性和平滑性,更好地分析函数的行为和特点。
对于进一步学习高等数学以及其他数学学科,函数的极限和连续性是必不可少的基础知识。
第一章函数、极限与连续.ppt

因为f (x) cos2 x 1 (1 cos x) g(x),即f (x)与g(x)具有相同的对 22
应法则,所以f (x)与g(x)是相同的函数;
(2)因为f (x) | x | 定义域是x 0的一切实数,而g(x) 1的定义域 x
是一切实数,所以f (x)与g(x)不是相同的函数。
,当n = m 当n > m
, 当n < m
(其中a0、a1、 、am和b0、b1、 、bn都是常数,且a0 0,b0 0);
( 6) lim sin x = 1 ;( 7) lim tan x = 1
x0 x
x0 x
;( 8) lim x
1+
1 x
x
=
e
;
1
( 9) lim1+t t = e ;(1 0) lim qx 0 ( | q | 1 ) .
的定义域。
解 由已知得 2 4x 3 5,即 5 x 2,
4
故所求函数的定义域为 5 x 2. 4
二、判断两个函数是否相同
一个函数的确定取决于其定义域和对应关系的确定,因
此判断两个函数是否相同必须判断其定义域是否相同,且要
判断函数表达式是否统一即可。
例3 判断下列各对函数是否相同?
(1)
0,解得
x 1或x
17 3
x
2 19 ,
3
故所求函数定义域为17 x 19 ;
3
3
(2)若使函数有意义,必须
5x
x
2
20 7x 10
0,解得
x x
2 5 2,
x
5,
10 x 0
x 10
故所求函数的定义域为 2 x 10且x 2, x 5. 5
函数,极限与连续

定义 1 表明,函数在某点连续含有三层意思:
它在该点的一个邻域内有定义,极限存在且极限 值等于该点处的函数值.
例 1 证明函数 y = sin x 在其定义域内连续 . 证 任取 x0 (- , + ),则因
有定义, 如果
x 0
lim y 0.
则称函数 y = f (x) 在 x0 处连续.
若函数 y = f (x) 在点 x0 处有:
x x0
lim f ( x ) f ( x 0 ) 或 lim f ( x ) f ( x 0 ) ,
x x0
则分别称函数 y = f (x) 在 x0 处是左连续或右连续.
a O c b x y = f (x)
例 9 证明方程 x3 - 4x2 + 1 = 0 在 (0, 1) 内至 少有一个实根.
证
设 f (x) = x3 - 4x2 + 1,由于它在 [0, 1]
上连续且 f (0) = 1 > 0, f (1) = - 2 < 0,因此由推 论可知,至少存在一点 c (0, 1) ,使得 f (c) = 0. 这表明所给方程在 (0, 1) 内至少有一个实根 .
sin(x a ) lim x a ( x a ) cos a cos x
令 x – a t ,由 x a,则 t 0.
sint 1 1 上式 lim lim . 2 t 0 t cos a cos(t a ) t 0 cos a cos(t a ) cos a
因 此 lim y 0. 这表明 y = sin x 在 x0 处连续,
第一章函数极限连续典型例题(考研数学)

第一章 函数、极限、连续典型例题1:函数2sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界( ). A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 解析:有如下的两个重要结论:❶若()f x 在闭区间[,]a b 上连续,则()f x 在闭区间[,]a b 上有界;❷若()f x 在开区间(,)a b 内连续,且极限lim ()x af x +→与lim ()x bf x -→存在,则()f x 在开区间(,)a b 内有界.当0,1,2x ≠时,()f x 连续,而1sin 3lim ()18x f x +→-=-,0sin 2lim ()4x f x -→=-,0sin 2lim ()4x f x +→=,1lim ()x f x →=∞,2lim ()x f x →=∞.所以()f x 在(1,0)-内有界,选(A ).2:设{}n a ,{}n b ,{}n c 均为非负数列,且lim 0n n a →∞=,lim 1n n b →∞=,lim n n c →∞=∞,则必有( ).A .n n a b <对任意n 成立B .n n b c <对任意n 成立C .lim n n n a c →∞不存在 D .lim n n n b c →∞不存在解析:应选(D ).由数列极限保号性的条件得A 、B 两项不是无条件成立的,故A 、B错误.C 项中的极限是“0⋅∞”的未定式,极限有可能是存在的,故C 项也错误.选D 项.3:设()f x 在0x =的某邻域内连续,0()lim 21cos x f x x→=-,则在0x =处()f x ( ).A .不可导B .可导且(0)0f '≠C .取得极大值D .取得极小值 解析:应选(D ).由0()lim21cos x f x x→=-可得,0x →时,1cos 0x -→,则()0f x →,而()f x 在点0x =的某邻域内连续,得(0)0f =.于是000()()(0)0()(0)2limlim lim 21cos 01cos 0x x x f x f x f x f x f x x x x x→→→---=⋅=⋅=----,而02limx x →=∞,因此0()(0)lim 00x f x f x →-=-,即'(0)0f =.(A )(B )均错误. 00()()(0)limlim 201cos 1cos x x f x f x f x x→→-==>--,由函数极限的局部保号性可得,(0,)U δ∃,(0,)x U δ∀∈,有()(0)01c o s f x f x->-,而1c o s 0x ->,得()(0)f x f >,因此()f x 在0x =处取得极小值.4:设lim ,n n a a →∞=且0,a ≠则当n 充分大时有( ).A. 2n a a >B. 2n a a <C. 1n a a n >-D. 1n a a n<+ 解析:应选(A ).用排除法,令n a 为简单数列的通项. (1)令21n a n =+,则lim 1n n a →∞=,11n a n >+,排除(D ).(2)令21n a n =-,则lim 1n n a →∞=,11n a n <-,排除(C ).(3)令11n a n=--,则lim 1n n a →∞=-,1112n a n -=+>,排除(B ).5:设数列{}n x 满足110,sin (1,2,...).n n x x x n π+<<== (1)证明lim n n x →∞存在,并求该极限.(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证明(1) 由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=<,说明数列{}n x 单调减少且0n x >. 由单调有界准则知lim n n x →∞存在.记为A .递推公式两边取极限得sin A A =,解得0A =. (2)原式21sin lim()nxn n nx x →∞=,为“1∞”型极限.因为离散型不能直接用洛必达法则,先考虑210sin lim()t t t t→. 22011sin lim ln 0sin lim()t ttt t t t e t→→=.其中2223220000011sin 1sin sin cos 112lim ln lim (1)lim lim lim 336t t t t t t t t t t t t t t t t t t →→→→→---=-====-. 所以 2221111016sin sin lim()lim()lim()nnxxn n x n n x nnx x x x x xe+→∞→∞→-===.6:41lim(cos 22sin )xx x x x →+解:(方法1)14441ln(cos22sin )limln(cos22sin )0lim(cos 22sin )lim xx x x x x x x xx x x x x x ee→++→→+==而42042040sin 2sin 2lim )sin 2sin 21ln(lim )sin 22ln(cos lim x xx x x x x x x x x x x x x +-=+-=+→→→121612lim 2sin 2lim 33030=⋅=+-=→→x x x x x x x ,所以原式31e =. (方法2)44121)sin 2sin 21(lim )sin 22(cos lim x x x x x x x x x x +-=+→→31sin 2sin 2sin 2sin 212422)sin 2sin 21(lim e x x x x xx x x x x x =+-=+-⋅+-→.7:1402sin lim ||1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解:1144002sin 2sin 2lim lim 11111x xx x x x e x e x x x e e --→→⎛⎫⎛⎫++ ⎪ ⎪+=-=-= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭; 1144002sin 2sin lim lim 01111x x x x x x e x e x x x e e ++→→⎛⎫⎛⎫++ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭; 左右极限存在且相等,所以1402sin lim 1.1x x x e x x e →⎛⎫+ ⎪+= ⎪ ⎪+⎝⎭8:22411limsin x x x x x x→-∞++++=+ .解:分子分母同时除以x (注意x 趋于负无穷大),可得2222411411limlimsin sin x x x x x x x x x x x xx x x→-∞→-∞++++++++=++ 22222241111141lim lim 1sin sin 1x x x x x x x x x x x x x x x →-∞→-∞+++-+-++++===+-+-.9:求221()lim 1n n n x f x x x →∞⎡⎤⎛⎫-=-⎢⎥ ⎪+⎝⎭⎣⎦的间断点,并判别类型. 解:当||1x <时,20nx→,则()1f x x =--,当||1x =时,则()f x x =-, 当||1x >时,2nx→∞,则()1f x x =-,1,||1(), ||11, ||1x x f x x x x x --<⎧⎪∴=-=⎨⎪->⎩.分段点为1x =±(1)1,(10)2,(10)0f f f =--=-+= (1)1,(10)2,(10)0f f f -=--=-+=则1x =±都为跳跃间断点.10:设)(x f 在[0,1]]连续,(1)0f =,212()1lim112x f x x →-=⎛⎫- ⎪⎝⎭,证明:(1)存在1,12ξ⎛⎫∈ ⎪⎝⎭,使()f ξξ=; (2))(x f 在[0,1]上最大值大于1.证明:(1)由212()1lim112x f x x →-=⎛⎫- ⎪⎝⎭及)(x f 在[0,1]连续,得121=⎪⎭⎫⎝⎛f .令()()x f x x φ=-,111102222f φ⎛⎫⎛⎫=-=>⎪ ⎪⎝⎭⎝⎭,(1)(1)110f φ=-=-<,由连续函数介值定理知存在1(,1)2ξ∈使()0φξ=,即()f ξξ=.(2)由于01211)(lim221>=⎪⎭⎫ ⎝⎛--→x x f x ,由保号性定理知1111(,)(,)2222x δδ∀∈-+时,有()1f x >,故)(x f 在[0,1]上最大值大于1.。
第一章 函数极限与连续
解 填1. 设xn =
4 x3 + x2 + 1 x3 + x2 + 1 = 0 , 所以 lim (sin x + cos x) = 0. x 3 x→∞ x→∞ 2 +x 2x + x3 lim
不定式的极限 arctan x − sin x (14) lim = . x→0 x3 x ln(1 + x) = (15) lim . x→0 1 − cos x 1 解 填2. 因为当x → 0时, ln(1 + x) ∼ x, 1 − cos x ∼ x2 . 于是 2
n→∞
lim
n − 2na + 1 n(1 − 2a)
n
n
= lim
n→∞
1 1+ n(1 − 2a)
n(1−2a)· 1 1−2a
= e 1−2a .
1
于是 lim ln
n→∞
n − 2na + 1 n(1 − 2a)
x→∞
=
1 . 1 − 2a .
(11) 极限 lim x sin
2x = x2 + 1
x→0
=
1 1 x2 · lim = · lim 4 x→0 ln(1 + x) − x 4 x→0 3 sin x + x2 cos
1 1+x
1 2x 1 = · lim (1 + x) = . 2 x→0 2 −1
1 x (18) lim = x→0 (1 + cos x) m zn = a, 则必有 lim yn = a.
n→∞ n→∞ n→∞
上述准则对于函数的情形也成立。
第一章 函数,极限与连续
五、初等函数
1.复合函数
设 y u, u 1 x2 ,
y 1 x2
第一章 函数,极限与连续
1.1 初等函数 1.2 数列的极限 1.3 函数的极限 1.4 无穷小与无穷大
1.5 极限的计算法则 1.6 无穷小的比较 1.7 函数的连续性 1.8 连续函数的性质
1.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心, 叫做这邻域的半径 .
x y xb
loga x loga b loga x
y
我们在以后的计算中经常会用到
a elna
xa eln xa ealn x
4.三角函数
正弦函数 y sin x
y
y sin x
1
ቤተ መጻሕፍቲ ባይዱ
R
-π π O π π 3π 2π
3π
2
2
2
-1
4π x
余弦函数 y cos x
y
y cos x R
阶梯曲线
(3) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
记作: U(a, ) {x a x a }.
a
一元微积分(第一章 函数、极限、连续)共13页文档
第一章 函数、极限、连续重点:1、求函数的极限(最重要的方法是L ’P 法则)2、无穷小的比较3、考察分段函数在分段点的连续性4、间断点的判定及分类5、介值定理 一、函数1、函数的定义及表示法【理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系式】 函数概念 ()y f x =函数的两要素 ⎧⎨⎩定义域对应规则函数的表示方法 ① 显函数: ()y f x =② 隐函数:由方程(,)0F x y =确定的函数()y y x =.例:1yy xe +=确定了()y y x =⇒01x y==.③ 参数方程表示的函数:由方程()()x x t y y t =⎧⎨=⎩确定的函数()y y x =.例:2ln(1)arctan x t y t ⎧=+⎨=⎩确定了()y f x =.④ 积分上限函数: ()()xax f t dt Φ=⎰.例:2311()(1)3xx t dt x Φ==-⎰⑤ 概率表示的函数:()()F x P X x =≤, 其中X 为随机变量,x 为实数.⑥ 分段函数:自变量不同范围内用不同式子表示的一个函数.【例】 ,0()sin ,0a x x f x x x x +≥⎧⎪=⎨<⎪⎩ ; 1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩ . 如 A. 绝对值表示的函数 11111x x y x xx -≥⎧=-=⎨-<⎩ ;B. 极限表示的函数 2211()lim 0111n nn xx x f x x x x x x →∞⎧<-⎪=⋅==⎨+⎪->⎩; C. 其他形式 2022101()max{1,}12x x f x x xx ≤≤≤≤⎧==⎨<≤⎩ .10sgn()0010x y x x x >⎧⎪===⎨⎪-<⎩-------符号函数[]y x =--取整函数.2、函数的性质 【了解函数的有界性,单调性,周期性,奇偶性】①.有界性:()f x 在某区间I 内有定义,若存在0M >,对任意x I ∈,总有()f x M ≤, 则称()f x 在某区间I 内有界.否则称()f x 在某区间I 内无界.例:2111sin1,(0);arctan ,();,1,()2121xx x x x R x R xx eπ≤≠≤∈≤<∈++. ②.单调性:()f x 在某区间I 内有定义,若12,x x I ∀∈,当12x x <时12()()f x f x ≤,就称()f x 单调上升;当12x x <时,12()()f x f x ≥,就称()f x 单调下降. 不含等号时称严格单增(或单减).③.奇偶性:若()()f x f x -=, 则称()f x 为偶函数,偶函数的图形关于y 轴对称; 若()()f x f x -=-,则称()f x 为奇函数,奇函数的图形关于原点对称.④.周期性:()()(0)f x T f x T +=≠. (主要是三角函数)【例1】讨论()ln(f x x =的奇偶性. 【奇函数】 【例2】 设sin ()tan xf x x x e=⋅⋅,则()f x 是( ).A. 偶函数B. 无界函数C. 周期函数D. 单调函数. 【解】 因为 2x k ππ→+时, ()f x →∞,所以()f x 非有界即为无界函数.3、 基本初等函数 【掌握基本初等函数的性质及图形】 (反、对、幂、三、指)① 常数函数---y C =② 幂函数---y x μ= (μ为常数)例:21,y x y y x===③ 指数函数---x y a = (0,1a a >≠) ,xy e =④ 对数函数---log a y x = (0,1a a >≠) , ln y x =, lg y x = ⑤ 三角函数---sin ,cos ,tan y x y x y x===⑥ 反三角函数---arcsin ,arctan y x y x==4、 复合函数、反函数、初等函数 【了解反函数和隐函数的概念,理解复合函数及分段函数的概 念,了解初等函数的概念】① 复合函数 (),()[()y f uu x y f x ϕϕ==⇒=;f 为外层函数,ϕ称为内层函数.② 反函数 ()y y x =的反函数为1()x fy -=或1()y fx -=.【例】3y x x y =⇒=⇒3y x =的反函数.【例】 sin xy e= 看作是由 ,sin uy e u x == 复合而成的复合函数.③ 初等函数:由六类基本初等函数经过有限次四则运算及有限次复合运算而得的用一个数学式子 表示的函数. 注意:分段函数一般不是初等函数。
经济数学第1章 函数极限与连续
的周期(k=1,2,3 ),通常我们说的周期函数的周期就
是指最小正周期. 例如,函数y=sin x及y=cos x都是以2π 为周期的
周期函数;
函数y=tan x及y=cot x都是以 π为周期的周期函数.
例13 求函数 f (t) Asin( t ) 的周期,其中A,,为常数 解 设所求的周期为T,由于
第1章 函数极限与连续
1.1 函数 1.2 极限的概念 1.3 极限的运算 1.4 函数的连续性
结束
1.1 函 数
1.1.1 函数的概念
定义1 设x与y是两个变量,若当变量x在非空数集D内任取
一个数值时,变量x 按照某种对应法则f 总有一个确定的
数值y 与之对应,则称变量y为变量x 的函数,记作
x D y f (x)
义域内是无界函数.sin x ,tan x及cot x是奇函数,cos x是
偶函数.
此外还有正割函数y=secx,余割函数y=cscx,其
中 secx 1 ,cs.c它x 们 都1是以
cos x
sin x
为周期的2函π
数,并且在开区间 (0,内π)都是无界函数. 2
(5)反三角函数 三角函数y=sin x,y=cos x,y=tan x和y=cot x的反函
1 x
解
f[
f
( x)]
1
1 f (x)
1
1 1
1 基本初等函数
(1)幂函数 y x ( 是常数)
幂函数 x 的定义域随 的不同而不同.
当为正整数时,x 的定义域为( , ).
当为负整数时,x 的定义域为( ,0)和(0, ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义域与对应法则是函数的两个要素,给定 函数就要指出函数的定义域和对应法则。如果两个函数 的定义域相同,对应法则也相同,那么它们就是相同飞 函数,否则就是不同的函数。
2 f x lgx 例1-3 判断函数 与函数 gx 2lgx
是否表示同一个函数? 解:f(x)的定义域是x≠0的一切实数;g(x)的定义 域是(0,+∞)。由于f(x)与g(x)的定义域不同,故f (x)与g(x)表示的不是同一个函数。
x - 1 f x x 2 3 - x
-1 x 0 0 x 1 1 x 2
1 1 3 f , f , f 的值 (1)求此函数的定义域;(2)求 2 2 2
解 (1)函数的定义域为(-1,2]
3 1 1 1 3 3 2 f - - ,f ,f 2 2 2 4 2 2
d
常见的需求函数模型有:线性需求函数 Q 双曲线需求函数Qd
a b(a 0, b 0, c 0) pc
d
a bp(a 0, b 0, p 0)
指数需求函数
Qd Aebp ( A 0, b 0, p 0)
2.供给函数 某商品由于价格不同,生产此种商品的厂商对市场提供 的总供给量(简称商品的供给量)将不同,商品的供给量Qs 也是价格p的函数,称为供给函数,记为Qs ( p) .通常Qs 是p 的增函数. 常见的供给函数有线性供给函数 Qs c dp(c 0, d 0)
C (q) 固定成本+变动成本 C A(q) q 产量
2.收益函数 R(q)
R(q) pq qp(q)
其中 p(q) 是价格 p 与产量 q 之间的函数关系. 3.利润函数 L(q)
L(q) R(q) C (q)
L(q) 0 盈利; L(q) 0
(2)等式两边同时取以10为底的对数,得x+2=lgy,
x lg y 2.故 y 10x 2 的反函数为 y lg x 2( x 0)
1.1.4
初等函数
一、基本初等函数 二、复合函数
三、初等函数
一、基本初等函数
常函数 y c (c为常数);
y x 幂函数 ( 为常数);
通常求函数的定义域主要依据是: (1)分式函数的分母不能为0; (2)偶次根式的被开方式必须大于或等于0; (3)对数函数的真数必须大于0; (4)三角函数与反三角函数要符合其定义; (5)如果函数表达式中含有上述几种函数, 则应取各部分定义域的交集。
例1-4 求下列函数的定义域 1 1 f x 2 3- x ; x - 2x 2 f x lgx 1 arcsinx 1;
3 f x
解
lg x 2 - 2 x - 2 ;
x 2 - 2 x 0 (1)由 得函数的定义域为(-∞,0) 3 - x 0
x 1 0 (2)由 x 1 0
∪(0,2)∪(2,3]
得函数的定义域为(-1,0]
x 2 - 2x - 2 0 (3)由 2 得函数的定义域为(-∞,-1) lg x - 2 x - 2 0
对于复合函数,必须弄清两个问题,那就是“复合”和 “分解”.所谓“复合”,就是把几个作为中间变量的函 数复合成一个函数,该过程也就是把中间变量依次代入的 过程;所谓“分解”,就是把一个复合函数分解为几个简 单函数,简单函数是指基本初等函数或是由基本初等函数 与常数的四则运算所得到的函数.
例 下列函数是由哪些简单函数复合而成的?
二、复合函数
定义1-7设 y
f (u ) ,而 u ( x)
,且函数u ( x) 的值域部分或全
通过 u 的联系也是
部包含在函数y
f (u )的定义域内,那么y
x 的函数.我们称这样的函数是由 y f (u )及u ( x)复合而成
的函数,简称复合函数,记作y f [ ( x)],其中u 叫做中间变量. 复合函数不仅可以由两个函数复合而成,也可以由更多个 函数复合而成.例如,由函数 y u 2, u cos v, v x 2 1 复合成函数
一、函数的定义
定义1-1 设某变化过程中有两个变量x和y,如果当变量x 在其变化范围内任取一个值时,变量y按照一定的对应法 则,有唯一确定的值与它对应,则称y施关于x的函数,记 作y=f(x),其中x叫做自变量,y叫做因变量。自变量x的取 值范围称为函数的定义域,y的对应值称为函数值,全体 函数值的集合称为函数的治愈。当变量x在定义域内取某 一值x 0时,函数y的对应值记作 f x 0 或y x x
注意 (1)分段函数是用几个解析式表示一个函数!而不是 表示几个函数。 (2)分段函数的定义域是各段自变量取值集合的并集。
1.1.2 函数的几种特性 一、单调性 二、奇偶性
三、周期性
四,有界性
一、单调性
定义1-2 设函数 y f ( x) 定义在区间 (a, b) 内,如果对于(a, b)
x 2 ,当 x1 x2 时,都有 内的任意两点 x1 、
0
例1-2 已知 f x x 2 - 3x 2,求f 1 ,f - x ,f x 1. 解:
f 1 12 - 3 1 2 0; f - x - x - 3 - x 2 x 3x 2;
2 2
f 1 x 1 - 3 x 1 2 x 2 - x.
y W ,在 D 中都有唯一确定的值 x ,使得 f ( x) y ,则得到一个以
y为自变量, x 为因变量的新的函数,这个新的函数叫做函数
y f ( x) 的反函数,记作 x f 1 ( y) ,其定义域为W
,值域为 D
习惯上,常用 x表示自变量, y表示因变量,因此,经常把
1 y f ( x)的反函数 x f 1 ( y) 记作 y f 1 ( x) . y f ( x) 与 y f ( x)
成立,则称函数 y f ( x) 在区间(a, a) 内是偶函数.
奇函数的图像关于原点对称,如图1-3所示;偶函数的图像
y 关于 轴对称 ,如图1-4所示.
三、周期性
定义1-4对于函数 y
f ( x) ,如果存在一个常数T (T 0),使得对
于在其定义域内的所有 x,都有 f ( x T )
y f ( x) f ( x) 在 ( a, b) 内是有界的.如果这样的M
不存在,则
在 (a, b) 内是无界的.
1 x
例如,函数 y 在区间 (0,1) 内无界,但在区间 (1, 2)内有界.
1.1.3
反函数
f ( x) 的定义域为 D ,值域为 W
定义1-6设函数 y
,若对于任一
的图像关于直线 y x 对称,如图1-5所示.
例 求下列函数的反函数. (1)y
x 1 x 1
(2)
y 10x 2
解 (1)等式两边同乘以x+1,得(x+1)y=x-1,x(1-y)=1+y
1 y x 1 y
.故
1 x x 1 y ( x 1) y 的反函数为 1 x x 1
f ( x1 ) f ( x2 )
(或
f ( x1 ) f ( x2 ) )
成立,则称函数
y f ( x)
在区间 (a, b) 内单调增加(或单调
减少),而称区间 (a, b) 为单调增加(或单调减少)区间.
在单调增区间内,函数图像随着 x 的增大而上升,
如图1-1所示;在单调减区间内,函数图像随着 x 的增大而
x y a 指数函数 ( a 0, a 1, a为常数);
对数函数 y loga x ( a 0, a 1, a为常数); 三角函数 y sin x, y cos x, y tan x,y cot x, y sec x,y csc x
反三角函数 y arcsin x, y arccos x, y arctan x, y arc cot x 以上六类函数统称为基本初等函数
次的复合所构成的函数统称为初等函数.例如,本小节中的
例子中的函数都是初等函数.
1.1.5 常用的经济函数
一、需求函数与供给函数 二、成本函数、收益函数和利润函数
一、 需求函数与供给函数 1.需求函数 市场上某种商品的需求量除与商品的价格有关外,还受其他 许多因素的影响,如消费者的收入、代用商品的价格、消费 者的人数等等,这些因素是厂商无法控制的,且在一段时间内 不会有太大变化,因此我们假定消费者的收入、代用商品的 价格、消费者的人数等等都是常量.这样,商品的需求量 Qd 就是价格p的函数,称为需求函数,记为 Qd f ( p).通常Q 是p 的减函数.
∪(3,+ ∞)
二、函数的表示
解析法是函数最常用的表示方法。 利用解析法表示函数时,一般用一个解析式表示一个 函数,但有时需要用几个解析式表示一个函数,即对于自
函数的表示方法通常有解析法、列表法和图示法三种,
变量不同的取值范围,函数采用不同的解析式,这种函数
叫做分段函数。
例1-6 设有分段函数
,还有幂函数、指数函数.
二、成本函数、收益函数和利润函数 1.成本函数C (q) 一种产品的成本可以分为两部分:固定成本 C 和变动成本 C1
0
总成本就是固定成本加上变动成本.即C(q) C0 C1 C成本不能说明企业生产的好坏,因此常常用到平均成本的 概念:
第1 章
函数 极限 连续
§1.1 函数 §1.2 极限 §1.3 极限的性质与运算 §1.4 两个重要极限