《材料力学》习题册练习题答案参考 练习2 轴力与轴力图

合集下载

完整版材料力学答案单辉祖版全部答案

完整版材料力学答案单辉祖版全部答案

第二章轴向拉压应力与材料的力学性能13}2-1 试画图示各杆的轴力图。

题2-1图解:各杆的轴力图如图2-1所示。

图2-12-2 试画图示各杆的轴力图,并指出轴力的最大值。

图a与b所示分布载荷均沿杆轴均匀分布,集度为q。

A Bq<1aHD题2-2图(a)解:由图2-2a(1)可知,F N(X) 2qa qx 轴力图如图2-2a(2)所示,F N,max 叩图2-2a(b)解:由图2-2b(2)可知,F R qaF N (X1) F R qaF N(X2)F R q(x2 a) 2qa qx2F N,max qa图 2-2b2-3 图示轴向受拉等截面杆,横截面面积A=500mm 2,载荷F=50kN 。

试求图示斜截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

题图T ax—50MPa22-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。

试确定材料的弹性模量 E 、比例极限 p 、屈服极限s 、强度极限b 与伸长率 判断该材料属于何种类型(塑性或脆性材料) 。

T -sin2 a 50MPa sin( 100 )49.2MPa2杆内的最大正应力与最大切应力分别为轴力图如图2-2b(2)所示,^maxlOOMPaF 50 103N— A 500 10-6m 2斜截面m-m 的方位角 a 50,故有解:该拉杆横截面上的正应力为1.00 108Pa lOOMPa题2-5解:由题图可以近似确定所求各量。

2 2(T ocos a lOOMPa cos ( 50 ) 41.3MPa A- 220 106PaAe 0.001220 109Pa 220GPa-220MPa ,- 240MPa ,并-440MPa ,3 29.7%该材料属于塑性材料。

2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。

若杆径d =10mm , 杆长 I =200mm ,杆端承受轴向拉力 F = 20kN 作用,试计算拉力作用时与卸去 后杆的轴向变形。

周建方版材料力学习题解答2-8章

周建方版材料力学习题解答2-8章

2-1求图中所示各杆指定截面上的轴力,并绘制轴力图。

解:a) b)FFc) d)题2-1图2-2 求下图所示各个轴指定截面上的扭矩,并绘制扭矩图 解:a) b)2kN·m20kN·m题2-2图2-3图中传动轴的转速n=400rpm,主动轮2输入功率P 2=60kW,从动轮1,3,4和5的输出功率分别是P 1=18kW, P 3=12kW, P 4=22kW, P 5=8kW,试绘制该轴的扭矩图. 解:mN T mN T mN T mN T m N T ⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=191400895492.5254002295495.2864001295494.14324006095497.42940018954922321 题2-3图429.7N·m2-4 求图中所示各梁指定截面上的剪力和弯矩,设q 和F 均为已知.a )b)A qlql 2/2Bc)d)qlF QAM图F Q 图题2-4图2-5试绘制下图所示各梁的剪力图和弯矩图,并求出剪力和弯矩的最大值.设F q l 均为已知.a)b)A F Q2M图F Q 图c)d)F QF Q 图M图e) f)F QM图qlql 2/2ql 2/8F Q M图g)h)F Q M图9ql 2/128F Q M图题2-5图2-6不列方程,绘制下面各梁的剪力图和弯矩图,并求出剪力和弯矩绝对值的最大值.设F 、q 、l 均为已知。

a)b)F Q M图ql 2/2qlF Qc) d)F Q 图M图2FlF Q 图M图e) f)F Q 图M图F Q M图题2-6图2-7绘制下图所示各梁的剪力图和弯矩图,求出|F Q |max 和|M|max ,并且用微分关系对图形进行校核.a) b)F Q 图M图F Q 图M图Flc)d)F Q 图M图2F Q题2-7图2-8试判断图中所示各题的F Q ,M 图是否有错,如有错误清指出错误原因并加以改正。

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

2-1a 求图示各杆指截面的轴力,并作轴力图。

(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。

列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。

方法二:简便方法。

(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。

故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。

2-2b 作图示杆的轴力图。

(c)图:(b)图:(3)杆的轴力图如图(d )所示。

2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。

试计算两柱上、中、下三段的应力。

(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。

将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。

列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。

(2)作柱的轴力图,如(e)、(f)所示。

(3)求柱各段的应力。

解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。

试绘板件的轴力图,并计算板内的最大拉应力。

解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。

α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。

2章习题参考答案材料力学课后习题题解

2章习题参考答案材料力学课后习题题解
杆①和杆②都满足强度要求。
2.24 图示结构,BC杆为5号槽钢,其许用应力[σ]1=160MPa; AB杆为100×50mm2的矩形截面木杆,许用应力[σ]2=8MPa。试 求:(1)当F=50kN时,校核该结构的强度;(2)许用荷 载[F]。 解:受力分析如图
F F
C
A
y
0: (1)
F
FBC sin 60o FBA sin 30o 0
Fx = 0: FAB = F
因此
LAB
FABl Fl EA EA
(b)受力分析如图, 由C点平衡可知:
F C A D F
(b)
F C F AC B A FAC FAB FAD F AD D F FBD FAB FCB FCB FBD
Fx 0 : F
FBC FAC
B
F
x
0:
FAB 45o 30o C A F 1m 45o 30o FAC A F
FAB cos 45o FAC cos 30o 0 2 FAB 3FAC FAB 3 FAC 2
LAB cos 45o LAC cos 30o LAB LAC cos 30 o cos 45
max 10MPa
2.6 钢杆受轴向外力如图所示,横截面面积为500mm2,试求 ab斜截面上的应力。 解: FN=20kN
a
30
o
20kN
FN FN pα = = cos30o A A0 α
FN α pα cos 30 cos 2 30o A0
o
b a b a b
FN

τ α
B
FAy
1m 1m
F
FDC 4 10 F 40 F 10 [ ] 160 2 2 6 ADC 3 d 3 20 10

材料力学练习册答案

材料力学练习册答案

第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。

在考虑杆本身自重时,11-和22-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。

试作轴力图并求杆的总伸长及杆下端横截面上的正应力。

GPa E 200=钢。

解:轴力图如图。

杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。

试求荷载P 及在P 作用下杆内的最大正应力。

(GPa E 80=铜,GPa E 200=钢)。

解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。

材料力学练习册答案

材料力学练习册答案

第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b 由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。

在考虑杆本身自重时,11-和22-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑x F ,得kN la F N 08.04/21==γ22-截面,取右段如)(b 由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。

试作轴力图并求杆的总伸长及杆下端横截面上的正应力。

GPa E 200=钢。

解:轴力图如图。

杆的总伸长:m EA l F l N 59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。

试求荷载P 及在P 作用下杆内的最大正应力。

(GPa E 80=铜,GPa E 200=钢)。

解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP 解得: kN P 7.16=杆内的最大正应力:4/4/4/4/)(a )(b )(c 2N1N )(a kNkN图NF cm cmcmMPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。

材料力学第五版课后习题答案

材料力学第五版课后习题答案

二、轴向拉伸和压缩之马矢奏春创作创作时间:二零二一年六月三十日2-1 试求图示各杆1-1和2-2横截面上的轴力, 并作轴力图.(a)解:;;(b)解:;;(c)解:;. (d)解:.2-2 试求图示等直杆横截面1-1, 2-2和3-3上的轴力, 并作轴力图.若横截面面积, 试求各横截面上的应力.解:2-3 试求图示阶梯状直杆横截面1-1, 2-2和3-3上的轴力, 并作轴力图.若横截面面积, , , 并求各横截面上的应力.解:2-4 图示一混合屋架结构的计算简图.屋架的上弦用钢筋混凝土制成.下面的拉杆和中间竖向撑杆用角钢构成, 其截面均为两个75mm×8mm的等边角钢.已知屋面接受集度为的竖直均布荷载.试求拉杆AE和EG横截面上的应力.解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆接受轴向拉力, 杆的横截面面积.如以暗示斜截面与横截面的夹角, 试求当, 30, 45, 60, 90时各斜截面上的正应力和切应力, 并用图暗示其方向.解:2-6(2-8) 一木桩柱受力如图所示.柱的横截面为边长200mm的正方形, 资料可认为符合胡克定律, 其弹性模量E=10 GPa.如不计柱的自重, 试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(压)(压)2-7(2-9) 一根直径、长的圆截面杆, 接受轴向拉力, 其伸长为.试求杆横截面上的应力与资料的弹性模量E.解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示.已知该杆资料的弹性常数为E, , 试求C与D两点间的距离改变量.解:横截面上的线应变相同因此2-9(2-12) 图示结构中, AB为水平放置的刚性杆, 杆1, 2, 3资料相同, 其弹性模量E=210GPa, 已知, , , .试求C点的水平位移和铅垂位移.解:(1)受力图(a), .(2)变形协调图(b)因, 故=(向下)(向下)为保证, 点A移至, 由图中几何关系知;第三章扭转3-1 一传动轴作匀速转动, 转速, 轴上装有五个轮子, 主动轮Ⅱ输入的功率为60kW, 从动轮, Ⅰ, Ⅲ, Ⅳ, Ⅴ依次输出18kW, 12kW,22kW和8kW.试作轴的扭矩图.解:kNkNkNkN3-2(3-3) 圆轴的直径, 转速为.若该轴横截面上的最年夜切应力即是, 试问所传递的功率为多年夜?解:故即又故3-3(3-5) 实心圆轴的直径mm, 长m, 其两端所受外力偶矩, 资料的切变模量.试求:(1)最年夜切应力及两端截面间的相对扭转角;(2)图示截面上A, B, C三点处切应力的数值及方向;(3)C点处的切应变.解:=3-4(3-6) 图示一等直圆杆, 已知, ,, .试求:(1)最年夜切应力;(2)截面A相对截面C的扭转角.解:(1)由已知得扭矩图(a)(2)3-5(3-12) 长度相等的两根受扭圆轴, 一为空心圆轴, 一为实心圆轴, 两者资料相同, 受力情况也一样.实心轴直径为d;空心轴外径为D, 内径为, 且.试求当空心轴与实心轴的最年夜切应力均到达资料的许用切应力), 扭矩T相等时的重量比和刚度比.解:重量比=因为即故故刚度比==3-6(3-15) 图示等直圆杆, 已知外力偶矩,, 许用切应力, 许可单元长度扭转角, 切变模量.试确定该轴的直径d.解:扭矩图如图(a)(1)考虑强度, 最年夜扭矩在BC段, 且(1)(2)考虑变形(2)比力式(1)、(2), 取3-7(3-16) 阶梯形圆杆, AE段为空心, 外径D=140mm, 内径d=100mm;BC段为实心, 直径d=100mm.外力偶矩, , .已知:, , .试校核该轴的强度和刚度.解:扭矩图如图(a)(1)强度=, BC段强度基本满足=故强度满足.(2)刚度BC段:BC段刚度基本满足.AE段:AE段刚度满足, 显然EB段刚度也满足.3-8(3-17) 习题3-1中所示的轴, 资料为钢, 其许用切应力, 切变模量, 许可单元长度扭转角.试按强度及刚度条件选择圆轴的直径.解:由3-1题得:故选用.3-9(3-18) 一直径为d的实心圆杆如图, 在接受扭转力偶矩后, 测得圆杆概况与纵向线成方向上的线应酿成.试导出以, d和暗示的切变模量G的表达式.解:圆杆概况贴应变片处的切应力为圆杆扭转时处于纯剪切状态, 图(a).切应变(1)对角线方向线应变:(2)式(2)代入(1):3-10(3-19) 有一壁厚为25mm、内径为250mm的空心薄壁圆管, 其长度为1m, 作用在轴两端面内的外力偶矩为180.试确定管中的最年夜切应力, 并求管内的应变能.已知资料的切变模量.解:3-11(3-21) 簧杆直径mm的圆柱形密圈螺旋弹簧, 受拉力作用, 弹簧的平均直径为mm, 资料的切变模量.试求:(1)簧杆内的最年夜切应力;(2)为使其伸长量即是6mm所需的弹簧有效圈数.解:,故因为故圈3-12(3-23) 图示矩形截面钢杆接受一对外力偶矩.已知资料的切变模量, 试求:(1)杆内最年夜切应力的年夜小、位置和方向;(2)横截面矩边中点处的切应力;(3)杆的单元长度扭转角.解:, ,由表得MPa第四章弯曲应力4-1(4-1) 试求图示各梁中指定截面上的剪力和弯矩.解:(a)(b)(c)(d)=(e)(f)(g)(h)=4-2(4-2) 试写出下列各梁的剪力方程和弯矩方程, 并作剪力图和弯矩图.解:(a)(b)时时(c)时时(d)(e)时,时,AB段:(f)BC段:(g)AB段内:BC段内:(h)AB段内:BC段内:CD段内:4-3(4-3) 试利用荷载集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图.4-4(4-4) 试作下列具有中间铰的梁的剪力图和弯矩图.4-5(4-6) 已知简支梁的剪力图如图所示.试作梁的弯矩图和荷载图.已知梁上没有集中力偶作用.返回4-6(4-7) 试根据图示简支梁的弯矩图作出梁的剪力图与荷载图. 4-7(4-15) 试作图示刚架的剪力图、弯矩图和轴力图.4-8(4-18) 圆弧形曲杆受力如图所示.已知曲杆轴线的半径为R, 试写出任意横截面C上剪力、弯矩和轴力的表达式(暗示成角的函数), 并作曲杆的剪力图、弯矩图和轴力图.解:(a)(b)4-9(4-19) 图示吊车梁, 吊车的每个轮子对梁的作用力都是F, 试问:(1)吊车在什么位置时, 梁内的弯矩最年夜?最年夜弯矩即是几多?(2)吊车在什么位置时, 梁的支座反力最年夜?最年夜支反力和最年夜剪力各即是几多?解:梁的弯矩最年夜值发生在某一集中荷载作用处., 得:那时,当M极年夜时:,则, 故,故为梁内发生最年夜弯矩的截面故:=4-10(4-21) 长度为250mm、截面尺寸为的薄钢尺, 由于两端外力偶的作用而弯成中心角为的圆弧.已知弹性模量.试求钢尺横截面上的最年夜正应力.解:由中性层的曲率公式及横截面上最年夜弯曲正应力公式得:由几何关系得:于是钢尺横截面上的最年夜正应力为:第五章梁弯曲时的位移5-1(5-13) 试按迭加原理并利用附录IV求解习题5-4.解:(向下)(向上)(逆)(逆)5-2(5-14) 试按迭加原理并利用附录IV求解习题5-5.解:分析梁的结构形式, 而引起BD段变形的外力则如图(a)所示, 即弯矩与弯矩.由附录(Ⅳ)知, 跨长l的简支梁的梁一端受一集中力偶M作用时, 跨中点挠度为.用到此处再利用迭加原理得截面C的挠度(向上)5-3(5-15) 试按迭加原理并利用附录IV求解习题5-10.解:5-4(5-16) 试按迭加原理并利用附录IV求解习题5-7中的.解:原梁可分解成图5-16a和图5-16d迭加, 而图5-16a又可分解成图5-16b和5-16c.由附录Ⅳ得5-5(5-18) 试按迭加原理求图示梁中间铰C处的挠度, 并描出梁挠曲线的年夜致形状.已知EI为常量.解:(a)由图5-18a-1(b)由图5-18b-1=5-6(5-19) 试按迭加原理求图示平面折杆自由端截面C的铅垂位移和水平位移.已知杆各段的横截面面积均为A, 弯曲刚度均为EI.解:5-7(5-25) 松木桁条的横截面为圆形, 跨长为4m, 两端可视为简支, 全跨上作用有集度为的均布荷载.已知松木的许用应力, 弹性模量.桁条的许可相对挠度为.试求桁条横截面所需的直径.(桁条可视为等直圆木梁计算, 直径以跨中为准.)解:均布荷载简支梁, 其危险截面位于跨中点, 最年夜弯矩为, 根据强度条件有从满足强度条件, 得梁的直径为对圆木直径的均布荷载, 简支梁的最年夜挠度为而相对挠度为由梁的刚度条件有为满足梁的刚度条件, 梁的直径有由上可见, 为保证满足梁的强度条件和刚度条件, 圆木直径需年夜于.5-8(5-26) 图示木梁的右端由钢拉杆支承.已知梁的横截面为边长即是0.20m的正方形, , ;钢拉杆的横截面面积.试求拉杆的伸长及梁中点沿铅垂方向的位移.解:从木梁的静力平衡, 易知钢拉杆受轴向拉力40于是拉杆的伸长为=木梁由于均布荷载发生的跨中挠度为梁中点的铅垂位移即是因拉杆伸长引起梁中点的刚性位移与中点挠度的和, 即第六章简单超静定问题6-1 试作图示等直杆的轴力图.解:取消A真个过剩约束, 以代之, 则(伸长), 在外力作用下杆发生缩短变形.因为固定端不能移动, 故变形协调条件为:故故6-2 图示支架接受荷载各杆由同一资料制成, 其横截面面积分别为, 和.试求各杆的轴力.解:设想在荷载F作用下由于各杆的变形, 节点A移至.此时各杆的变形及如图所示.现求它们之间的几何关系表达式以便建立求内力的弥补方程.即:亦即:将, , 代入, 得:即:亦即:(1)此即弥补方程.与上述变形对应的内力如图所示.根据节点A的平衡条件有:;亦即:(2);,亦即:(3)联解(1)、(2)、(3)三式得:(拉)(拉)(压)6-3 一刚性板由四根支柱支撑, 四根支柱的长度和截面都相同, 如图所示.如果荷载F作用在A点, 试求这四根支柱各受力几多.解:因为2, 4两根支柱对称, 所以, 在F力作用下:变形协调条件:弥补方程:求解上述三个方程得:6-4 刚性杆AB的左端铰支, 两根长度相等、横截面面积相同的钢杆CD和EF使该刚性杆处于水平位置, 如图所示.如已知, 两根钢杆的横截面面积, 试求两杆的轴力和应力.解:,(1)又由变形几何关系得知:,(2)联解式(1), (2), 得,故,6-5(6-7) 横截面为250mm×250mm的短木柱, 用四根40mm×40mm×5mm的等边角钢加固, 并接受压力F, 如图所示.已知角钢的许用应力, 弹性模量;木材的许用应力, 弹性模量.试求短木柱的许可荷载.创作时间:二零二一年六月三十日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档