偏心拉伸实验报告实验结论
3.偏心拉伸(08)

偏心拉伸试验
学院_________专业_________班_________实验组别_______实验者姓名_______________
实验日期_______________年_________月_________日实验室温度___________℃
批改时间____________ 报告成绩______________ 批阅人______________
一、实验原理(接桥方法设计:a测量轴力图及计算公式,b测量弯矩图及计算公式)
二、实验设备
电阻应变仪型号名称____________________________
实验装置名称____________________________
量具名称____________________________ 精度________mm
三、实验基本数据
四、实验测量数据和处理结果
五、回答思考题中提出的问题
(1)不同的桥路方式对测量结果有无影响?
(2)电阻应变仪无显示或数据不稳定,是什么原因造成的?该如何调整?(3)简述实验心得,或试验中你觉得应该注意的事项。
偏心拉伸实验报告

偏心拉伸实验报告实验目的,通过偏心拉伸实验,研究材料在拉伸过程中的变形和破坏特性,了解材料的力学性能。
实验原理,偏心拉伸是指在拉伸试样上施加偏心载荷,使试样在拉伸过程中产生偏心变形,从而引起试样的非均匀应变和破坏。
在偏心拉伸实验中,试样的拉伸变形主要包括轴向拉伸变形和偏心变形。
轴向拉伸变形是指试样在拉伸过程中发生的均匀拉伸变形,而偏心变形是指试样在偏心载荷作用下产生的非均匀应变和破坏。
通过对试样的偏心拉伸实验,可以研究材料的屈服特性、断裂特性和应变硬化特性。
实验步骤:1. 准备拉伸试样和拉伸设备;2. 在拉伸试样上标定偏心位置;3. 施加偏心载荷,进行偏心拉伸实验;4. 记录试样的拉伸变形和破坏情况;5. 分析实验数据,得出结论。
实验结果:通过偏心拉伸实验,我们观察到试样在偏心载荷作用下发生了非均匀应变和破坏。
试样的偏心变形导致了试样的局部应变集中,最终导致试样的破坏。
在实验中,我们还观察到试样的屈服特性和断裂特性,得出了材料的力学性能参数。
实验结论:偏心拉伸实验结果表明,材料在拉伸过程中会出现非均匀应变和破坏,偏心变形是导致试样破坏的主要原因之一。
通过偏心拉伸实验,我们可以了解材料的力学性能,为材料的设计和应用提供参考。
实验意义:偏心拉伸实验对于研究材料的力学性能具有重要意义,可以为工程结构的设计和材料的选择提供依据。
通过对材料的偏心拉伸实验,可以评估材料的抗拉强度、屈服特性和断裂特性,为工程实践提供参考。
总结:偏心拉伸实验是研究材料力学性能的重要手段,通过实验可以了解材料在拉伸过程中的变形和破坏特性。
偏心拉伸实验结果对于材料的设计和应用具有重要意义,可以为工程结构的设计和材料的选择提供依据。
希望通过本次实验,能够更深入地了解材料的力学性能,为工程实践提供更多的参考和支持。
实验一 偏心拉伸试验

实验一偏心拉伸试验[实验目的]1、测定偏心拉伸时的最大正应力,验证迭加原理的正确性。
2、学习拉弯组合变形时分别测量各内力分量产生的应变成分的方法。
3、测定偏心拉伸试样的弹性模量E 和偏心距e 。
4、进一步学习用应变仪测量微应变的组桥原理和方法,并能熟练掌握、灵活运用。
[使用仪器及工具]静态电阻应变仪、拉伸加载装置、偏心拉伸试样(已贴应变计)、螺丝刀等。
[试样及布片介绍]本实验采用矩形截面的薄直板作为被测试样,其两端各有一偏离轴线的圆孔,通过圆柱销钉使试样与实验台相连,采用一定的加载方式使试样受一对平行于轴线的拉力作用。
在试样中部的两侧面、或两表面上与轴线等距的对称点处沿纵向对称地各粘贴一枚单轴应变计(见图1、图2),贴片位置和试样尺寸如图所示。
应变计的灵敏系数K 标注在试样上。
[实验原理]偏心受拉构件在外载荷P 的作用下,其横截面上存在的内力分量有:轴力F N =P ,弯矩M =P ·e ,其中e 为构件的偏心距。
设构件的宽度为b 、厚度为t ,则其横截面面积A =t ·b 。
在图2所示情况中,a 为构件轴线到应变计丝栅中心线的距离。
根据叠加原理可知,该偏心受拉构件横截面上各点都为单向应力状态,其测点处正应力的理论计算公式为拉伸应力和弯矩正应力的代数和,即:26P M P Pe A W tb tbσ=±=±(对于图1布片方案) 图1 加载与布片示意图1图2 加载与布片示意图2312y P M P Pea y A I tb tbσ=±=±(对于图2布片方案) 根据胡克定律可知,其测点处正应力的测量计算公式为材料的弹性模量E 与测点处正应变的乘积,即:E σε=⋅1.测定最大正应力,验证迭加原理根据以上分析可知,受力构件上所布测点中最大应力的理论计算公式为:max 2max 22361122a P M P Pe A W tb tb P M P Pea y A I tb tb σσσσ⎧==+=+⎪⎪⎨⎪==+=+⎪⎩,理,理 (对于图布片方案) (对于图布片方案)(1)而受力构件上所布测点中最大应力的测量计算公式为:()()max 2max E E 1E E 2a a P M a P Ma σσεεεσσεεε==⋅=+⎧⎪⎨==⋅=+⎪⎩,测,测 (对于图布片方案)(对于图布片方案)(2) 2.测量各内力分量产生的应变成分P M εε 和由电阻应变仪测量电桥的加减原理可知,改变电阻应变计在电桥上的联接方法,可以得到几种不同的测量结果。
实验六 偏心拉伸实验

实验六 偏心拉伸实验一、实验目的1. 测定偏心拉伸时的最大正应力,验证叠加原理的正确性2. 分别测定偏心拉伸时由拉力和弯矩所产生的应力。
3. 测定弹性模量E 。
4.测定偏心距e 。
二、实验设备1. 组合变形电测综合实验装置(自制);2. 电阻应变测力仪;三、实验原理和方法偏心拉伸试件,如下图所示。
在外载荷作用下,其轴力F N =F ,弯矩M=F ×e,其中e 为偏心距。
根据叠加原理,得横截面上的应力为单向应力状态,其理论计算公式为拉伸应力和弯曲应力的代数和。
即20F 6M =A bh σ± 试件应变片的布置方法如上图所示,R 1和R 2分别为试件两侧面上的两个对称点,则1F =Mεεε-2F =M εεε+式中F ε——轴力引起的拉伸应变;M ε——弯矩引起的应变。
该实验采用全桥对臂的方式测轴力引起的应变,采用半桥方式测弯矩引起的应变。
四、实验步骤1. 设计好本实验所需的各类数据表格。
2. 测量试件尺寸。
3. 拟定加载方案。
4. 根据试件的分布情况和提供的设备条件确定最佳贴片、组桥方案并接线。
5. 分4-6级加载实验。
记录不同载荷时应变仪的度数应变d ε,并随时检查应变仪的度数变化量d ε∆是否符合线性变化。
6. 实验结束,卸载、关闭电源,拆线整理所有设备,清理试验现场,将所有仪器、设备复原。
五、实验结果处理1. 基本参数。
如图(a)所示,h=30 b=5 k=2.182. 实验过程中采集的数据。
表(b ) 测量M ε时应变与加载数据表表(c)各测点处应变数据的处理()F N ∆()F εμε∆()M εμε∆500 16 -31 500 17 -31.5 500 19.5 -31.5 500 15 -3150016.5 -30 ()εμε16.8-313、所用试件的弹性模量为660500198.41501016.810F F E Gpa A ε--===⨯⨯⨯ 4、偏心距为()293362198.410510*********.2366500Z M MEW Ebh e mmF Fεε---⨯⨯⨯⨯⨯⨯⨯====⨯5、应力计算实验值 9-6E =198.41016.810=3.33312MPa F σε=⨯⨯⨯9-6M E =198.4103110=6.1504MPa σε=⨯⨯⨯max 9.48352F M Mpa σσσ=+=理论值()3max263350065009.23109.48667150105103010Z F M Mpa A W σ----⨯⨯⨯=+=+=⨯⨯⨯⨯ 相对误差为0.003%。
实验报告-偏心拉伸

偏心拉伸试验
实验日期实验地点报告成绩
实验者班组编号环境条件℃、%RH 一、实验目的:
二、使用仪器:
三、实验原理:
四、实验数据记录:
表1、试样相关数据
表2、拉应变的测试试样编号NO:
表3、弯曲应变的测试试样编号NO:
实验指导教师(签名):
五、实验数据处理:
六、实验结果:
七、思考题:
1、对于讲义中图1所示的布片方案,如果按右图的方式进行组桥亦能测得拉应变εP 。
请问:它与讲义中图3(a)所示的组桥方式相比,哪个方案好些?为什么?
*2、比较本试验讲义中所给两种布片方案的优劣。
*3、对于讲义中图2所示的布片方案,除讲义中指出的两种组桥方案外,还有哪些方案?试画出你所能列出的组桥方式,并指出相应应变仪读数的意义。
*4、本试验的误差主要是由哪些原因造成的?
批阅报告教师(签名):
八、问题讨论:
C。
偏心拉伸实验

D图2-2R 图2-1实验二 偏心拉伸实验一、实验目的1.测定偏心拉伸试样材料的弹性模量E 。
2.测定偏心拉伸试样的偏心距e 。
3.学习组合载荷作用下由内力产生的应变成份分别单独测量的方法。
二、设备和仪器(同§7) 三、试样采用图2-1所示的铝合金偏心拉伸试样,Ra 和Rb 为沿应变方向粘贴的应变片,另外有两枚粘贴在与试样材质相同但不受载荷的铝块上的应变片,供全桥测量时组桥之用。
尺寸b=24mm ,t=5mm 。
四、试验原理 由电测原理知:1234du εεεεε=-+-(I-7)式中du ε为仪器读数。
从此式看出:相邻两臂应变符号相同时,仪器读数互相抵销;应变符号相异时,仪器读数绝对值是两者绝对值之和。
相对两臂应变符号相同时,仪器读数绝对值是两者绝对值之和;应变符号相异时,仪器读数互相抵销。
此性质称为电桥的加减特性。
利用此特性,采取适当的布片和组桥,可以将组合载荷作用下各内力产生的应变成份分别单独测量出来,且减少误差,提高测量精度。
从而计算出相应的应力和内力。
——这就是所谓内力素测定。
图2-1中Ra 和Rb 的应变均由拉伸和弯曲两种应变成份组成,即() ()a F M b F M a b εεεεεε=+=-式中Fε和M ε分别为拉伸和弯曲应变的绝对值。
若如图2-2组桥,则由(I-7)、(a )和(b )式得2du a b F εεεε=+=若如图2-3组桥,则由(I-7)、(a )和(b )式得2du a b M εεεε=-=通常将仪器读出的应变值与待测应变值之比称为桥臂系数。
故上述两种组桥方法的桥臂系数均为2。
为了测定弹性模量E ,可如图2-2组桥,并等增量加载,即0(1,2,,5)i F F i F i =+⋅∆=末级载荷5F 不应使材料超出弹性范围。
初载荷F 时应变仪调零,每级加载后记录仪器读数图2-3dui ε,用最小二乘法计算出弹性模量E :52151i duii iFE bti αε==⋅∆=⋅∑∑ (2-1)式中α为桥臂系数。
偏心拉杆实验报告

实验报告
六.偏心拉杆实验报告
实验者姓名:_________ 学号:______ _
实验组别:_______分院_____ 专业 _ 班
实验日期:________年_______月 日 (一)实验目的
1.熟悉电阻应变仪的电桥接法。
2.测定偏心拉伸试样的应力分布,验证叠加原理的正确性。
(二)实验设备
实验机名称及机器型号_________ 精度__mm
测试件直径的量具名称_________ 精度__mm 测试件长度的量具名称_________ 精度__mm (三)实验数据和计算结果
1. 偏心拉伸试件实验前参数(试件截面尺寸见图1,图2所示)
)(mm b
)(mm t
)(mm e
)(MPa E
)(4mm I x
)(A 2mm
)(12/43mm tb I x =
)(2mm bt A =
图1 图2 2. 偏心拉伸试件各测点应力理论计算结果
评 定 教师签名 批阅日期
3.偏心拉伸试件各测点的应变读数(试验三次,以较好的一组试验数据填入表中)
4.偏心拉伸试件各测点的应力计算结果
5.理论值与试验值的比较
(四)回答下例问题
1.影响实验结果的主要因素是什么
3.画出正应力沿横截面高度的分布规律图。
综合实验偏心拉伸的应力测试DOC

1. 实验目的及意义 (1)2. 实验器材 (1)2.1 XL2118C 型力&应变综合测试仪 (1)2.2试样及应变片介绍 (3)3. 电桥 (5)3.1测量电桥的工作原理 (5)3.2 温度补偿和温度补偿片 (6)3.3桥路连接 (7)4. 实验原理 (8)4.1 原理 (8)4.2 测量各内力分量产生的应变成分P ε和M ε (8)4.3 弹性模量E 的测量与计算 (10)4.4 偏心距e 的测量与计算 (10)5. 实验过程和结论 (11)5.1 实验步骤 (11)5.2实验数据处理 (12)6. 有限元分析 (13)6.1 有限元分析软件的选择 (13)6.2 试件的有限元分析 (15)6.2.1 正拉力下试件受力分析 (15)6.2.2偏心拉力下试件受力分析 (16)7. 结术语 (18)综合实验——偏心拉伸实验1. 实验目的及意义金属材料的拉伸试验是人们最早用来测定材料力学性能的一种方法,是应用最广泛的力学性能试验方法。
金属材料在外力作用下所表现出的各种特征,如弹性、塑性、韧性、强度等统称为力学性能指标。
金属材料的力学性能是其性能和可靠性的重要标志,拉伸性能更是金属材料的力学性能的重要参数。
通过拉伸实验,可以获得如抗拉强度、伸长率等多项金属材料的力学指标,为材料方面的科学研究创造价值。
本实验是针对偏心件,测量其弹性模量E和偏心距e,同时对应变仪测量微应变仪的组桥原理和方法进行理论和实际的掌握。
最后运用ANSYS有限元分析软件对偏心试样的变形和应力进行有限元分析。
2. 实验器材XL2118C型力&应变综合测试实验系统、偏心拉伸试样(已贴应变片)、螺丝刀等。
2.1XL2118C型力&应变综合测试仪XL2118C型力&应变综合测试实验系统包括力&应变综合测试仪和拉伸加载装置。
该应变仪采用最新嵌入式MUC控制技术、显示技术、模拟数字滤波技术等精心设计的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏心拉伸实验报告实验结论
偏心拉伸实验报告实验结论
引言:
偏心拉伸实验是一种常见的力学实验,用以研究材料在受拉力作用下的变形和破坏特性。
通过施加偏心拉力,可以模拟实际工程中材料所承受的不均匀受力情况,从而更好地了解材料的力学性能。
本文将总结偏心拉伸实验的结果,并得出实验结论。
实验设计:
本次实验采用了标准的偏心拉伸试验机,选取了不同种类的材料进行测试,包括金属、塑料和复合材料。
每种材料都进行了多组试验,以确保结果的准确性和可靠性。
在实验过程中,我们记录了拉伸载荷、试样长度和试样断裂位置等数据。
实验结果:
在所有的实验中,我们观察到了以下现象和结果:
1. 材料的断裂位置:
在偏心拉伸实验中,材料的断裂位置通常会出现在试样的较薄部分。
这是由于拉伸力的作用,使得试样的较薄部分承受的应力较大,从而导致破坏。
这一现象在金属和塑料试样中尤为明显,而在复合材料试样中稍微有所不同,可能会出现在不同的位置。
2. 材料的断裂形态:
不同材料在偏心拉伸实验中的断裂形态也有所不同。
金属试样通常会出现拉伸断裂,即试样在拉伸力作用下逐渐拉长,最终发生断裂。
塑料试样则可能会出
现拉断或剪切断裂,取决于材料的特性和结构。
复合材料试样的断裂形态更加多样,可能会同时出现拉伸、剪切和撕裂等多种破坏方式。
3. 材料的应力-应变曲线:
通过对实验数据的分析,我们得到了材料的应力-应变曲线。
在拉伸阶段,材料的应变随着拉伸力的增加而线性增长,直至达到极限强度。
此后,材料开始发生塑性变形,应变增长速率逐渐减慢,直至材料最终断裂。
不同材料的应力-应变曲线形状和特点有所差异,这与材料的组成、结构和加工方式等有关。
实验结论:
通过以上实验结果的观察和分析,我们得出以下结论:
1. 材料的断裂位置受到拉伸力的影响,较薄部分承受的应力较大,容易破坏。
2. 不同材料在偏心拉伸实验中的断裂形态各异,金属试样通常呈现拉伸断裂,塑料试样可能出现拉断或剪切断裂,而复合材料试样的破坏方式更加多样。
3. 材料的应力-应变曲线可以反映材料的力学性能,包括强度、韧性和塑性等。
不同材料的应力-应变曲线形状和特点有所差异,这与材料的组成和结构等因素密切相关。
综上所述,偏心拉伸实验是研究材料力学性能的重要手段之一。
通过实验结果的观察和分析,我们可以更好地了解材料的变形和破坏特性,为工程设计和材料选择提供依据。
然而,需要注意的是,本实验结果仅针对所选取的材料和实验条件,对于其他材料和条件可能存在差异,因此在实际应用中需综合考虑。