高一上册期末数学综合试卷答案

合集下载

(完整word版)高一上学期期末数学试卷(含答案)

(完整word版)高一上学期期末数学试卷(含答案)

高一上学期期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若集合A={0,1,2,3},集合B={x|x∈A且1﹣x∉A},则集合B的元素的个数为()A.1 B. 2 C.3 D.42.已知点A(1,2),B(﹣2,3),C(4,y)在同一条直线上,则y的值为()A.﹣1 B.C.1 D.3.如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为()A.πB.C.4πD.5π4.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α5.下列四个数中最小者是()A.log3B.log32 C.log23 D.log3(log23)6.三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为()A.8πB.C.D. 8π7.设A、B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x﹣y+1=0,则直线PB的方程是()A.x+y﹣5=0 B.2x﹣y﹣1=0 C.2y﹣x﹣4=0 D.2x+y﹣7=08.已知函数f(x)=log a(2﹣a x)在(﹣∞,1]上单调递减,则a的取值范围是()A.(1,2)B.(0,1)C.(0,1)∪(1,2)D.(0,1)∪(2,+∞)9.设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f(x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是()10.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.4011.(理)如图,已知正三棱柱ABC﹣A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是()A.90°B.60°C.45°D.30°12.已知函数f(x)=,若关于x的方程f(x)=t有3个不等根x1,x2,x3,且x1<x2<x3,则x3﹣x1的取值范围为()A.(2,]B.(2,]C.(2,]D.(2,3)二、填空题(本题共4个小题,每小题5分,共20分)13.(5分)已知长方形ABCD中,AB=2,AD=3,其水平放置的直观图如图所示,则A′C′=.14.(5分)若点P(x,y)在圆C:(x﹣2)2+y2=3上,则的最大值是。

高一数学上册期末综合检测试卷附答案

高一数学上册期末综合检测试卷附答案

高一数学上册期末综合检测试卷附答案一、选择题1.已知全集{1,2,3,4}U =,集合{1,2}A =,{2,3}B =,则()UA B ⋃等于( )A .{1,3}B .{1,2,3}C .{2,4}D .{4}2.函数()2xf x x =-的定义域是( ) A .{}|2x x < B .{}|2x x > C .{}2|x x ≤D .{}|2x x ≥3.已知角α的终边过点()sin1,cos1P ,则α是第( )象限角. A .一B .二C .三D .四4.若角α的终边过点(3,1)-,则cos α等于( ) A .12B .12-C .32-D .33-5.函数()2ln f x x x=-的零点所在的大致区间是( )A .()1,2B .()2,eC .()3,4D .(),e +∞6.《九章算术》中《方田》章有弧田面积计算问题,术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢).弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到弧田弦的距离之差,现有一弧田,其弧田弦AB 等于6米,其弧田弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则sin2AOB ∠=( )A .34B .725C .45D .357.已知函数()f x 为偶函数,且在区间(,0]-∞上单调递增,若(3)2f -=-,则不等式(1)2f x -≥-的解集为( )A .[3,0]-B .[3,3]-C .(,2][4,)-∞-⋃+∞D .[2,4]-8.对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()22,02,0x x x f x mx x ⎧+<=⎨+≥⎩的图象存在“隐对称点”,则实数m 的取值范围是( ).A .)2⎡-⎣ B .(,2-∞-C .(,2-∞+D .(0,2+二、填空题9.已知函数()f x 的定义域为R ,对任意的实数想,x ,y 满足1()()()2f x y f x f y +=++,且1()02f =,下列结论正确的是( ) A .1(0)2f =-B .3(1)2f -=- C .()f x 为R 上的减函数D .1()2+f x 为奇函数10.下列命题为真命题的是( ) A .若a b >,则11a b< B .若0a b <<,则22a ab b >>C 5D .lg 0x <是1x <的充分不必要条件11.设0,0a b c >>≠,则下列不等式成立的是( ) A .a c b c ->-B .22c c a b>C .a a cb b c+<+ D .11a b a b->- 12.高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如[]2.13-=-,[]2.12=.已知函数()sin sin f x x x =+,函数()() g x f x =⎡⎤⎣⎦,则( )A .函数()g x 的值域是{}0,1,2B .函数()g x 是周期函数C .函数()g x 的图象关于2x π=对称D .方程()2g x x π⋅=只有一个实数根三、多选题13.命题“,sin 3x x π∀∈>R ”的否定是________.14.函数()2xf x =和()3g x x =的图像的示意图如图所示,设两函数的图像交于点()11,A x y ,()22,B x y ,且12x x <.若[]1,1x a a ∈+,[]2,1x b b ∈+,且a ,{}1,2,3,4,5,6,7,8,9,10,11,12b ∈,则a b +=__________.15.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________. 16.设函数2()f x ax bx c =++且()()10f a λλ=≠,对于0a ∀>,,b c R ∈,()f x 在区间()0,2内至少有一个零点,则符合条件的实数λ的一个..值是________. 四、解答题17.已知集合{}{}|321,|53A x a x a B x x =-≤≤+=-≤≤,全集U =R .(1)当1a =时,求()U A B ;(2)若A B ⊆,求实数a 的取值范围. 18.已知0,2πα⎛⎫∈ ⎪⎝⎭,且3sin 5α=.(1)求cos 4πα⎛⎫+ ⎪⎝⎭的值;(2)求sin 2cos 1cos 2ααα-+的值.19.已知函数2()1ax bf x x+=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用单调性定义证明()f x 在()1,1-上是增函数; (3)解不等式()()10f t f t -+<.20.如图为某儿童游乐场一个小型摩天轮示意图,该摩天轮近似看作半径为4.8m 的圆,圆上最低点A 与地面距离为0.8m ,摩天轮每60秒匀速转动一圈,摩天轮上某点B 的起始位置在最低点A 处.图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为m h .(1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数关系式;(3)如果离地面高度不低于8m 才能获得最佳观景效果,在摩天轮转动的一圈内,有多长时间B 点在最佳观景效果高度?21.已知函数()f x x x a =-为R 上的奇函数. (1)求实数a 的值;(2)若不等式()()2sin 2cos 0f x f t x +-≥对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的最小值.22.已知二次函数()2f x ax bx c =++满足()01f =,()()121f x f x x +-=-.(1)求()f x 的表达式;(2)若存在[]2,3x ∈,对任意t R ∈,都有()()22f x t m t x ≥-+--,求实数m 的取值范围;(3)记()()h x f x k =+,若对任意的,1x ,2x ,[]31,2x ∈,以()1h x ,()2h x ,()3h x 为边长总可以构成三角形求实数k 的取值范围.【参考答案】一、选择题 1.D 【分析】先求得A B ,然后求得()UA B ⋃.【详解】依题意{}1,2,3A B ⋃=,所以(){}U4A B ⋃=.故选:D 2.B 【分析】由分式中的分母不为零,二次根式中的被开方数大于等于零可得选项. 【详解】 因为函数()f x =,所以2>0x -,解得>2x ,所以函数()f x ={}|2x x >,故选:B . 【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分式中的分母不为0;(3)对数函数中真数大于0. 3.A 【分析】分析()sin1,cos1P 横纵坐标的符号即可求解. 【详解】因为角α的终边过点()sin1,cos1P ,且sin10,cos10>>, 所以α是第一象限角. 故选:A 4.C 【分析】根据三角函数的定义即可求解. 【详解】设角α的终边一点(3,1)P -,3,1x y =-= 则312r OP ==+=, 由三角函数的定义可得: 3cos 2x r α-==, 故选:C. 5.B 【分析】计算区间端点函数值,根据零点存在定理判断. 【详解】(1)ln1220f =-=-<,(2)ln 210f =-<,22()ln 10f e e e e=-=->,因此零点在(2,)e 上. 故选:B . 6.D 【分析】利用弧田面积公式可求出矢长,继而求出半径和圆心到弧田弦的距离,进而求得结果. 【详解】如图,由题意可得:6AB =,弧田面积 12S =⨯(弦×矢+矢2)12=⨯(6×矢+矢2)72=(平方米).所以,矢1=,或矢7=-(舍),设圆的半径为r ,圆心到弧田弦的距离为d ,则2219r d r d -=⎧⎨=+⎩,解得4d =,=5r ,则3AD . 所以3sinsin 25AOB AD AOD r ∠=∠==. 故选:D . 7.D 【分析】由函数()f x 为偶函数,可得()0,∞+单调递减,不等式()(1)23f x f -≥-=-,即()(1)3f x f -≥-,利用单调性可得13x -≤,即可求解.【详解】因为(3)2f -=-,所以(1)2f x -≥-等价于()(1)3f x f -≥-, 因为函数()f x 为偶函数,所以()(1)3f x f -≥-, 因为()f x 在区间(,0]-∞上单调递增,在()0,∞+单调递减, 所以13x -≤,即313x -≤-≤, 解得:24x -≤≤,所以(1)2f x -≥-的解集为[2,4]-, 故选:D 【点睛】关键点点睛:本题解题的关键是利用函数奇偶性将不等式转化为()(1)3f x f -≥-,再利用的单调性可得13x -≤,进而可得不等式的解集. 8.B 【分析】根据“隐对称点"的定义可知()f x 图象上存在关于原点对称的点,转化为求2()2,0f x x x x =+<关于原点的对称函数与()2,0f x mx x =+≥ 有交点即可.【详解】由“隐对称点"的定义可知, ()22,02,0x x x f x mx x ⎧+<=⎨+≥⎩的图象上存在关 于原点对称的点,设函数g (x )的图象与函数22,0y x x x =+<的图象关 于原点对称.令0x >,则220,()()2()2,x f x x x x x -<-=-+-=-所以2()2g x x x =-+,故原题意等价于方程222(0)mx x x x +=-+>有实根, 故22m x x=--+,而222()222x x x x --+=-++≤-=-当且仅当x ,取得等号,所以2m ≤-故实数m 的取值范围是(,2-∞-, 故选:B 【点睛】关键点点睛:求出函数在0x <时关于原点对称的函数解析式2()2g x x x =-+,转化为 2()2g x x x =-+与()2,0f x mx x =+≥相交是关键.二、填空题9.ABD 【分析】利用赋值法确定ABC 选项的正确性,根据奇偶性的定义判断D 选项的正确性. 【详解】依题意1()()()2f x y f x f y +=++,且1()02f =,令0x y ==,得()()()()110000022f f f f +=++⇒=-,故A 选项正确. 令11,22x y ==-,则1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即1111012222f f ⎛⎫⎛⎫-=+-+⇒-=- ⎪ ⎪⎝⎭⎝⎭, 令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即()11131222222f f ⎛⎫-=-+=-+=- ⎪⎝⎭,故B 选项正确.由于()()10f f -<,故C 选项错误. 令y x =-,得()()()12f x x f x f x -=+-+, 即()()1122f x f x -=+-+,即()()11022f x f x ⎡⎤⎡⎤=++-+⎢⎥⎢⎥⎣⎦⎣⎦,所以()12f x +为奇函数,故D 选项正确. 故选:ABD10.BCD 【分析】利用作差法比较大小判断AB 的正误,利用基本不等式判断C 的正误,利用充分条件和必要条件的定义判断D 的正误即可. 【详解】选项A 中,若a b >,则11b a a b ab --=,其中分子0b a -<,分母ab 不确定符号,故11,a b大小不确定,A 错误;选项B 中,若0a b <<,则由()20a ab a a b -=->,得2a ab >;由()20ab b b a b -=->,得2ab b >;故22a ab b >>,B 正确;选项C 中,由根式有意义可知,(10)0x x -≥,即010x ≤≤,当0x =或10时,(10)0x x -=,当010x <<(10)52x x +-≤=成立,当且仅当10x x =-即5x =5成立,C 正确;选项D 中,若lg 0x <,则lg 0lg1x <=,则01x <<,可推出1x <;反过来,1x <推不出01x <<,故lg x 可能没意义,推不出lg 0x <,故lg 0x <是1x <的充分不必要条件,D 正确. 故选:BCD. 【点睛】 方法点睛:不等式比较大小的方法:(1)作差法;(2)作商法;(3)利用基本不等式进行比较;(4)构造函数,利用函数单调性进行比较. 11.AD 【分析】根据不等式的可加性和取倒的性质可判断AB ,作差可判断C ,用1()f x x x=-的单调性可判断D. 【详解】由0a b >>,不等式的可加性可知A 正确;由0a b >>,可得11b a >,所以22c c b a>,故B 不正确;由()()(2)a c a ab bc ab ac c b a b c b b b c b b ++----==+++,由于c 的正负不能确定,所以a b 与a cb c++的大小不能确定,故C 不正确;因为1()f x x x =-在(0,)+∞上单调递增,所以当0a b >>时,11a b a b->-,所以D 正确. 故选:AD. 12.AD 【分析】先研究函数()f x 的奇偶性,作出函数()f x 的图象,作出函数()g x 的图象判断选项ABC 的正确性,再分类讨论判断方程()2g x x π⋅=的根的个数得解.【详解】由题得函数()sin sin f x x x =+的定义域为R ,()sin sin()sin |||sin |()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,当0x π≤≤时,()sin sin 2sin f x x x x =+=; 当2x ππ<<时,()sin sin 0f x x x =-=; 当23x ππ≤≤时,()sin sin 2sin f x x x x =+=;所以函数()f x 的图象如图所示,所以函数()g x 的图象如图所示,所以函数()g x 的值域是{}0,1,2,故选项A 正确; 由函数()g x 的图象得到()g x 不是周期函数,()[()]g x f x ππ+=+=故选项B 不正确;由函数()g x 的图象得到函数()g x 的图象不关于2x π=对称,故选项C 不正确;对于方程()2g x x π⋅=, 当()0g x =时,0x =,方程有一个实数根;当()1g x =时,2x π=,此时()212g π=≠,此时方程没有实数根; 当()2g x =时,x π=,此时()02g π=≠,此时方程没有实数根;故方程()2g x x π⋅=只有一个实数根,故选项D 正确.故选:AD 【点睛】关键点睛:解答本题的关键是能准确作出函数()()f x g x ,的图象,研究函数的问题,经常要利用数形结合的思想分析解答.三、多选题 13.,sin 3x x π∃∈≤R【分析】利用含有一个量词的命题的否定的定义求解. 【详解】因为命题“,sin 3x x π∀∈>R ”是全称量词命题,所以其否定是存在量词命题,即为:,sin 3x x π∃∈≤R ,故答案为:,sin 3x x π∃∈≤R14.10【分析】根据解析式与图像,判断12,C C 分别对应的解析式.根据零点存在定理,可判断两个交点所在的整数区间,即可求得,a b 的值,进而求得+a b . 【详解】根据函数()2x f x =过定点0,1,所以2C 对应函数()2xf x =;函数()3g x x =过()0,0,所以1C 对应函数()3g x x =因为()()()(),2211g f g f <> 所以由图像可知[]11,2x ∈,故1a =因为()()()()9900,11g f g f >< 所以由图像可知[]29,10x ∈,故9b = 所以10a b += 故答案为:10 【点睛】本题考查了指数函数与幂函数的图像与性质应用,数形结合思想的应用,函数零点存在定理的应用,15.【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值. 【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点. 16.()1,0-内的任何一个数均可 【分析】根据题意,求得(1)b c a λ+=-,其中0a >,根据二次函数的性质,分0c 、0c >和0c <三种情况讨论,结合零点的存在定理,即可求解. 【详解】由题意,函数2()f x ax bx c =++且()()10f a λλ=≠, 可得a b c a λ++=,即(1)b c a λ+=-,其中0a >, 又由()(0),(1),242f c f a b c a f a b c λ==++==++若0c ,可得()00,(2)4242(1)0f f a b c a a λ==++=+->,解得1λ>-; 若0c >,可得(0)0f c =>,则(1)0f a b c a λ=++=<,则0λ<,符合题意; 若0c <,可得(0)0f c =<,()242(22)0f a b c a c λ=++=+->, 所以220λ+>,解得1λ>-,综上可得,实数λ的取值范围是(1,0)-. 故答案为:()1,0-内的任何一个数均可. 【点睛】有关函数零点的判定方法及策略:(1)直接法:令()0f x =,有几个解,函数就有几个零点;(2)零点的存在定理法:要求函数()f x 在区间[],a b 上连续不断的曲线,且()()0f a f b <,再结合函数的图象与性质确定零点的个数;(3)图象法:利用图象交点的个数,作出两函数的图象,观察其交点的个数,得出函数()f x 的零点个数.四、解答题17.(1){}|52x x -≤<-;(2)4a 或21a -≤≤.【分析】(1)求出集合A 从而求UA ,再与集合B 取交集即可;(2)分A φ=和A φ≠两种情况讨论根据A B ⊆列出不等式(组)求a 的取值范围.【详解】(1)依题意,当1a =时,{}|23A x x =-≤≤,则|2UA x x =<-{或3}x >,又{}|53B x x =-≤≤, 则()|2U A B x x =<-{或{}{}|53|3}52x x x x x -≤≤->=≤<-.(2)若A B ⊆,则有{}{}|321|53x a x a x x -≤≤+⊆-≤≤,于是有: 当A φ=时,A B ⊆显然成立,此时只需321a a ->+,即4a ;当A φ≠时,若A B ⊆,则35221313214a a a a a a a -≥-≥-⎧⎧⎪⎪+≤⇒≤⎨⎨⎪⎪-≤+≥-⎩⎩,所以:21a -≤≤ 综上所述,a 的取值范围为:4a 或21a -≤≤.【点睛】易错点点睛:在利用集合的包含关系求参数时注意以下两点:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论. 18.(1)10;(2)18.(1)求出cos α的值,利用两角和的余弦公式可求得cos 4πα⎛⎫+ ⎪⎝⎭的值;(2)利用二倍角的正弦、余弦公式可计算得出结果. 【详解】(1)因为0,2πα⎛⎫∈ ⎪⎝⎭,且3sin 5α=,则4cos 5α==,因此,43cos cos cos sin sin 44455πππααα⎛⎫⎫+=-=-=⎪⎪⎝⎭⎝⎭(2)2321sin 2cos 2sin cos cos 2sin 11541cos 212cos 12cos 825ααααααααα⨯----====++-⨯. 19.(1)2()1x f x x =+;(2)证明见解析;(3)102t <<. 【分析】(1)由(0)0f =,1225f ⎛⎫= ⎪⎝⎭可求得函数解析式;(2)由单调性的定义证明;(3)由奇函数的性质变形不等式,再由单调性求解. 【详解】(1)由题意(0)0f b ==,112212514af ⎛⎫== ⎪⎝⎭+,1a =,所以2()1x f x x =+.(2)证明:任取1211x x -<<<,则()()()()()()211221212222211211111x x x x x x f x f x x x x x ---=-=++++. ∵1211x x -<<<,∴210x x ->,1211x x -<<,1210x x ->,2110x +>,2210x +>,∴()()210f x f x ->,即()()21f x f x >,∴()f x 在()1,1-上是增函数.(3)∵()f x 在()1,1-上是增函数,()()10f t f t -+< ∴111t t ,解得102t <<. 20.(1) 5.6 4.8sin 2h πθ⎛⎫=+- ⎪⎝⎭;(2) 5.6 4.8cos 30h t π=-,[)0,t ∈+∞;(3)20秒(1)由题意,以圆心O 为原点,建立平面之间坐标系则以Ox 为始边,OB 为终边的角为2πθ-,,再根据实际情况列出高度,即为函数关系式;(2)根据题意,列出角速度,进而列出t 秒转过的弧度数为θ,即可求解; (3)由(2)问中解析式,计算三角函数不等式5.6 4.8cos 830t π-≥,解得t 的范围长度,即为观景最佳时间. 【详解】(1) 以圆心O 为原点,建立如图所示的平面直角坐标系, 则以Ox 为始边,OB 为终边的角为2πθ-,故点B 的坐标为 4.8cos ,4.8sin 22ππθθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5.6 4.8sin 2h πθ⎛⎫∴=+- ⎪⎝⎭.(2)点A 在圆上转动的角速度是30π,故t 秒转过的弧度数为30t π,5.6 4.8sin 5.6 4.8cos 30230h t t πππ⎛⎫∴=+-=- ⎪⎝⎭,[)0,t ∈+∞.(3)由5.6 4.8cos 830t π-≥得24223303k t k πππππ+≤≤+,k Z ∈ 60206040k t k +≤≤+,k Z ∈故转动一圈最佳观景效果持续的时间为20秒答:一个周期内B 点在最佳观赏效果高度持续的时间为20秒. 【点睛】本题考查:(1)根据实际情况列三角函数关系式;(2)根据角速度列出函数关系式;(3)根据观景效果最优时,列三角不等式求解最优值;本题考查数学建模能力,创新应用型题,有一定难度. 21.(1)0a =;(2)14.【分析】(1)由奇函数得到()x x a x x a -⋅--=-⋅-,再由多项式相等可得a ;(2)由()f x 是奇函数和已知得到()()2sin 2cos f x f x t ≥-,再利用()f x 是R 上的单调增函数得到2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.利用参数分离得22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,再求22cos sin x x -,π7π,36x ⎡⎤∈⎢⎥⎣⎦上最大值可得答案.【详解】(1)因为函数()f x x x a =-为R 上的奇函数, 所以()()f x f x -=-对任意x ∈R 成立, 即()x x a x x a -⋅--=-⋅-对任意x ∈R 成立, 所以--=-x a x a ,所以0a =.(2)由()()2sin 2cos 0f x f t x +-≥得()()2sin 2cos f x f t x ≥--,因为函数()f x 为R 上的奇函数, 所以()()2sin 2cos f x f x t ≥-.由(1)得,()22,0,,0,x x f x x x x x ⎧≥==⎨-<⎩是R 上的单调增函数,故2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.所以22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.因为()2222cos sin cos 2cos 1cos 12x x x x x -=+-=+-, 令cos m x =,由π7π,36x ⎡⎤∈⎢⎥⎣⎦,得1cos 1,2x ⎡⎤∈-⎢⎥⎣⎦,即11,2m ⎡⎤∈-⎢⎥⎣⎦.所以()212y m =+-的最大值为14,故14t ≥,即t 的最小值为14.【点睛】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到2sin 2cos x x t ≥-,再利用参数分离后求22cos sin x x -π7π,36x ⎡⎤∈⎢⎥⎣⎦的最大值,考查了学生分析问题、解决问题的能力.22.(1)()221f x x x =-+;(2)(],1-∞;(3)((),21-∞-⋃+∞.【分析】(1)利用待定系数法即可求解.(2)将不等式化为22230t mx x x xt -+-++≥在t R ∈上恒成立,只需()224230x x x mx ∆=---+≤,进而可得12843m x x+≤+,利用基本不等式求出12312x x+≥,只需8412m +≤即可求解. (2)()()[]21,1,2h x x k x =+-∈⎡⎤⎣⎦,根据题意可得()()min max 2h x h x >,讨论二次函数的对称轴,求出函数在区间[]1,2上的最值,代入不等式即可求解. 【详解】(1)由题意可得()01f c ==,()()()()2211111f x f x a x b x ax bx +-=++++---221ax a b x =++=-,即1,2a b ==-,所以()221f x x x =-+.(2)由题意存在[]2,3x ∈,对任意t R ∈,都有()22212x x t m t x -+≥-+--,即22230t mx x x xt -+-++≥在t R ∈上恒成立, ()224230x x x mx ∴∆=---+≤,解得()284312m x x +≤+即12843m x x+≤+,又12312x x +≥=,当且仅当123x x =时,即2x =时,取“=”,8412m ∴+≤,解得1m ,所以实数m 的取值范围(],1-∞.(3)()()()()221h x f x k x k x k =+=+-++ ()()()[]2222211,1,2x k x k x k x =+-+-=+-∈⎡⎤⎣⎦,对称轴1x k =-,因为对任意的,1x ,2x ,[]31,2x ∈,以()1h x ,()2h x ,()3h x 为边长总可以构成三角形,则()1h x ()2h x +>()3h x 对任意的,1x ,2x ,[]31,2x ∈恒成立, 即()()min max 2h x h x >,①当12k -≥,即1k ≤-时,()h x 在区间[]1,2上单调递减,()()min max 2h x h x >,即()()2222111k k +->+-,解得2k <-2k >-2k ∴<-②当3122k ≤-<时,即112k -<≤-时,()h x 在区间[]1,1k -上单调递减, 在区间(]1,2k -上单调递增,()()min max 2h x h x >,即()222011k k ⨯>+-=无解. ③当3112k <-<,即102k -<<,()h x 在区间[]1,1k -上单调递减, 在区间(]1,2k -上单调递增,()()min max 2h x h x >, 即()()2220211k k ⨯>+-=+无解.④当11k -≤时,即0k ≥时,()h x 在区间[]1,2上单调递增, ()()min max 2h x h x >,即()()2221121k k +->+-,解得1k <1k >+1k ∴>综上所述,实数k 的取值范围为((),21-∞-⋃+∞. 【点睛】关键点点睛:本题考查了求二次函数的解析式、一元二次不等式恒成立、能成立问题,解题的关键是不等式化为22230t mx x x xt -+-++≥在t R ∈上恒成立,以及()()min max 2h x h x >,考查了分类讨论的思想.。

高一数学上学期期末综合试卷含答案

高一数学上学期期末综合试卷含答案

高一数学上学期期末综合试卷含答案一、选择题1.已知全集U =R ,集合{}12M x x =-≤,则U M 等于( ) A .{}13x x -<< B .{}13x x -≤≤ C .{1x x <-或}3x >D .{1x x ≤-或}3x ≥2.已知函数()f x =()()3y f x f x =+-的定义域是( ) A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]3.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角4.已知0a <,角α的终边上一点(,2)a a -,则sin α=( )A B .C D .5.函数2()ln f x x x=-的零点所在的大致区间是( ) A .(1,2)B .1(1,)eC .(3,4)D .(2,3)6.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画1描绘了筒车的工作原理.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),筒车的半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点0P 运动到点P 时所经过的时间为(t 单位:s),则点P 第一次到达最高点需要的时间为( )A .7sB .132s C .6s D .5s7.若函数26,3()ln(2)9,3x x x f x x x ⎧-≤=⎨--->⎩,则()26(1)f x f x >+的解集为( )A .11,32⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .11,32⎛⎫- ⎪⎝⎭8.已知()f x 是定义在[]1,1-上的奇函数,且()11f -=-,当,1,1a b且0a b +≠时()()0f a f b a b+>+.已知,22ππθ⎛⎫∈- ⎪⎝⎭,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则θ的取值范围是( )A .,62ππ⎛⎫- ⎪⎝⎭B .,23ππ⎛⎫-- ⎪⎝⎭C .,32ππ⎛⎫- ⎪⎝⎭D .,26ππ⎛⎫- ⎪⎝⎭二、填空题9.下列命题是真命题的是( ) A .若幂函数()a f x x 过点1,42⎛⎫⎪⎝⎭,则12α=-B .(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭C .(0,)x ∀∈+∞,1123log log x x> D .命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥” 10.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1≥xC .01x <≤D .11x -≤≤11.下列命题不正确的( ) A .110||||a b a b<<⇒> B .ab a b cc>⇒>C .33110a b a b ab ⎫>⇒<⎬>⎭D .22110a b a bab ⎫>⇒<⎬>⎭12.关于函数()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,其中正确命题是( )A .()y f x =的最大值为2B .()y f x =是以π为最小正周期的周期函数C .将函数2cos 2y x =的图像向左平24π个单位后,将与已知函数的图像重合 D .()y f x =在区间13,2424ππ⎛⎫⎪⎝⎭上单调递减 三、多选题13.若命题“()0x ∃∈+∞,,使得24ax x >+成立”是假命题,则实数a 的取值范围是_________. 14.2log 3a c =,1log 2ab c =,则log b c =________ 15.已知函数()221f x x ax =-+,[]1,x a ∈-,且()f x 最大值为f a ,则a 的取值范围为______.16.定义域为R 的函数()2x F x =可以表示为一个奇函数()f x 和一个偶函数()g x 的和,则()f x =_________;若关于x 的不等式()()f x a bF x +≥-的解的最小值为1,其中,R a b ∈,则a 的取值范围是_________.四、解答题17.已知集合{}()(23)0A x x m x m =+-+<,其中m ∈R ,集合203x B xx ⎧⎫-=>⎨⎬+⎩⎭. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围.18.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图像如图所示,P 为该图像的最高点.(1)若2πω=,求cos APB ∠的值;(2)若PAB 45∠=︒,P 的坐标为()1,2,求()f x 的解析式. 19.已知函数2()(1)1(0)f x ax a x a =-++>.(1)若()f x 的单调递减区间是(,1]-∞,求a 的值并证明你的结论; (2)解关于x 的不等式()0(0)f x a <>.20.如图,已知正方形ABCD 的边长为1,点P ,Q 分别是边BC ,CD 上的动点(不与端点重合),在运动的过程中,始终保持4PAQ π∠=不变,设BAP α∠=.(1)将APQ 的面积表示成α的函数,并写出定义域; (2)求APQ 面积的最小值.21.已知函数()xf x a =(0a >,且1a ≠).(1)证明:()()()1212222f x f x f x x +≥+;(2)若()12f x =,()23f x =,()128f x x =,求a 的值; (3)x ∀∈R ,()212xx f x -+≤恒成立,求a 的取值范围.22.已知2()ln ,()241()f x x g x x ax a a R ==-+-∈.(Ⅰ)若函数(())f g x 在[1,3]上单调递增,求实数a 的取值范围; (Ⅱ)若函数(())g f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为()M a ,最小值为()m a ,令()()()k a M a m a =-,求()k a 的解析式及其最小值(注:e 为自然对数的底数).【参考答案】一、选择题 1.C 【分析】解绝对值不等式求出集合M ,再利用集合的补运算即可求解. 【详解】因为集合{}{}1213M x x x x =-≤=-≤≤,全集U =R , 所以{U 1M x x =<-或}3x >, 故选:C. 2.D 【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥, 解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤, 所以函数的定义域为[1,4]. 故选:D 3.B 【分析】由α是第三象限角,知2α在第二象限或在第四象限,再由cos cos 22αα=-,知cos 02α≤,由此能判断出2α所在象限. 【详解】α是第三象限角,()180360270360k k k Z α∴+⋅<<+⋅∈, ()901801351802k k k Z α∴+⋅<<+⋅∈.当k 是偶数时,设()2k n n =∈Z ,则()903601353602n n n Z α+⋅<<+⋅∈,此时2α为第二象限角; 当k 是奇数时,设()21k n n Z =+∈,则()2703603153602n n n Z α+⋅<<+⋅∈,此时2α为第四象限角. 综上所述,2α为第二象限角或第四象限角,coscos22αα=-,cos02α∴≤,2α∴为第二象限角.故选:B . 【点睛】本题考查角所在象限的判断,属于基础题,关键在于由所在的象限,得出关于α的不等式,再求出2α的范围. 4.C 【分析】首先根据三角函数的定义求出tan α,再根据同角三角函数的基本关系计算可得; 【详解】解:因为角α的终边上一点(,2)a a -,所以tan 2α,又22sin tan 2cos sin cos 1ααααα⎧==-⎪⎨⎪+=⎩,解得sin α=,由0a <可知α在第二象限,故sin α= 故选:C . 5.D 【分析】 函数2()ln f x x x=-在(0,)+∞上是连续增函数,根据()()230f f <,根据零点存在定理可得零点所在的大致区间. 【详解】解:对于函数2()ln f x x x=-在(0,)+∞上是连续增函数, 由于()2ln 210f =-<,()23ln 303f =->, 所以()()230f f <,根据零点存在定理可知,函数2()ln f x x x=-的零点所在的大致区间是(2,3), 故选:D . 6.D 【分析】设点P 离水面的高度为()sin()f t A t ωϕ=+,根据题意求出,,A ωϕ,再令()4f t =可求出结果. 【详解】设点P 离水面的高度为()sin()f t A t ωϕ=+, 依题意可得4A =,826015ππω==,6πϕ=-, 所以2()4sin()156f t t ππ=-, 令2()4sin()4156f t t ππ=-=,得2sin()1156t ππ-=,得221562t k ππππ-=+,k Z ∈,得155t k =+,k Z ∈,因为点P 第一次到达最高点,所以2015215t ππ<<=, 所以0,5s k t ==. 故选:D 7.D 【分析】首先作出分段函数()f x 的单调性,根据单调性去掉f 即可求解. 【详解】作出26,3()ln(2)9,3x x x f x x x ⎧-≤=⎨--->⎩的图象如图:由图知,函数()f x 在R 单调递减,由()26(1)f x f x >+可得261x x <+,即2610x x --<,解得:1132x -<<,所以()26(1)f x f x >+的解集为11,32⎛⎫- ⎪⎝⎭,故选:D 【点睛】关键点点睛:本题解题的关键点是判断()f x 的单调性,利用单调性解不等式. 8.A 【分析】由奇偶性分析条件可得()f x 在[]1,1-上单调递增,所以()max 1f x =,进而得2143sin 2cos θθ<+-,结合角的范围解不等式即可得解. 【详解】因为()f x 是定义在[]1,1-上的奇函数, 所以当,1,1a b且0a b +≠时()()()()00()f a f b f a f b a b a b +-->⇔>+--,根据,a b 的任意性,即,a b -的任意性可判断()f x 在[]1,1-上单调递增, 所以()max (1)(1)1f x f f ==--=,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则2143sin 2cos θθ<+-,整理得(sin 1)(2sin 1)0θθ++>,所以1sin 2θ>-,由,22ππθ⎛⎫∈- ⎪⎝⎭,可得,62ππθ⎛⎫∈- ⎪⎝⎭,故选:A. 【点睛】关键点点睛,本题解题的关键是利用()()()()00()f a f b f a f b a b a b +-->⇔>+--,结合变量的任意性,可判断函数的单调性,属于中档题.二、填空题9.BD 【分析】根据幂函数的定义判断A ,结合图象判断BC ,根据特称命题的否定为全称命题可判断D . 【详解】解:对于A :若幂函数()a f x x 过点1,42⎛⎫ ⎪⎝⎭,则142解得2α=-,故A 错误;对于B :在同一平面直角坐标系上画出12xy ⎛⎫= ⎪⎝⎭与12log y x=两函数图象,如图所示由图可知(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭,故B 正确;对于C :在同一平面直角坐标系上画出13log y x=与12log y x=两函数图象,如图所示由图可知,当(0,1)x ∈时,1123log log x x>,当1x =时,1123log log x x=,当(1,)x ∈+∞时,1123log log x x<,故C 错误;对于D :根据特称命题的否定为全称命题可知,命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”,故D 正确; 故选:BD【点睛】本题考查指数函数对数函数的性质,幂函数的概念,含有一个量词的命题的否定,属于基础题. 10.AC 【分析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 11.ABD 【分析】利用不等式的性质,结合特殊值法、比较法逐一判断即可. 【详解】 A :1100ab a b <<∴>且110a b ->->,因此110ab ab ab a b-⋅>-⋅>⋅,即00b a b a b a ->->⇒->->⇒>,故本命题不正确; B :因为4822>--,显然48>不成立,所以本命题不正确; C :由332233()()0b a b a b a b b a a ⇒-=-++>>,而0ab >, 所以有a b >,而11110b a a b ab a b--=<⇒<,故本命题正确; D :若2,1a b =-=-,显然220a b ab ⎧>⎨>⎩成立,但是1121<--不成立,故本命题不正确, 故选:ABD 【点睛】方法点睛:关于不等式是否成立问题,一般有直接运用不等式性质法、特殊值法、比较法. 12.ABD 【分析】先把()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭化为()5212f x x π⎛⎫=+ ⎪⎝⎭,直接对四个选项一一验证. 【详解】()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭cos 2cos 2626x x πππ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭sin 2cos 266x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭264x ππ⎛⎫=++ ⎪⎝⎭5212x π⎛⎫=+ ⎪⎝⎭ 显然A 、B 选项正确C 选项:将函数2y x =的图像向左平24π个单位得到212y x π⎛⎫=+ ⎪⎝⎭,图像不会与原图像重合,故C 错误;D 选项:当13,2424x ππ⎛⎫∈ ⎪⎝⎭,则532,1222x πππ⎛⎫+∈ ⎪⎝⎭,∴()y f x =在区间13,2424ππ⎛⎫ ⎪⎝⎭上单调递减成立. 故选:ABD 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.三、多选题 13.(],4-∞【分析】由题意可知,命题“()0x ∀∈+∞,,使得24ax x ≤+成立”是真命题,可得出4a x x≤+,结合基本不等式可解得实数k 的取值范围. 【详解】若命题“()0x ∃∈+∞,,使得24ax x >+成立”是假命题, 则有“()0x ∀∈+∞,,使得24ax x ≤+成立”是真命题. 即4a x x ≤+,则min 4a x x ⎛⎫≤+ ⎪⎝⎭,又44x x+≥=,当且仅当2x =时取等号,故4a ≤. 故答案为:(],4-∞ 14.2 【分析】 根据2log 3a c =,1log 2ab c =,找到a 、b 、c 的关系,计算log b c . 【详解】 ∵2log 3a c =,1log 2ab c =, ∴()2132a c ab c ==,, ∴()2132=a ab ,化简得:1162=a b ,即3=a b , ∴2=c b ,∴2log log 2b b c b ==.故答案为:2 【点睛】 对数运算技巧: (1)应用常用对数值; (2)灵活应用对数的运算性质; (3) 逆用法则、公式;(4) 应用换底公式,化为同底结构.15.[)2,+∞【分析】由题知1a >-,进而得函数的对称轴[]14,a ax ∈-=,再根据函数开口向上,()f x 最大值为f a 得144a aa -≥+,解不等式即可得答案. 【详解】解:因为[]1,x a ∈-,所以1a >-, 因为函数的对称轴为[]14,a ax ∈-=,开口向上,()f x 最大值为f a 所以144a aa -≥+,解得2a ≥,所以a 的取值范围为[)2,+∞ 故答案为; [)2,+∞ 16.()1222xx -- 1a ≥- 【分析】先根据()f x 为奇函数,()g x 为偶函数,求出()F x -,再与()F x 联立即可求出()f x ;先将()(),f x F x -代入()()f x a bF x +≥-,即可得到()12222xxx a b --≥--,将其转化为()1max1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝,令()()11222,1x x h x x b --⎛⎫+- ⎪⎝⎭=≥,求出()max h x 即可求出a 的取值范围. 【详解】解:由题意知:()()()2xF x f x g x =+=()f x 为奇函数,()g x 为偶函数,()()()(),f x f x g x g x ∴-=--=, ()()()()()2x F x f x g x f x g x -=-+-=-+=()()()()()()()222x xF x F x f x g x f x g x f x ---=+--+==-⎡⎤⎣⎦,即()()1222x xf x -=-, ()()f x a bF x +≥-,即()12222xx x a b ---+≥⋅, 即()12222xxx a b --≥--, 即11222x x a b --⎛⎫≥+- ⎪⎝⎭,关于x 的不等式()()f x a bF x +≥-的解的最小值为1, 等价于()1max 1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝, 令()()11222,1x x h x x b --⎛⎫+- ⎪⎝⎭=≥,当12b =-时,()()1,21x h x x --=≥易知:()12x h x -=-在[)1,+∞单调递减,()()0max 121h x h ==-=-,故1a ≥-,当12b >-时,102b +>,()11222x x b h x --⎛⎫+- ⎪⎝⎭=在[)1,+∞单调递减,()()10max 13122224b h x h b -⎛⎫==+⨯-=- ⎪⎝⎭,当b 趋近于+∞时,()max h x 趋近于+∞, 故()1max 1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝无解,当12b <-时,102b +<,当1≥x 时,1022x-≤≤, 1202x b -⎛⎫+< ⎪⎝⎭,112x --<-, 故()121122x x h x b --⎛⎫+- ⎪⎝⎭=<-,即1a ≥-, 综上所述:1a ≥-. 故答案为:()1222xx --;1a ≥-. 【点睛】关键点点睛:本题解题的关键是将关于x 的不等式()()f x a bF x +≥-的解的最小值为1,转化为()1max1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝.四、解答题17.(1){}52x x -<<;(2)(,2][3,)-∞-⋃+∞ 【分析】(1)先分别求出集合,A B ,再根据集合间的运算即可求解; (2)由B A ⊆知:A ≠∅,对m 进行讨论即可求解. 【详解】 解:(1)由203xx ->+, 解得:32x -<<,故{}20323x B x x x x ⎧⎫-=>=-<<⎨⎬+⎩⎭∣, 当1m =-时,()(23)0x m x m +-+<可化为:(5)(1)0x x +-<, 解得:51x -<<,∴集合{}51A x x =-<<,故{}52A B x x ⋃=-<<; (2)显然A ≠∅,即1m ≠, 当23m m -<-,即1m 时,{}23A x m x m =-<<-, 又B A ⊆,13232m m m >⎧⎪∴-≤-⎨⎪-≥⎩, 解得:3m ≥; 当23m m ->-,即1m <时,{}23A x m x m =-<<-, 又B A ⊆,12332m m m <⎧⎪∴-≤-⎨⎪-≥⎩, 解得:2m ≤-,综上所述:实数m 的取值范围为(,2][3,)-∞-⋃+∞. 18.(12)()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.【分析】 (1) 由2πω=,则2242AB πππω===,由周期可分别求出,AQ BQ ,进一步求出,AP BP ,由余弦定理可得答案.(2)由条件可得2AQ QP ==,即8T =,所以4πω=,又(1)2sin()24f πϕ=+=可得答案.【详解】解析:(1)由题设可知,由2πω=,则2242AB πππω===在APB △中,max ()2PQ f x ==,则14T AQ ==,334T BQ == 所以222145AP AQ PQ =+=+=,222223213BP PQ BQ =+=+=,由余弦定理可得:2225131665cos 2652513AP PB AB APB AP BP+-+-∠===⋅⋅⨯⨯.(2)由PAB 45∠=︒,P 的坐标为()1,2,所以在APQ ,2AQ QP == 易知24T=,8T =,所以4πω=, 又(1)2sin()24f πϕ=+=,则2,42k k Z ππϕπ+=+∈又02πϕ<<,所以4πϕ=,所以()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.19.(1)1a =,证明见解析;(2)当01a <<时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭;当=1a 时,不等式的解集为∅;当1a >时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭.【分析】(1)先求出a 的值,并利用单调性的定义进行证明; (2)对1a和1 的大小进行分类讨论,解不等式即可. 【详解】(1)函数2()(1)1(0)f x ax a x a =-++>的图像为抛物线,开口向上,对称轴为12a x a+=. 因为()f x 的单调递减区间是(,1]-∞,所以1=12a a+,解得:1a =. 此时2()21f x x x =-+,下面证明2()21f x x x =-+在区间(,1]-∞单调递减: 任取121x x <≤,则()()12212122()()2121f f x x x x x x -=-+--+()222121=2x x x x --- ()()1212=2x x x x -+-因为121x x <≤,所以12x x <,1220x x +-<,所以()()121220x x x x -+->. 所以12()()f f x x >,所以2()21f x x x =-+在区间(,1]-∞单调递减;(2)关于x 的不等式()0(0)f x a <>可化为:()()110x ax --<. 当01a <<时,解得:11x a<<; 当=1a 时,原不等式无解; 当1a >时,解得:11x a<<; 综上所述:当01a <<时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭;当=1a 时,不等式的解集为∅;当1a >时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭.【点睛】(1)单调性的证明通常用定义法;(2)解含参数的不等式通常需要分类讨论,分类的标准:①最高次项系数是否为0;②关于x 的方程()=0f x 是否有根;③()=0f x 的几个根的大小比较. 20.(1)1124APQSπα=⎛⎫+ ⎪⎝⎭;定义域为0,4π⎛⎫⎪⎝⎭;(21 【分析】(1)在Rt ABP 与Rt ADQ 中,利用正方形的边长,求出,AP AQ ,根据三角形的面积公式即可求解.(2)由(1)利用三角函数的性质即可求解. 【详解】(1)由BAP α∠=,4PAQ π∠=,则244ADQ πππαα∠=--=-,正方形的边长为1,在Rt ABP 中,1cos AP α=, 在Rt ADQ 中,1cos 4AQ πα=⎛⎫- ⎪⎝⎭,所以1111sin 242cos cos 4APQSAP AQ ππαα=⋅⋅=⋅⋅⎛⎫- ⎪⎝⎭()211112cos cos sin 2cos cos sin αααααα=⋅=⋅++12121cos 2sin 2124ααπα=⋅=++⎛⎫+ ⎪⎝⎭,由图可知04πα<<,所以函数的定义域为0,4π⎛⎫⎪⎝⎭. (2)由04πα<<,则32444πππα<+<,1124APQS πα=⎛⎫+ ⎪⎝⎭,当sin 214πα⎛⎫+= ⎪⎝⎭,即8πα=时,APQ 面积的最小,即APQ 1=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).21.(1)见详解;(23)(]1,11,28⎡⎫⎪⎢⎣⎭【分析】(1)根据函数解析式,直接作差比较()()1222f x f x +与()122f x x +的大小,即可证明结论成立;(2)根据题中条件,由指数幂运算性质,直接计算,即可得出结果; (3)先由不等式恒成立,得到x ∀∈R ,212x xx a -+≤恒成立;不等式两边同时取对数,得到x ∀∈R ,22log 1x a x x ≤-+恒成立,讨论0x =,0x >,0x <三种情况,分别求出对应的a 的范围,再求交集,即可得出结果.【详解】(1)因为()xf x a =,所以()()()()111222222121222220x x x x x x f x f x f x x a a a a a ++-+=+-=-≥显然恒成立, 所以()()()1212222f x f x f x x +≥+;(2)由()12f x =,()23f x =得1223x x a a ⎧=⎨=⎩,所以()212122x x x x x a a ==,又()1221228x x xf x x a ===,所以23x =,则233x a a ==,因此a =(3)若x ∀∈R ,()212xx f x -+≤恒成立,即x ∀∈R ,212x xx a -+≤恒成立;则x ∀∈R ,2122log log 2x xx a -+≤恒成立,即x ∀∈R ,22log 1x a x x ≤-+恒成立,当0x =时,不等式可化为01<,显然恒成立;所以0a >,且1a ≠; 当0x >时,不等式可化为21log 1a x x ≤+-,而1111y x x =+-≥=在0x >上恒成立,当且仅当1x =时,取等号;所以只需2log 1a ≤,解得12a <≤或01a <<; 当0x <时,不等式可化为21log 1a x x≥+-,而()111113y x x x x ⎡⎤⎛⎫=+-=--+--≤-=- ⎪⎢⎥⎝⎭⎣⎦在0x <上恒成立,当且仅当1x =-时,取等号;所以只需2log 3a ≥-,解得118a ≤<或1a >,综上,118a ≤<或12a <≤,即a 的取值范围是(]1,11,28⎡⎫⎪⎢⎣⎭【点睛】 关键点点睛:求解本题第三问的关键在于将不等式两边同时取对数,化为22log 1x a x x ≤-+恒成立,再对x 分段讨论,求解a 的范围,即可得解.22.(Ⅰ)(]0,1;(Ⅱ)224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,1.【分析】(Ⅰ)由复合函数的单调性得函数2()241g x x ax a =-+-在[1,3]上单调递增,则1(1)0a g ≤⎧⎨>⎩,解出即可; (Ⅱ)由题意得[]()ln 1,1f x x =∈-,设()t f x =,则2(())()241g f x g t t at a ==-+-22()41t a a a =--+-,[]1,1t ∈-,再分类讨论即可得到224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,再根据函数()k a 的单调性即可求出最小值.【详解】解:(Ⅰ)∵函数(())f g x 在[1,3]上单调递增, 函数()ln f x x =在[1,3]上单调递增,,∴函数2()241g x x ax a =-+-在[1,3]上单调递增,∴1(1)0a g ≤⎧⎨>⎩,解得01a <≤, ∴实数a 的取值范围是(]0,1;(Ⅱ)∵1,x e e ⎡⎤∈⎢⎥⎣⎦,∴[]()ln 1,1f x x =∈-,设()t f x =,则2(())()241g f x g t t at a ==-+-22()41t a a a =--+-,[]1,1t ∈-, ①当1a <-时,函数()g t 在[]1,1-上单调递增, ∴最大值()()12M a g a ==,最小值()()16m a g a =-=, ∴()264k a a a a =-=-;②当10a -≤≤时,函数()g t 在[]1,a -上单调递减,在[],1a 上单调递增,∴最大值()()12M a g a ==,最小值()2()41m a g a a a ==-+-,∴()22()24121k a a a a a a =--+-=-+;③当01a <≤时,函数()g t 在[]1,a -上单调递减,在[],1a 上单调递增,∴最大值()()16M a g a =-=,最小值()2()41m a g a a a ==-+-,∴()22()64121k a a a a a a =--+-=++;④当1a >时,函数()g t 在[]1,1-上单调递减,∴最大值()()16M a g a =-=,最小值()()12m a g a ==, ∴()624k a a a a =-=;综上,224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,∴()k a 在(],0-∞上单调递减,在[)0,+∞上单调递增, 当0a =时,()k a 取最小值1. 【点睛】本题主要考查复合函数的单调性,考查含参的二次函数在闭区间上的最值,考查计算能力,考查分类讨论的方法,属于难题.。

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题一、单选题1.已知集合{}2560,{10}A x x x B x x =-+≥=-<,则A B = ()A .(,1)-∞B .(2,1)--C .(3,1)--D .(3,)+∞【正确答案】A【分析】解不等式求得集合,A B ,由此求得A B ⋂.【详解】()()256230x x x x -+=--≥,解得2x ≤或3x ≥,所以(][),23,A =-∞⋃+∞,而(),1B =-∞,所以A B = (,1)-∞.故选:A2.十名工人某天生产同一零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12,设其中位数为a ,众数为b ,第一四分位数为c ,则a ,b ,c 大小关系为()A .a b c <<B .<<c a bC .c b a <<D .a c b<<【正确答案】B【分析】根据中位数、众数、分位数的定义求解.【详解】对生产件数由小到大排序可得:10,12,14,14,15,15,16,17,17,17,所以中位数151515,2a +==众数为b =17,100.25 2.5⨯=,所以第一四分位数为第三个数,即c =14,所以<<c a b ,故选:B.3.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】通过反例和奇函数的性质可直接得到结论.【详解】若()2f x x =,则()00f =,此时()f x 为偶函数,充分性不成立;若()f x 为奇函数,且其定义域为R ,则()00f =恒成立,必要性成立;∴函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的必要不充分条件.故选:B.4.如图是函数()f x 的图象,则下列说法不正确的是()A .()02f =-B .()f x 的定义域为[]3,2-C .()f x 的值域为[]22-,D .若()0f x =,则12x =或2【正确答案】C【分析】结合函数的图象和定义域,值域等性质进行判断即可.【详解】解:由图象知(0)2f =-正确,函数的定义域为[3-,2]正确,函数的最小值为3-,即函数的值域为[3-,2],故C 错误,若()0f x =,则12x =或2,故D 正确故选:C .5.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知lg20.3010,lg30.4771≈≈,设71249N =⨯,则N 所在的区间为()A .()131410,10B .()141510,10C .()151610,10D .()161710,10【正确答案】C【分析】根据对数的运算性质,结合题中所给的数据进行判断即可.【详解】因为712712142449,lg lg4lg9lg2lg314lg224lg3 4.21411.450415N N =⨯=+=+=+≈+≈.6644,所以()15.664415161010,10N =∈.故选:C6.方程24x x +=的根所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【正确答案】B构造函数()24xf x x =+-,利用零点存在定理可得出结论.【详解】构造函数()24xf x x =+-,则函数()f x 为R 上的增函数,()110f =-< ,()220f =>,则()()120f f ⋅<,因此,方程24x x +=24x x +=的根所在的区间为()1,2.故选:B.7.已知偶函数()f x 在[0,)+∞上单调递减,且2是它的一个零点,则不等式(1)0f x ->的解集为()A .(1,3)-B .(,3)(1,)-∞-+∞C .(3,1)-D .(,1)(3,)-∞-⋃+∞【正确答案】A【分析】根据函数的单调性和奇偶性解不等式.【详解】因为偶函数()f x 在[0,)+∞上单调递减,所以()f x 在(],0-∞上单调递增,又因为2是它的一个零点,所以(2)0f =,所以(2)(2)0f f -==,所以当22x -<<时()0f x >,所以由(1)0f x ->可得212x -<-<解得13x -<<,故选:A.8.设()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,对任意的12,(0,)x x ∈+∞满足()()2112120x f x x f x x x->- 且(1)2f =,则不等式()2f x x >的解集为()A .(1,0)(1,)-⋃+∞B .(1,0)(0,1)-C .,1(),)1(-∞-⋃+∞D .(,2)(2,)-∞-+∞ 【正确答案】A 【分析】设()()f x F x x=,判断出()F x 的奇偶性、单调性,由此求得不等式()2f x x >的解集.【详解】设()()f x F x x =,由于()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,所以()()()()f x f x F x F x x x--===-,所以()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数.任取120x x <<,120x x -<,则:()()()()()()1221121212120f x f x x f x x f x F x F x x x x x --=-=<,()()12F x F x <,所以()F x 在()0,∞+上递增,则()F x 在(),0∞-上递减.()(1)21f f ==-,()()()11211f F F ===-,对于不等式()2f x x >,当0x >时,有()2f x x >,即()()11F x F x >⇒>;当0x <时,由()2f x x<,即()()110F x F x <-⇒-<<,综上所述,不等式()2f x x >的解集为(1,0)(1,)-⋃+∞.故选:A二、多选题9.有一组样本数据123,,,,n x x x x ,由这组数据得到新样本数据1232,2,2,,2n x x x x ++++ ,则下列结论正确的是()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【正确答案】CD【分析】根据一组数据的平均数、中位数、标准差和极差的定义求解.【详解】数据123,,,,n x x x x 的平均数为123nx x x x x n++++=,新数据1232,2,2,,2n x x x x ++++ 的平均数为123123222222n n x x x x x x x x nx n n++++++++++++==++ ,故A 错误;若数据123,,,,n x x x x 的中位数为i x ,则新数据1232,2,2,,2n x x x x ++++ 的中位数为2i x +,故B 错误;数据123,,,,n x x x x 的标准差为s =,新数据1232,2,2,,2n x x x x ++++ 的标准差为1s s ==,故C 正确;若数据123,,,,n x x x x 中的最大数为,m x 最小数为n x ,则极差为m n x x -,则数据1232,2,2,,2n x x x x ++++ 的极差为22m n m n x x x x +--=-,故D 正确,故选:CD.10.若a b >,则下列不等式一定成立的是()A .22lg lg a b >B .22a b--<C .11a b<D .33a b >【正确答案】BD【分析】应用特殊值23a b =>=-,判断A 、C ,根据2x y =,3y x =的单调性判断B 、D.【详解】当23a b =>=-时,则()22239<-=,而lg 4lg9<,又1123>-,∴A ,C 不正确;∵2x y =,3y x =都是R 上单调递增函数,∴B ,D 是正确的.故选:BD.11.关于x 的方程221x k xx x x-=--的解集中只含有一个元素,则k 的值可能是()A .0B .1-C .1D .3【正确答案】ABD【分析】由方程有意义可得0x ≠且1x ≠,并将方程化为220x x k +-=;根据方程解集中仅含有一个元素可分成三种情况:方程220x x k +-=有且仅有一个不为0和1的解、方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1、方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由此可解得k 所有可能的值.【详解】由已知方程得:210x x x -≠-≠⎧⎨⎩,解得:0x ≠且1x ≠;由221x k x x x x-=--得:220x x k +-=;若221x k x x x x-=--的解集中只有一个元素,则有以下三种情况:①方程220x x k +-=有且仅有一个不为0和1的解,440k ∴∆=+=,解得:1k =-,此时220x x k +-=的解为1x =-,满足题意;②方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1;由0200k +⨯-=得:=0k ,220x x ∴+=,此时方程另一根为2x =-,满足题意;③方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由1210k +⨯-=得:=3k ,2230x x ∴+-=,此时方程另一根为3x =-,满足题意;综上所述:1k =-或0或3.故选:ABD.12.已知函数2()21xx f x =+,下列说法正确的是()A .若2()1f a >,则0a >B .()f x 在R 上单调递增C .当120x x +>时,()()121f x f x +>D .函数()y f x =的图像关于点1,02⎛⎫⎪⎝⎭成中心对称【正确答案】ABC【分析】根据指数不等式、函数单调性、对称性等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()21f a >,即221,2221,21,021aa a a aa ⨯>⨯>+>>+,A 选项正确.B 选项,1221()12111212x x x x xf x ==+=-+++-,由于121x y =+在R 上递减,所以()f x 在R 上递增,B 选项正确.C 选项,当120x x +>时,12x x >-,所以()()12f x f x >-,即12122221212112x x x x x -->=+++,所以()()1221222122221212121211x x x x x x x f x f x +=>++=++++,C 选项正确.D 选项,()()112212122x x xf x f x ---==≠-++,D 选项错误.故选:ABC三、填空题13.已知幂函数()f x x α=的图像经过点(8,2),则1()f x -=_________.【正确答案】3x 【分析】根据幂函数的的知识求得α,然后根据反函数的知识求得正确答案.【详解】依题意,幂函数()f x x α=的图像经过点(8,2),所以182,3αα==,所以()13f x x =,令13y x =,解得3x y =,交换,x y 得3y x =,所以13()f x x -=故3x 14.设两个相互独立事件A 与B ,若事件A 发生的概率为p ,B 发生的概率为1p -,则A 与B 同时发生的概率的最大值为______.【正确答案】14##0.25【分析】求出相互独立事件同时发生的概率,利用二次函数求最值.【详解】因为事件A 与B 同时发生的概率为()[]()221110,124p p p p p p ⎛⎫-=-=--+∈ ⎪⎝⎭,所以当12p =时,最大值为14.故1415.已知函数(),y f x x =∈R ,且(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,写出函数()y f x =的一个解析式:________.【正确答案】()32xf x =⨯【分析】利用累乘的方法可求解函数解析式.【详解】因为(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,所以(1)(2)()(0)32(0)(1)(1)n f f f n f f f f n ⨯⨯⨯=⨯- ,即()32n f n =⨯,所以函数()y f x =的一个解析式为()32x f x =⨯,故答案为:()32x f x =⨯.16.已知函数2()|2|4f x x x a a a =-+-,若函数()f x 有三个不同的零点123,,x x x ,且123x x x <<,则123111x x x ++的取值范围是_________.【正确答案】1,2⎛⎫+∞ ⎪ ⎪⎝⎭【分析】将()f x 表示为分段函数的形式,对a 进行分类讨论,求得12123,,x x x x x +,由此求得123111x x x ++的取值范围.【详解】()222224,224,2x ax a a x af x x ax a a x a ⎧-+-≥=⎨-++-<⎩,当0a >时,方程有3个不相等的实数根,()f x 在()2,a +∞上递增,所以2x a ≥时,22240x ax a a -+-=有1个根,且2x a <时,22240x ax a a -++-=有2个根,所以()222444040a a a a a ⎧+->⎪⎨-<⎪⎩,解得24a <<.由于123x x x <<,则2121232,4,2x x a x x a a x a +==-+=+,所以122123123111124x x a x x x x x x a a +++=+=+-+()24a a a =+-()()244a a a a a a -=-==--()()221111=----,)2111,311<<-<<,)22110-<-<,()2111<-()212214211+-<=-.当a<0时,当2x a >时,方程22240x ax a a -+-=的判别式()22444160a a a a ∆=--=<,所以此时不符合题意.当0a =时,()22,0,0x x f x x x ⎧≥=⎨-<⎩,不符合题意.综上所述,a 的取值范围是1,2⎛⎫++∞ ⎪ ⎪⎝⎭.故12⎛⎫+∞ ⎪ ⎪⎝⎭研究含有绝对值的函数的零点,关键点在于去绝对值,将所研究的函数表示为分段函数的形式,由此再对参数进行分类讨论,结合零点个数来求得参数的取值范围.在分类讨论时,要注意做到不重不漏.四、解答题17.求解下列问题:(1)2433641)27--⎛⎫-++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100-+-⋅.【正确答案】(1)2916(2)74-【分析】(1)根据根式、指数运算求得正确答案.(2)根据对数运算求得正确答案.【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.18.甲、乙两人想参加某项竞赛,根据以往20次的测试,将样本数据分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,并整理得到如下频率分布直方图:已知甲测试成绩的中位数为75.(1)求x ,y 的值,并分别求出甲、乙两人测试成绩的平均数(假设同一组中的每个数据可用该组区间中点值代替);(2)从甲、乙两人测试成绩不足60分的试卷中随机抽取3份,求恰有2份来自乙的概率.【正确答案】(1)0.025x =;0.02y =;甲的平均分为74.5,乙的平均分为73.5;(2)35.(1)根据甲测试成绩的中位数为75,由0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,求得y ,再利用各矩形的面积的和为1,求得x ,然后利用平均数公式求解.(2)易得甲测试成绩不足60分的试卷数2,乙测试成绩不足60分的试卷数3,先得到从中抽3份的基本事件数,再找出恰有2份来自乙的基本事件数,代入古典概型公式求解.【详解】(1)∵甲测试成绩的中位数为75,∴0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,解得0.02y =.∴0.0110100.0410100.005101y x ⨯+⨯+⨯+⨯+⨯=,解得0.025x =.同学甲的平均分为550.0110650.0210750.0410850.02510950.0051074.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.同学乙的平均分为550.01510650.02510750.0310850.0210950.011073.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)甲测试成绩不足60分的试卷数为200.01102⨯⨯=,设为A ,B .乙测试成绩不足60分的试卷数为200.015103⨯⨯=,设为a ,b ,c .从中抽3份的情况有(),,A B a ,(),,A B b ,(),,A B c ,(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,(),,a b c ,共10种情况.满足条件的有(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,共6种情况,故恰有2份来自乙的概率为63105=.19.已知关于x 的不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y+=时,有226x y k k +>--恒成立,求k 的取值范围.【正确答案】(1)41a b =⎧⎨=⎩(2)(3,5)-【分析】(1)根据一元二次不等式的解法可得1和a 是方程2540bx x -+=的两个实数根且0b >,从而利用韦达定理建立方程组即可求解;(2)由均值不等式中“1”的灵活运用可得min ()9x y +=,从而解一元二次不等式22150k k --<即可得答案.【详解】(1)解:因为不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >),所以1和a 是方程2540bx x -+=的两个实数根且0b >,所以5141a b a b ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得41a b =⎧⎨=⎩;(2)解:由(1)知411x y+=,且0x >,0y >,所以414()559y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当4y x x y =,即63x y =⎧⎨=⎩时等号成立,依题意有2min ()26x y k k +>--,即2926k k >--,所以22150k k --<,解得35k -<<,所以k 的取值范围为(3,5)-.20.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.【正确答案】(1)1327;(2)427.【分析】(1)根据规则乙先投进,分情况讨论,求各个情况下概率和即可;(2)根据规则第四次乙先进球或第五次甲先进球,符合题意,求概率和即可.【详解】(1)记“乙获胜”为事件C ,记甲第i 次投篮投进为事件i A ,乙第i 次投篮投进为事件iB 由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()()111122112233P C P A B P A B A B P A B A B A B =+⋅⋅+⋅⋅⋅⋅()()()()()()()()()()()()111122112233P A P B P A P B P A P B P A P B P A P B P A P B =++⋅22332121211332323227⎛⎫⎛⎫⎛⎫⎛⎫=⨯++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()112211223P D P A B A B P A B A B A =⋅⋅+⋅⋅⋅()()()()()()()()()112211223P A P B P A P B P A P B P A P B P A =+⋅22222121143232327⎛⎫⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.一般情况下,隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)满足关系式:50,020,60,20120.140x v k x x <≤⎧⎪=⎨-<≤⎪-⎩研究表明,当隧道内的车流密度达到120辆/千米时会造成堵塞,此时车流速度为0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅.求隧道内车流量的最大值(精确到1辆/小时)及隧道内车流量达到最大时的车流密度(精确到1辆/千米).2.646=)【正确答案】(1)(1)车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)(2)隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.【分析】(1)由120x =(辆/千米)时,0v =(千米/小时)求得k ,可得v 关于x 的关系式,再由40v 求解x 的范围得结论;(2)结合(1)写出隧道内的车流量y 关于x 的函数,再由函数的单调性及基本不等式求出分段函数的最值,则答案可求.【详解】(1)解:由题意,当120x =(辆/千米)时,0v =(千米/小时),代入60140k v x=--,得060140120k =--,解得1200k =.∴50,020120060,20120140x v x x <⎧⎪=⎨-<⎪-⎩,当020x <时,5040v =,符合题意;当20120x <时,令12006040140x--,解得80x ,2080x ∴<.综上,080x <.故车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)由题意得,50,020120060,20120140x x y x x x x <⎧⎪=⎨-<⎪-⎩,当020x <时,50y x =为增函数,20501000y ∴⨯=,等号当且仅当20x =时成立;当20120x <时,12002020(140)28006060()60[140140140x x x y x x x x x x--=-=-=+---2800280060(2060[160(140)140140x x x x=+-=-----60(16060(1603250-=-≈.当且仅当2800140140x x-=-,即14087(20x =-≈∈,120]时成立,综上,y 的最大值约为3250,此时x 约为87.故隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.22.函数()()lg 93x x f x a =+-.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)当0a ≤时,若()f x 的值域为R ,求实数a 的值;(3)在(2)条件下,()g x 为定义域为R 的奇函数,且0x >时,()()109f x x g x =-,对任意的R t ∈,解关于x 的不等式()32()2|()|g x g x tx t g x +-≥.【正确答案】(1)0a ≤;(2)0a =;(3)答案详见解析.【分析】(1)由930x x a +->恒成立分离常数a ,结合指数函数、二次函数的性质求得正确答案;(2)令()93x x h x a =+-,结合()h x 的值域包含()0,∞+列不等式,由此求得正确答案;(3)先求得()g x 的解析式,由此化简不等式()32()2|()|g x g x tx t g x +-≥.对t 进行分类讨论,由此求得正确答案.【详解】(1)由题930x x a +->恒成立,则93x x a <+恒成立,由于1130,322x x >+>,所以211933024x x x ⎛⎫+=+-> ⎪⎝⎭,所以0a ≤;(2)令()93x x h x a =+-,则()h x 的值域包含()0,∞+,因为21193324x x x a a a ⎛⎫+-=+-->- ⎪⎝⎭,所以0a -≤,即0a ≥,又因为0a ≤,所以0a =;(3)当0x >时,()()1093f x x x g x =-=;若0x <,0x ->,()3x g x --=,又因为()g x 为定义域为R 的奇函数,所以当0x <时,()3xg x -=-,所以()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩,()()3g x g x =()()20g x x ≠,不等式()()()322g x g x tx t g x +-≥等价于()()()2220g x tx t g x x +-≥≠,由于()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩在()(),00,∞-+∞U 上是单调递增函数,所以原不等式等价于()2220x tx t x x +-≥≠,即:()()()200x x t x -+≥≠,当2t <-时,解集为{|2x x ≤且0x ≠或}x t ≥-;当2t =-时,解集为{}0x x ≠;当20t -<≤时,解集为{|x x t ≤-且0x ≠或}2x ≥;当0t >时,解集为{|x x t ≤-或}2x ≥.根据函数的奇偶性求函数的解析式要注意的地方有:1.如果函数的定义域为R ,则对于奇函数来说,必有()00f =,偶函数则不一定;2.当0x >时,0x -<(或当0x <时,0x ->),需要代入对应范围的解析式,结合()()=f x f x -或()()f x f x =--来求得函数的解析式.。

高一数学上学期期末综合检测试题附答案

高一数学上学期期末综合检测试题附答案

高一数学上学期期末综合检测试题附答案一、选择题1.已知R 为实数集,集合{1}A xx =>∣,{2}B x x =≥∣,则()R C B A ⋂=( ) A .(1,2) B .(1,2] C .(,1]-∞ D .[2,)+∞2.函数0()3(2)f x x x =+++的定义域是( )A .[3,)-+∞B .[3,2)--C .[3,2)(2,)---+∞D .(2,)-+∞3.225︒化为弧度是( ) A .34πB .54π C .43π D .76π 4.已知角α的终边经过点()1,2M ,则tan2α=( ) A .22 B .2 C .22- D .2- 5.方程e 10x x ++=的根所在的区间是( )A .()0,1B .()1,0-C .()2,1--D .()1,26.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)是气球体积V (立方米)的反比例函数,其图象如图所示,则这个函数的解析式为( )A .p =96VB .p =96V- C .p =69VD .p =96V7.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( ) A .()()6f x f x +-= B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭8.已知函数321,01,()4log ,1a ax x x x f x x x x x ⎧--<⎪=⎨⎪->⎩,对()()211212210,0x f x x f x x x x x -∀>>>-成立,则实数a 的取值范围为( ) A .1,14⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭二、填空题9.下列各组函数中,()f x 与()g x 是同一函数的有( ) A .()f x x =,ln ()x g x e = B .()|1|f x x =-,1,1()1,1x x g x x x -≥⎧=⎨-<⎩C .2()f x x =,()g x D .()f x x =,2()x g x x =10.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1≥xC .01x <≤D .11x -≤≤11.下列命题中正确的是( ) A .若0a b <<,0c d <<,则ac bd > B .若a b >,则ka kb > C .若a b <,则a b <D .若0a b >>,则11a b< 12.已知函数()22log ,0log 1,0x x f x x x ⎧>⎪=⎨-+≤⎪⎩.若()()()()1234f x f x f x f x ===且1234x x x x >>>,则下列结论正确的有( )A .12340x x x x +++<B .12340x x x x ++>+C .12341x x x x ≥D .123401x x x x <<三、多选题13.已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是___________.14.关于x 的方程sin 30x x +-=的唯一解在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内,则k 的值为__________.15.已知a ,b 为正实数,且39ab a b ++=,则3a b +的最小值为_________.16.中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇面的面积为______cm 2.四、解答题17.在①()R B A ⊆,②()A B R =R ,③A B B =这三个条件中任选一个,补充在下面问题中.若问题中的实数a 存在,求a 的取值范围;若问题中的实数a 不存在,请说明理由.已知集合{}2540A x x x =-+≤,{}121B x a x a =+<<-,是否存在实数a ,使得________?18.已知()2sin sin 3f x x x π⎛⎫+ ⎪⎝⎭=.(1)求函数()f x 的最小正周期T ; (2)若63ππα-<<,()312f α=,求cos 26πα⎛⎫+ ⎪⎝⎭的值.19.已知函数22()x f x x-=.(1)判断()f x 在(0,)+∞上的单调性,并用定义法证明;(2)已知()f x 在[]1,2上的最大值为m ,若正实数a ,b 满足ab m =,求11a b+最小值. 20.某工厂生产一新款智能迷你音箱,每日的成本C (单位:万元)与日产量x(x N *∈,单位:千只)的关系满足2C x =+.每日的销售额S (单位:万元)与日产量x 的关系满足:当17x ≤≤时,161xS x x =++,当716x ≤<时,3216kS x x =++-;当16x ≥时,28S =.已知每日的利润L S C =-(单位:万元).(1)求k 的值,并将该产品每日的利润L (万元)表示为日产量x (千只)的函数; (2)当日产量为多少千只时,每日的利润可以达到最大,并求出最大值.21.如图,一个水轮的半径为4米,水轮圆心O 距离水面2米,已知水轮每分钟逆时针转动1圈,当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)将点P 距离水面的距离z (单位:米,在水面以下,则z 为负数)表示为时间t (单位:秒)的函数;(2)在水轮转动1圈内,有多长时间点P 位于水面上方?22.若函数()y f x =自变量的取值区间为[],a b 时,函数值的取值区间恰为22,b a ⎡⎤⎢⎥⎣⎦,就称区间[],a b 为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当()0,x ∈+∞时,()3g x x =-+.()1求()g x 的解析式;()2求函数()g x 在()0,∞+内的“和谐区间”;()3若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,是否存在实数m ,使集合()(){}(){}2,|,|x y y h x x y y x m =⋂=+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.【参考答案】一、选择题 1.A 【分析】先利用补集的运算和交集运算求解. 【详解】因为{2}B xx =≥∣, 所以{2}R B xx =<∣, 所以(){12}R B A xx ⋂=<<∣,故选:A . 【点睛】本题主要考查集合的基本运算,属于基础题. 2.C 【分析】根据函数成立的条件,列出不等式关系计算即可. 【详解】要使函数有意义,则{3020x x +≥+≠,即{32x x ≥-≠-,所以3x ≥-且2x ≠-,即函数的定义域为[32)(2)---+∞,,. 故选:C 3.B 【分析】根据角度制与弧度制的相互转化,计算即可. 【详解】 52252251804ππ︒=⨯=. 故选:B. 【点睛】本题考查了角度制化为弧度制的应用问题,属于基础题. 4.C 【分析】根据任意角的三角函数的定义,求出tan α,再利用二倍角公式计算可得. 【详解】解:因为角α的终边经过点(M ,所以tan α=22tan tan 21tan ααα===-- 故选:C 5.C 【分析】设e (1)x f x x =++,逐一分析各个选项,结合零点存在性定理,即可得答案. 【详解】设e (1)x f x x =++, 2211(2)10,(1)0,(0)2,(1)e 20,(2)e 30e ef f f f f -=-<-=>==+>=+> 因为(2)(1)0f f -⋅-<,根据零点存在性定理,可得()f x 的零点在区间()2,1--内. 故选:C 6.D 【解析】因为气球内气体的气压是气球体积的反比例函数,所以可设kp V=,由图象可知,点()1.5,64 在函数图象上,所以64 1.5k =,解得96k =,故96p V=,故选D. 7.D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误.【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数, 所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g x x g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确;对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-, ()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168f g ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭,因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误.故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论. 8.B 【分析】 根据题意可得()()1212f x f x x x <,构造函数()()f xg x x=,使函数()g x 在()0,∞+上单调递减,根据分段函数的单调性可得011121114a a a ⎧⎪<<⎪⎪≥⎨⎪⎪--≥-⎪⎩,解不等式即可求解.【详解】 对()()211212210,0x f x x f x x x x x -∀>>>-成立,即()()21120x f x x f x -<成立,即()()1212f x f x x x <,()()f xg x x∴=在()0,∞+上单调递减, 由()21,01,()4log 1,1a ax x x f x g x x x x ⎧--<≤⎪==⎨⎪->⎩,可得011121114a aa ⎧⎪<<⎪⎪≥⎨⎪⎪--≥-⎪⎩,解得1142a ≤≤. 故选:B二、填空题9.BC 【分析】满足定义域和对应关系一样的函数才是相等函数. 【详解】A.定义域不一样,()f x 定义域为R ,ln ()x g x e =的定义域为0,,不是同一函数;B. ()|1|f x x =-,当1≥x ,时()1f x x ;当1x <时,()1f x x =-()f x 与()g x 定义域和对应关系一样,为同一函数;C. 2()g x x ,()f x 与()g x 定义域和对应关系一样,为同一函数;D. 定义域不一样,()f x 定义域为R ,()g x 的定义域为{}|0x x ≠ 故选:BC 10.AC 【分析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 11.AD 【分析】根据不等式的性质,可判断A 、B ;利用特殊值法,可判断C ;利用作差法可判断D. 【详解】对A ,因为0a b <<,0c d <<,所以ac bd >,故A 正确;对B ,当0k ≤时,不等式ka kb >不成立,故B 错误; 对C ,当2a =-,0b =时,不等式a b <不成立,故C 错误; 对D ,因为0a b >>,所以110b a a b ab --=<,所以11a b<,故D 正确. 故选:AD 12.BD 【分析】作出函数图象,根据数形结合,结合均值不等式,不等式的性质,即可求解. 【详解】作出函数()22log ,0log 1,0x x f x x x ⎧>⎪=⎨-+≤⎪⎩的图象,由数形结合可得:12340x x x x >>>>且12341,2x x x x =+=-, 所以121222x x x x +>=,故1234220x x x x +++>-=, 又()()3434342201x x x x x x =-+->-⨯-<<, 所以123401x x x x <<, 故选:BD 【点睛】本题主要考查了分段函数的图象,对数函数的图象,考查了均值不等式,不等式的性质,属于中档题.三、多选题 13.18a >【分析】转化为命题“R x ∀∈,使得220ax x -+>”是真命题,根据二次函数知识列式可解得结果. 【详解】因为命题“存在x ∈R ,使220ax x -+≤”是假命题,所以命题“R x ∀∈,使得220ax x -+>”是真命题,当0a =时,得2x <,故命题“R x ∀∈,使得220ax x -+>”是假命题,不合题意;当0a ≠时,得0180a a >⎧⎨∆=-<⎩,解得18a >.故答案为:18a >【点睛】关键点点睛:转化为命题“R x ∀∈,使得220ax x -+>”是真命题求解是解题关键. 14.2 【分析】由题意转化为函数()sin 3f x x x =+-在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内有唯一零点,求导得()'cos 10f x x =+≥,从而()f x 在R 上递增,且()20f <,502f ⎛⎫> ⎪⎝⎭,由函数的零点存在定理可得结果. 【详解】由题意得,关于x 的方程sin 30x x +-=的唯一解转化为函数()sin 3f x x x =+-在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内有唯一零点, ()'cos 10f x x =+≥,()f x ∴在R 上递增,由()2sin 223sin 210f =+-=-<,且5555511sin 3sin302226222f π⎛⎫=+->+-=-= ⎪⎝⎭, 由函数的零点存在定理可得()f x 在52,2⎛⎫⎪⎝⎭上有唯一的零点,又因为方程sin 30x x +-=的唯一解在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内,所以2k =.故答案为:2 【点睛】关键点点睛:方程sin 30x x +-=的解转化为函数()sin 3f x x x =+-的零点问题,求导得()f x 的单调性,再结合函数的零点存在定理. 15.6 【分析】利用基本不等式得出3a b +的不等式,解之可得3a b +的最小值. 【详解】∵0,0a b >>,∴211933(3)(3)(3)312ab a b a b a b a b a b =++=⋅++≤+++. (318)(36)0a b a b +++-≥,∴36a b +≥,当且仅当3a b =,即3,1a b ==时等号成立, 故答案为:6.【点睛】方法点睛:本题考查用基本不等式求最小值,解题方法是用基本不等式得出关于3a b +的不等式,然后通过解不等式得出结论.不是直接由基本不等式得最小值,解题时也要注意基本不等式成立的条件.即最小值能否取到.16.704【分析】设AOB θ∠=,OA OB r ==,由题意可得:2464(16)r r θθ=⎧⎨=+⎩,解得r ,进而根据扇形的面积公式即可求解.【详解】解:如图,设AOB θ∠=,OA OB r ==,由题意可得:2464(16)r r θθ=⎧⎨=+⎩, 解得:485r =, 所以,21481486416247042525OCD OAB S S S cm ⎛⎫=-=⨯⨯+-⨯⨯=⎪⎝⎭. 故答案为:704.【点睛】本题考查利用数学知识解决实际问题,考查扇形的面积,考查数形结合思想的应用,属于中档题.四、解答题17.答案见解析.【分析】若选①:求出A R ,分B =∅和B ≠∅两种情况,列出不等式组可得答案;若选②:由()A B R =R ,得B ≠∅,列出不等式组可得答案;若选③:由A B B =可知B A ⊆,分B =∅和B ≠∅列出不等式组可得答案.【详解】 集合{}{}254014A x x x x x =-+≤=≤≤.若选①: {1R A x x =<或4}x >,由()R B A ⊆得,当B =∅时,121a a +≥-,解得2a ≤;当B ≠∅时,121211a a a +<-⎧⎨-≤⎩或12114a a a +<-⎧⎨+≥⎩, 解得a ∈∅或3a ≥,所以实数a 的取值范围是[)3,+∞.综上,存在实数a ,使得()R B A ⊆,且a 的取值范围为(][),23,-∞⋃+∞.若选②: {1R A x x =<或4}x >, 由()A B R =R ,得B ≠∅,所以21411a a ->⎧⎨+<⎩,解得a ∈∅, 所以不存在实数a ,使得()A B R =R .若选③:由A B B =可知B A ⊆,当B =∅时,121a a +≥-,解得2a ≤;当B ≠∅时,12111214a a a a +<-⎧⎪+≥⎨⎪-≤⎩,解得522a <≤. 综上,存在实数a ,使得A B B =,且a 的取值范围为5,2⎛⎤-∞ ⎥⎝⎦. 【点睛】本题考查了集合的运算,解题关键点是对于()R B A ⊆和()A B R =R 中含有参数的集合要分情况进行讨论,要熟练掌握集合间的基本运算.18.(1)最小正周期π;(2. 【分析】(1)首先利用三角恒等变换公式将函数化简,再根据正弦函数的性质计算可得;(2)依题意可得sin 26πα⎛⎫- ⎪⎝⎭,再根据同角三角函数的基本关系求出cos 26πα⎛⎫- ⎪⎝⎭,最后根据cos 2cos 2663πππαα⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦计算可得; 【详解】解:(1)()2sin sin 3f x x x π⎛⎫+ ⎪⎝⎭=212sin sin sin 2sin cos 2x x x x x x ⎛⎫==⋅ ⎪ ⎪⎝⎭1cos 212sin 2262x x x π-⎛⎫==-+ ⎪⎝⎭, 1()sin 262f x x π⎛⎫∴=-+ ⎪⎝⎭. 所以()f x 的最小正周期T π=.(2)1()sin 262f x x π⎛⎫=-+ ⎪⎝⎭,1()2f α=+,sin 26πα⎛⎫∴- ⎪⎝⎭. 63ππα-<<, 2262πππα∴-<-<,cos 26πα⎛⎫∴-== ⎪⎝⎭1cos 2cos 2cos 22663266πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=-+=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦12== 19.(1)()f x 在(0,)+∞上单调递增,证明见解析;(2)2.【分析】(1)令120x x >>,作差()()12f x f x -通过运算判断符号得出结论;(2)由(1)知函数()f x 在(0,)+∞上单调递增,最大值为222(2)12f -==即1ab = 根据基本不等式求解即可.【详解】(1)函数()f x 在(0,+)∞上单调递增.证明如下:令120x x >>,()()2212121212212222x x f x f x x x x x x x ---=-=-+- ()121221x x x x ⎛⎫=-+ ⎪⎝⎭. 因为120x x >>,所以120x x ->,120x x >, 所以12122()(1)0x x x x -+>, 所以()()120f x f x ->,即()()12f x f x >,所以函数()f x 在(0,)+∞上单调递增.(2)由(1)知函数()f x 在(0,)+∞上单调递增,所以函数()f x 在[]1,2上的最大值为222(2)12f -==, 即1m =,所以1ab =,所以112a b a b a b ab++==+≥, 当且仅当1a b ==时等号成立.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.20.(1)18,***162,17,,1182,716,,1626,16,x x x x L x x x x x x x ⎧-∈⎪+⎪⎪=+<<∈⎨-⎪-∈⎪⎪⎩N N N ;(2)当日产量为13千只时,每日的利润可以达到最大值为20万元.【分析】(1)由题意可知,7x =时,167737271716k S ⨯=+=⨯+++-,从而可求出k 的值,由利润L S C =-可求得每日的利润L (万元)表示为日产量x (千只)的函数;(2)分17x ,7<x <16和16x 三种情况,求三个函数的最大值,再作比较可求出利润的最大值【详解】(1)当x =7时,167737271716k S ⨯=+=⨯+++-,解得k =18. ***162,17,,1182,716,,1626,16,x x x x L x x x x x x x ⎧-∈⎪+⎪⎪=+<<∈⎨-⎪-∈⎪⎪⎩N N N (2)当17x ,*x ∈N 时,161621411x L x x =-=-++,在[1,7]上单调递增, 所以当x =7吋,max 12L =;当7<x <16,*x ∈N 时,18182322(16)1616L x x x x ⎡⎤=+=--+⎢⎥--⎣⎦, 因为182(16)22(161216x x -+-=-, 当且仅当182(16)16x x-=-,即x =13时,max 20L =; 当16x ,*x ∈N 时,26L x =-在[16,)+∞上单调递减,所以当16 x =时,max 10L =.综上,当13x =时,max 20L =.答:当日产量为13千只时,每日的利润可以达到最大值为20万元.21.(1)()4sin 20306t z t ππ⎛⎫=-+≥ ⎪⎝⎭;(2)40秒. 【分析】(1)以圆心为原点建立平面直角坐标系,根据O 距离水面的高度计算出0P 坐标,再利用三角函数表示出P 点坐标,将P 的纵坐标加2即可得到z 关于t 的函数;(2)根据条件可知0z >,解对应的不等式求解出t 的范围,由此确定出有多长时间点P 位于水面上方.【详解】(1)建立如图所示平面直角坐标系,由题意可知:()023,2P -,则3tan ϕ=6π=ϕ, 因为水轮每分钟逆时针转动1圈,所以t 秒可转动的角度为26030t t ππ=, 所以P 的坐标为4cos ,4sin 306306t t ππππ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且P 的纵坐标加上2即为P 到水面的距离, 所以()4sin 20306t z t ππ⎛⎫=-+≥ ⎪⎝⎭; (2)因为[]110,60,,30666t t ππππ⎛⎫⎡⎤∈-∈- ⎪⎢⎥⎝⎭⎣⎦,令4sin 20306t ππ⎛⎫-+> ⎪⎝⎭, 所以1sin 3062t ππ⎛⎫->- ⎪⎝⎭,所以763066t ππππ-<-<,所以040t <<, 所以在水轮转动1圈内,有40秒时间点P 位于水面上方【点睛】关键点点睛:解答本题的关键是通过建立合适平面直角坐标系结合三角函数定义求解出z 关于t 的函数,其中着重去分析P 点的纵坐标值得注意.22.()1()3,00,03,0x x g x x x x --<⎧⎪==⎨⎪-+>⎩;()2[]1,2;()3存在,{}3-. 【分析】()1利用函数奇偶性的性质写出()g x 的解析式;()2根据“和谐区间”的定义写出函数()g x 在()0,∞+内的“和谐区间”;()3设[],a b 为()g x 的一个“和谐区间”,则22a bb a <⎧⎪⎨<⎪⎩,即 a ,b 同号,结合分类讨论得出结果.【详解】解:()1()g x 为R 上的奇函数,∴()00g =又当()0,x ∈+∞时,()3g x x =-+,∴当(),0x ∈-∞时,()()()33g x g x x x =--=-+=--;∴()3,00,03,0x x g x x x x --<⎧⎪==⎨⎪-+>⎩; ()2设0a b <<,()g x 在()0,∞+上单调递减,()()2323g b b b g a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,即a ,b 是方程23x x =-+的两个不相等的正根.0a b << ∴12a b =⎧⎨=⎩ ∴()g x 在()0,∞+内的“和谐区间”为[]1,2. ()3设[],a b 为()g x 的一个“和谐区间”,则22a bb a<⎧⎪⎨<⎪⎩,∴a ,b 同号. 当0a b <<时,同理可求()g x 在(),0-∞内的“和谐区间”为[]2,1--.()[][]3,1,23,2,1x x h x x x ⎧-+∈⎪∴=⎨--∈--⎪⎩依题意,抛物线2y x m =+与函数()h x 的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,m 应当使方程23x m x +=-+在[]1,2内恰有一个实数根,并且使方程23x m x +=--,在[]2,1--内恰有一个实数根.由方程23x m x +=-+,即230x x m ++-=在[]1,2内恰有一根,令()23F x x x m =++-,则()()110230F m F m ⎧=-≤⎪⎨=+≥⎪⎩,解得31m -≤≤; 由方程23x m x +=--,即230x x m +++=在[]2,1--内恰有一根,令()23G x x x m =+++,则()()130250G m G m ⎧-=+≤⎪⎨-=+≥⎪⎩,解得53m -≤≤-. 综上所述,实数m 的取值集合为{}3-.【点睛】本题考查函数的性质,考查分类讨论思想,方程的应用,难度大,属于难题.。

高一数学上册期末强化综合试卷带答案

高一数学上册期末强化综合试卷带答案

高一数学上册期末强化综合试卷带答案一、选择题1.已知集合{}0,1A =,集合{}1,0,1,2,3B =-,则图中阴影部分表示的集合是( )A .[]1,3B .(]1,3C .{}1,2,3-D .{}1,0,2,3-2.若函数()y f x =的定义域是[0,4],则函数(2)()1f xg x x =-的定义域为( ) A .[)(]0,11,4B .[0,2]C .[)(]0,11,2D .[]0,13.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1的角是周角的1360,1rad 的角是周角的12πC .1rad 的角比1的角要大D .用角度制和弧度制度量角,都与圆的半径有关 4.已知角α的终边经过点()3,4P -,则tan α=( ) A .34-B .43-C .45-D .54-5.已知函数3()ln f x x x=-,在下列区间中包含()f x 零点的区间是( ) A .(0,1)B .(1,2)C .(2,3)D .( 3,4)6.比萨斜塔是意大利的著名景点,因斜而不倒的奇特景象而世界闻名.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,OA 的方向即为A 点处的竖直方向.已知比萨斜塔处于北纬44︒,经过测量,比萨斜塔朝正南方向倾斜,且其中轴线与竖直方向的夹角为4︒,则中轴线与赤道所在平面所成的角为( )A .40︒B .42︒C .48︒D .50︒7.已知定义在R 上的奇函数()f x 在(0,)+∞上单调递增,且(1)0f =,若实数x 满足102xf x ⎛⎫-≤ ⎪⎝⎭,则x 的取值范围是( )A .113,0,222⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦ B .113,,222⎡⎤⎡⎫-+∞⎪⎢⎥⎢⎣⎦⎣⎭C .11,0,22⎡⎤⎡⎫-+∞⎪⎢⎥⎢⎣⎦⎣⎭ D .311,0,222⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦8.函数()(1)cos π=-f x x x 的部分图象大致为( )A .B .C .D .二、填空题9.已知函数()f x 是R 上的奇函数,且当0x ≥时,()22f x x x a =++-,则( )A .2a =B .()22f =C .()f x 是增函数D .()312f -=-10.下列说法不正确是( )A .不等式(21)(1)0x x --<的解集为112x x ⎧⎫<<⎨⎬⎩⎭∣ B .已知:12p x <<,11q x +,则p 是q 的充分不必要条件C .“0a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件D .当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是(0,4) 11.下列结论正确的是( )A .命题:0x ∀>,22x x >的否定是00x ∃≤,0202x x ≤B .已知0a b >>,则22b ba a+>+ C .已知1x y >>,01a <<,则a a x y --< D .()00,πx ∃∈,使得222sin x= 12.已知1x y +=,0y >,0x ≠,则121x x y ++的值可能是( ) A .23B .1C .34D .54三、多选题13.已知命题“2,230x x ax a ∃∈-+R ”是假命题,则实数a 的取值范围是________. 14.函数1()lg 1f x x m x =-++在区间()0,9上有零点,则实数m 的取值范围为____________.15.已知函数()221f x x ax =-+,[]1,x a ∈-,且()f x 最大值为f a ,则a 的取值范围为______.16.设函数2cos ,[6,6]3()12,(,6)(6,)x x f x x xπ⎧∈-⎪⎪=⎨⎪∈-∞-⋃+∞⎪⎩,若关于x 的方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有且仅有6个不同的实根.则实数a 的取值范围是_______.四、解答题17.已知{}2230A x x x =--≤,()(){}40B x x k x k =--+>.(1)若[]0,3AB =R,求实数k 的值;(2)若p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数k 的取值范围. 18.已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,P ,当12()()4f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的单调减区间; (2)求函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域;(3)若方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解,求实数m 的取值范围.19.已知()f x 是偶函数,()g x 是奇函数,且()()22f x g x x x +=+-,R x ∈(1)求()f x 和()g x 的表达式;(2)若对于任意的[]23x ∈,,不等式()()70f x k g x -⋅+≥恒成立,求k 的最大值. 20.如图为某儿童游乐场一个小型摩天轮示意图,该摩天轮近似看作半径为4.8m 的圆,圆上最低点A 与地面距离为0.8m ,摩天轮每60秒匀速转动一圈,摩天轮上某点B 的起始位置在最低点A 处.图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为m h .(1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数关系式;(3)如果离地面高度不低于8m 才能获得最佳观景效果,在摩天轮转动的一圈内,有多长时间B 点在最佳观景效果高度?21.已知函数()212sin sin 2cos 32f x x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()f x 的单调增区间;(2)当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()()()221216g x f x mf x m =-+-有四个零点,求实数m 的取值范围.22.已知函数()x xf x a q a -=-⋅(0a >且1a ≠)是定义域为R 的奇函数,且()312f =. (1)求q 的值,并判断和证明()f x 的单调性;(2)是否存在实数m (2m >且3m ≠),使函数()()()222log 1x x m g x a a mf x --⎡⎤=+-+⎣⎦在[]1,2上的最大值为0,如果存在,求出实数m 所有的值;如果不存在,请说明理由.(3)是否存在正数k ,()1k ≠使函数()()22x x a a kf x x k ϕ-⎡⎤+-⎣⎦=在[]21,log 3上的最大值为k ,若存在,求出k 值,若不存在,请说明理由.【参考答案】一、选择题 1.C 【分析】根据所给图形结合补集的韦恩图表示得出所求的集合表示式,由此得解. 【详解】依题意,由补集的韦恩图表示知,图中阴影部分表示的集合是BA ,因集合{}0,1A =,集合{}1,0,1,2,3B =-,则有{1,2,3}B A =-,所以图中阴影部分表示的集合是{}1,2,3-. 故选:C 2.C 【分析】先由函数()y f x =的定义域为[0,4],求出(2)f x 的定义域,再由1x ≠可得答案. 【详解】函数()y f x =的定义域是[0,4](2)f x 满足024x ≤≤,即02x ≤≤又分母不为0,则1x ≠ 所以函数的定义域为:[)(]0,11,2故选:C 3.D 【分析】根据角度和弧度的定义可判断各选项的正误. 【详解】对于A 选项,“度”与“弧度”是度量角的两种不同的度量单位,A 选项正确; 对于B 选项,1的角是周角的1360,1rad 的角是周角的12π,B 选项正确;对于C 选项,11180π=<,C 选项正确;对于D 选项,用角度制和弧度制度量角,都与圆的半径无关,D 选项错误. 故选:D. 【点睛】本题考查角度制与弧度制相关概念的判断,属于基础题. 4.B 【分析】直接利用三角函数的定义求解即可. 【详解】因为角α的终边经过点()3,4P -, 所以44tan 33y x α-===-, 故选:B.5.C 【分析】可判断函数单调性,将区间端点代入解析式,函数值为一正一负,该区间就必有零点. 【详解】3()ln f x x x=-为0,上增函数3(2)ln 202f =-< (3)ln 310f =->由零点存在定理可知,在区间(2,3)存在零点. 故选:C 6.A 【分析】由题意画出示意图,即可选出正确答案. 【详解】解析如图所示,AP 为比萨斜塔的中轴线,44AOD ∠=︒,4BAP ∠=︒,则40PAC ∠=︒,中轴线与赤道所在平面所成的角为40︒.故选:A. 7.A 【分析】首先根据函数的奇偶性和单调性得到函数()f x 在R 上单调递增,且()()110f f =-=,从而得到(),1x ∈-∞-,()0f x <,()1,0x ∈-,()0f x >,()0,1x ∈,()0f x <,()1,x ∈+∞,()0f x >,再分类讨论解不等式102xf x ⎛⎫-≤ ⎪⎝⎭即可.【详解】因为奇函数()f x 在(0,)+∞上单调递增,定义域为R ,(1)0f =, 所以函数()f x 在R 上单调递增,且()()110f f =-=.所以(),1x ∈-∞-,()0f x <,()1,0x ∈-,()0f x >,()0,1x ∈,()0f x <,()1,x ∈+∞,()0f x >. 因为102xf x ⎛⎫-≤ ⎪⎝⎭,当0x <时,102f x ⎛⎫-≥ ⎪⎝⎭,即1102x -≤-≤或112x -≥,解得102x -≤<.当0x =时,符合题意.当0x >时,102f x ⎛⎫-≤ ⎪⎝⎭,112x -≤-或1012x ≤-≤,解得1322x ≤≤.综上:102x -≤≤或1322x ≤≤.故选:A 8.B 【分析】取特殊区间进行判断函数在该区间上的正负,利用排除法可得答案 【详解】 解: 当102x <<时,10x -<,cos 0x π>,所以()0f x <, 当12x =时,()0f x =, 当112x <<时, 10x -<,cos 0x π<,所以()0f x >,所以排除A ,C , 当102x -<<时,10x -<,cos 0x π>,所以()0f x <,所以排除D故选:B二、填空题9.ACD 【分析】由()f x 是R 上的奇函数,则()00=f 可算出2a =,代入可算得()2f 根据()f x 的对称性可得出单调性,根据()()33f f -=-可求得()3f - 【详解】A.项 ()f x 是R 上的奇函数,故()002f a =-= 得2a =,故A 对对于B 项,()2426f =+=,故B 错对于C 项,当0x ≥时,()2f x x x =+在[)0,+∞上为增函数,利用奇函数的对称性可知,()f x 在(],0-∞上为增函数,故()f x 是R 上的增函数,故C 对 ()()339312f f -=-=--=-,故D 对 故选:ACD 【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性. 10.ACD 【分析】运用一元二次不等式的解法求解选项A 和选项D 的结果,并对其进行判断,运用充分条件和必要条件知识判断选项B ,运用函数单调性求解选项C 中的最值. 【详解】对于A ,根据不等式()()2110x x --<可得()()2110x x -->, 所以12x <或1x >, 则不等式的解集为()11,,2⎛⎫+∞-∞ ⎪⎝⎭,故选项A 的说法错误;对于B ,当12x <<1成立;1≥时,解得0x ≥, 所以p 是q 的充分不必要条件, 故选项B 正确;对于C ,若方程20x x a ++=有一个正根和一个负根, 则12140,00a x x a a ∆=->=<⇒<,所以“0a <”是“方程20x x a ++=有一个正根和一个负根”的充要条件; 故选项C 的说法错误;对于D ,若当x ∈R 时,不等式210kx kx -+>恒成立; 则当0k =时,不等式化为10>恒成立, 故0k =符合题意,当0k ≠时,只要240k k k >⎧⎨∆=-<⎩, 解得04k <<,所以不等式210kx kx -+>的解集为R , 则实数k 的取值范围是[)0,4, 故选项D 的说法错误; 故答案为:ACD. 【点睛】易错点睛:本题考查了解一元二次函数不等式,以及恒成立问题,在解答恒成立问题时注意对参量的分类讨论,判断充分条件和必要条件时注意取值范围问题. 11.BCD 【分析】根据全称命题的否定是变量词否结论可判断A ;利用作差法比较22b a ++和ba的大小可判断B ;由幂函数的单调性可判断C ;解方程2sin x=D ,进而可得正确选项. 【详解】对于A :命题:0x ∀>,22x x >的否定是00x ∃>,0202x x ≤,故选项A 不正确;对于B :当 0a b >>时,()()()()()22220222a b b a a b b b a a a a a a+-+-+-==>+++,所以22b ba a +>+, 故选项B 正确;对于C :当01a <<时,10a -<-<,因为幂函数a y x -=在()0,∞+上单调递减,所以1x y >>可得a a x y --<,故选项C 正确;对于D :由2sin x =2sin 2x ,解得:04x π=或34π,所以存在04x π=或34π使得2sin x=D 正确; 故选:BCD. 12.BCD 【分析】1,0,0x y y x +=>≠,有10y x =->则1x <且0x ≠,分01x <<和0x <打开||x ,然后用重要不等式求出其最值,从而得到答案. 【详解】由1,0,0x y y x +=>≠,得10y x =->,则1x <且0x ≠. 当01x <<时,121x x y ++=122242x x x x x x x x+-+=+--=1215+44244x x x x -+≥-.当且仅当2=42x x x x --即23x = 时取等号. 当0x <时,121x x y ++=122242x x x xx x x x--+-+=+----=1213+44244x x x x ---+≥---.当且仅当2=42x x x x ----即2x =- 时取等号. 综上,13214x x y +≥+. 故选:BCD. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.三、多选题 13.()0,3【分析】把条件等价转化为“2,230x x ax a ∀∈-+>R ”为真命题,结合二次函数知识可求范围. 【详解】由题意知“2,230x x ax a ∀∈-+>R ”为真命题, 所以2Δ4120a a =-<,解得0<a <3. 故答案为:()0,3.14.()10,0-【分析】根据零点存在原理直接求解即可. 【详解】因为函数1()lg1f x x m x =-++在区间()0,9上有零点,所以有: (0)(9)0(10)0100f f m m m ⋅<⇒+<⇒-<<.故答案为:()10,0- 【点睛】本题考查了零点存在原理,考查了解一元二次不等式的能力,考查了数学运算能力.15.[)2,+∞【分析】由题知1a >-,进而得函数的对称轴[]14,a ax ∈-=,再根据函数开口向上,()f x 最大值为f a 得144a aa -≥+,解不等式即可得答案. 【详解】解:因为[]1,x a ∈-,所以1a >-, 因为函数的对称轴为[]14,a ax ∈-=,开口向上,()f x 最大值为f a 所以144a aa -≥+,解得2a ≥, 所以a 的取值范围为[)2,+∞ 故答案为; [)2,+∞16.52a <-或52a =或2a =-【分析】作出函数()f x 的图象,设()f x t =,分关于210t at ++=有两个不同的实数根1t 、2t ,和两相等实数根进行讨论,当方程210t at ++=有两个相等的实数根0t 时,2a =±再检验,当方程210t at ++=有两个不同的实数根1t 、2t 时,()1222,0t t =-∈-,或[)120,22t t ∈>,,再由二次方程实数根的分布进行讨论求解即可. 【详解】作出函数()f x 的简图如图,令()f x t =,要使关于x 的方程()()21f x af x ++⎡⎤⎣⎦()0a =∈R 有且仅有6个不同的实根,(1)当方程210t at ++=有两个相等的实数根0t 时, 由240a ∆=-=,即2a =±,此时01t =±当2a =,此时01t =-,此时由图可知方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有4个实数根,此时不满足.当2a =-,此时01t =,此时由图可知方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有6个实数根,此时满足条件.(2)当方程210t at ++=有两个不同的实数根1t 、2t 时,则()1222,0t t =-∈-,或[)120,22t t ∈>,当12t =-时,由4210a -+=可得52a =则25102t t ++=的根为12122t t =-=-,由图可知当12t =-时,方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有2个实数根当212t =-时,方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有4个实数根,此时满足条件. 当[)120,22t t ∈>,时,设()21g t t at =++ 由()010g => ,则()2520g a =+<,即52a <-综上所述:满足条件的实数a 的取值范围是 52a <-或52a =或2a =-故答案为:52a <-或52a =或2a =-【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程210t at ++=的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.四、解答题17.(1)4k =;(2)7k >或1k <-. 【分析】(1)化简集合,A B ,求出B R,解不等式40,3,k k -=⎧⎨≥⎩得解;(2)由题得A B ⊆,即43k ->或1k <-,解不等式即得解. 【详解】解:因为{}2230A x x x =--≤,所以{}13A x x =-≤≤,因为()(){}40B x x k x k =--+>,所以{B x x k =>或4}x k <-. (1)因为{}4R B x k x k =-≤≤, 若[]0,3RAB =,则40,3,k k -=⎧⎨≥⎩即4,3,k k =⎧⎨≥⎩所以4k =.(2)若p :x A ∈,q :x B ∈,p 是q 的充分条件, 即A B ⊆,所以43k ->或1k <-,即7k >或1k <-.18.(1)()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)(]0,2;(3)112⎧⎫⎨⎬⎩⎭或(]10,0- 【分析】(1)利用三角函数的定义求出ϕ的值,由题意知223T ππω==可得ω的值,进而可得()f x 的解析式,利用整体代入法以及正弦函数的单调性即可求解; (2)由x 的范围求出33x π-的范围,利用正弦函数的性质即可求解;(3)设()(]0,2f x t =∈,将问题转化为y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,数形结合可得112m -=-或010m ≤-<,即可求解. 【详解】(1)因为角ϕ的终边经过点(1,P ,所以tan ϕ= 因为02πϕ-<<,所以3πϕ=-,因为当12()()4f x f x -=时,12x x -的最小值为3π, 所以223T ππω==,可得:3ω=,所以()2sin 33f x x π⎛⎫=- ⎪⎝⎭,令()3232232k x k k Z πππππ+≤-≤+∈解得:()52112183183k k x k Z ππππ+≤≤+∈, 所以函数()f x 的单调减区间为()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (2)当4,99x ππ⎛⎫∈ ⎪⎝⎭时,033x ππ<-<, 所以0sin 313x π⎛⎫<-≤ ⎪⎝⎭,所以()02sin 323f x x π⎛⎫<=-≤ ⎪⎝⎭,所以函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域为(]0,2, (3)设()(]0,2f x t =∈,因为方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 则230t t m -+=在(]0,2t ∈内有一根或两个相等的实根,因为23m t t -=-,所以y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,作出y m =-与(]23,0,2y t t t =-∈的图象,由图知:当16t =时211136612y ⎛⎫=⨯-=- ⎪⎝⎭;当0t =时,0y = ;当2t =时,232210y =⨯-=, 所以112m -=-或010m ≤-≤直线y m =-与(]23,0,2y t t t =-∈的图象只有一个交点, 当10m -=时,2t =,此时方程()2sin 323f x x π⎛⎫=-= ⎪⎝⎭只有一解,不符合题意,所以112m -=-或010m ≤-<, 即方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 所以:112m =或100m -<≤ 所以实数m 的取值范围为:112⎧⎫⎨⎬⎩⎭或(]10,0-19.(1)22f x x ,()g x x =;(2)5【分析】(1)根据已知的关系式以及函数的奇偶性列出另一个关系式,联立求出函数()f x 和()g x 的表达式;(2)先将已知不等式进行化简,然后可以分离参数,利用基本不等式求最值即可求解. 【详解】(1)因为()f x 为偶函数,()g x 为奇函数,()()22f x g x x x +=+-①,所以()()()()22f x g x x x -+-=-+--,即()()22f x g x x x -=--②,联立①②,解得:22f xx ,()g x x =,(2)因为22f xx ,()g x x =,由()()70f x k g x -⋅+≥对于任意的[]23x ∈,恒成立, 可得2270x kx --+≥对于任意的[]23x ∈,恒成立, 即250x kx -+≥对于任意的[]23x ∈,恒成立, 所以5k x x≤+对于任意的[]23x ∈,恒成立, 所以min 5k x x ⎛⎫≤+ ⎪⎝⎭,[]23x ∈,因为55225x x x x+≥⋅=, 当且仅当5x x=即5x =时等号成立,所以25k ≤, 所以k 的最大值为25.20.(1) 5.6 4.8sin 2h πθ⎛⎫=+- ⎪⎝⎭;(2) 5.6 4.8cos 30h t π=-,[)0,t ∈+∞;(3)20秒【分析】(1)由题意,以圆心O 为原点,建立平面之间坐标系则以Ox 为始边,OB 为终边的角为2πθ-,,再根据实际情况列出高度,即为函数关系式;(2)根据题意,列出角速度,进而列出t 秒转过的弧度数为θ,即可求解; (3)由(2)问中解析式,计算三角函数不等式5.6 4.8cos 830t π-≥,解得t 的范围长度,即为观景最佳时间. 【详解】(1) 以圆心O 为原点,建立如图所示的平面直角坐标系, 则以Ox 为始边,OB 为终边的角为2πθ-,故点B 的坐标为 4.8cos ,4.8sin 22ππθθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5.6 4.8sin 2h πθ⎛⎫∴=+- ⎪⎝⎭.(2)点A 在圆上转动的角速度是30π,故t 秒转过的弧度数为30t π,5.6 4.8sin 5.6 4.8cos 30230h t t πππ⎛⎫∴=+-=- ⎪⎝⎭,[)0,t ∈+∞.(3)由5.6 4.8cos 830t π-≥得24223303k t k πππππ+≤≤+,k Z ∈ 60206040k t k +≤≤+,k Z ∈故转动一圈最佳观景效果持续的时间为20秒答:一个周期内B 点在最佳观赏效果高度持续的时间为20秒. 【点睛】本题考查:(1)根据实际情况列三角函数关系式;(2)根据角速度列出函数关系式;(3)根据观景效果最优时,列三角不等式求解最优值;本题考查数学建模能力,创新应用型题,有一定难度.21.(1)5[,]1212k k ππππ-+,k Z ∈(2m << 【分析】(1)化简()f x 的解析式,根据正弦函数的增区间可得结果;(2)转化为221()216h t t mt m =-+-在内有两个零点,根据二次函数列式可得结果. 【详解】(1)()212sin sin 2cos 32f x x x x π⎛⎫=-+- ⎪⎝⎭12sin sin cos cos sin 1cos 2332x x x x ππ⎛⎫=-++- ⎪⎝⎭21cos sin 1cos 22x x x x =-++-212cos cos 22x x x =++-1cos 212cos 222x x x +=++-32cos 22x x =+)3x π=+,由222232k x k πππππ-≤+≤+,k Z ∈,得51212k x k ππππ-≤≤+,k Z ∈,所以函数()f x 的单调增区间为5[,]1212k k ππππ-+,k Z ∈. (2)当,64x ππ⎛⎫∈- ⎪⎝⎭时,52(0,)36x ππ+∈,())3f x x π+∈,因为函数()()()221216g x f x mf x m =-+-有四个零点,令()t f x =,则(t ∈且221()216h t t mt m =-+-在内有两个零点,所以2214401600m m m h h ⎧⎛⎫∆=--> ⎪⎪⎝⎭<⎨⎪>⎪⎝⎭⎪⎪>⎪⎩,即22316043160m m m <<⎪⎪+->⎨⎪⎪-+->⎪⎩,解得m <<⎪⎪⎨⎪⎪⎪⎪⎩m <<, 所以实数mm <<. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.(1)1q =;单调递增,证明见解析;(2)存在,176m =;(3)7324k =,理由见解析. 【分析】(1)根据函数的奇偶性求出q 的值,根据3(1)2f =,求出a 的值,从而求出函数的解析式,任取实数12x x <,判断12()()f x f x -的符号即可出函数的单调性;(2)求出2(2)()log [(22)(22)3]x x x xm g x m ---=---+,设22x x t -=-,则22(22)(22)33x x x x m t mt -----+=-+,得到3[2t ∈,15]4,记2()3h t t mt =-+,通过讨论m 的取值范围,求出函数的最大值,确定m 的值即可;(3)令()22x x t f x -==-,根据()f x 是单调递增函数,得到t 的范围,然后得到22()()tkt g x g t k -+==,再求出k 的值即可.【详解】(1)函数()(0x x f x a q a a -=->且1)a ≠是定义域为R 的奇函数,x ∈R , (0)0f ∴=,即10q -=,解得:1q =,代入原函数,则有()()f x f x -=-, 所以1q =,f (1)32=,132a a ∴-=,22320a a --=,2a =或12a =-,0a >,2a ∴=,()22x x f x -=-,任取实数12x x <,则11221212121()()22(22)(22)(1)2x x x x x x x x f x f x --+-=---=-+,12x x <,∴1222x x <,又1220x x +>,12()()f x f x ∴<,()f x ∴是单调增函数;(2)22(2)()log [()1]x xm g x a a mf x --=+-+22(2)log [22(22)1]x x x x m m ---=+--+ 2(2)log [(22)(22)3]x x x x m m ---=---+,设22x x t -=-,则22(22)(22)33x x x x m t mt -----+=-+,[1x ∈,2],3[2t ∴∈,15]4,记2()3h t t mt =-+, 当021m <-<,即23m <<时,要使()g x 的最大值为0,则要()1min h t =, 22()()(3)24m m h t t =-+-,312m <<,3[2t ∈,15]4,()h t ∴在3[2,15]4上单调递增, 3213()()242min h t h m ∴==-,由()1min h t =,得176m =,因17(2,3)6∈,所以176m =满足题意; 当21m ->,即3m >时,要使()g x 的最大值为0, 则要()1max h t =,且()0min h t >,322m >, ①若321228m <,则1522515()()314164max h t h m ==-+=,解得:25760m =,又2()()3024minm m h t h ==->,3m ∴<<25760>25760m ∴=不合题意,②若2128m >,即214m >, 则32132132121()()02424248max h t h m ==-<-⨯=-<,()1h t max ≠, 综上所述,只存在176m =满足题意; (3)令()22x x t f x -==-,由(1)知()f x 是单调递增函数,∴当[1x ∈,2log 3]时,38[,]23t ∈,222222x x t -=+-, ∴22()()tkt g x g t k -+==,38[,]23t ∈,其最大值为k ,也即22t kt -+有最值1,二次函数最值只可能在端点或者对称轴处取,∴只可能是以下三种情况:①233()2122k -+=,解得136k =,此时对称轴为1312t =,左端点处取的是二次函数最小值, 而1k >,也即()g t 最小值,不合题意舍去. ②288()2133k -+=,解得7324k =,此时对称轴为7348t =,右端点离对称轴更远,取的最大值,而1k >,也即()h t 最大值,符合.③22142k kk -⋅+=,解得2k =±,此时对称轴为1t =±,不在区间上,∴最值不可能在对称轴处取到,不合题意舍去.综上所述,7324k =. 【点睛】本题考查了利用函数的奇偶性求参数的值,利用定义判断函数的单调性,函数最值得求法,考查了转化思想和分类讨论思想,属难题.。

高一上册期末数学综合试题含答案

高一上册期末数学综合试题含答案

高一上册期末数学综合试题含答案一、选择题1.设全集U =R ,集合2{|},{|lg(3)}A y y x B x y x ====-,则()UA B =( )A .(2,)+∞B .(3,)+∞C .[0,3]D .{}(,3]3-∞-⋃2.x 的取值范围是( ) A .(][),43,-∞-+∞B .(-∞,-4)∪(3,+∞)C .(-4,3)D .[-4,3] 3.若角θ满足条件sin cos 1θθ+<-,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知角α的终边上一点坐标为()3,4P -,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17B .45C .17-D .45-5.[]x 表示不超过x 的最大整数,例如,[][][]11, 3.54,2.12=-=-=.若0x 是函数()2ln f x x x=-的零点,则[]0x =( )A .1B .2C .3D .46.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当qx p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则( )注:p ,q 为互质的正整数()p q >,即qp为已约分的最简真分数. A .()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B .()()()R a b R a R b ⋅≥⋅C .()()()R a b R a R b +≥+D .以上选项都不对7.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 8.已知不共线向量,OA OB 夹角为α,1OA =,2OB =,()1OP t OA =-,(01)OQ tOB t =≤≤,PQ 在t t =0处取最小值,当0105t <<时,α的取值范围为 A .(0,)3πB .(,)32ππC .2(,)23ππD .2(,)3ππ 二、填空题9.已知函数()f x x α=图像经过点(8,2),则下列命题正确的有( ). A .函数为增函数 B .若1x >,则()1f x > C .函数为奇函数 D .若120x x <<,则()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭10.下列四个命题中为假命题的是( ) A .(0,1)x ∃∈,12x x=B .命题“x ∀∈R ,210x x +->”的否定是“x ∃∈R ,210x x +-<”C .设:12p x <<,:21q x >,则p 是q 的必要不充分条件D .设a ,b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 11.如果0a b >>,那么下列不等式成立的是( )A >B .2211a b< C .22ac bc > D .a c b c ->- 12.已知函数()Asin()(0,0,0)f x x B A ωϕωϕπ=++>><<部分自变量,函数值如下表示,下列结论正确的是( )A .函数解析式为()sin()5f x 32x 6π=+B .函数()f x 图象的一条对称轴为23x π=- C .5(,2)12π-是函数()f x 图象的一个对称中心 D .函数()f x 的图象向左平移12π个单位,再向下平移2个单位使得的函数为奇函数三、多选题13.集合{}3,2aA =,{,}B a b =,若{2}A B =,则A B =________.14.若函数[]()221,1,1,f x ax a x =++∈-值有正有负,则实数a 的取值范围为__________ 15.设,a b 是实数,已知角θ的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(,1)A a ,(2,)B b -,且1sin 3θ=,则ab 的值为____________ .16.筒车是我国古代发明的一种水利灌溉工具.因其经济又环保,至今还在农业生产中得到使用(如图).假设在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.现有一半径为2米的简车,在匀速转动过程中,筒车上一盛水简M 距离水面的高度H (单位:米)与转动时间t (单位:秒)满足函数关系式52sin ,0,6042H t ππϕϕ⎛⎫⎛⎫=++∈ ⎪ ⎪⎝⎭⎝⎭,且0t =时,盛水筒M 与水面距离为2.25米,当筒车转动100秒后,盛水筒M 与水面距离为_______米.四、解答题17.已知全集U =R ,集合{}2|11180A x x x =-+->,12432x B x -⎧⎫=≤≤⎨⎬⎩⎭, (1)求A B ,()U B A ⋃;(2)已知集合{|2}M x a x a =≤≤-,若()UBM =R ,求实数a 的取值范围.18.某同学用“五点法”画函数()() sin ωϕ=++f x A x B (其中A >0,0>0,||)2πϕ<在某一个周期内的图象时,列表并填入部分数据,如表: ωx +φπ2π3π22πxπ35π6A sin(ωx +φ)+B3-1(1)请根据上表中的部分数据,求出函数f (x )的解析式;(2)若定义在区间,44ππ⎡⎤-⎢⎥⎣⎦上的函数g (x )=af (x )+b 的最大值为7,最小值为1,求实数a ,b 的值.19.已知函数()2,bf x x c x=++其中,b c 为常数且满足()()14,2 5.f f == (1)求函数()f x 的解析式;(2)证明:函数()f x 在区间(0,1)上是减函数.20.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,摩天轮上均匀设置了36个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1)经过t 分钟后游客甲距离地面的高度为h 米,试将h 表示为时间t 的函数; (2)问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为30米?(3)若游客乙在游客甲之后进入座舱,且中间相隔5个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为h 米,求h 的最大值.21.已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()()0,1xf xg x a a a +=>≠.(1)求()(),f x g x 的解析式;(2)若12a =时,对一切)2log 1,log x ⎛∈ ⎝⎭,使得()()()22240mf x mg x m -+->恒成立,求实数m 的取值范围.22.已知函数()()21f x x x x a =+--(1)若1a =,解不等式()1f x ≤;(2)若函数()f x 在[22]-,上单调递增,求实数a 的取值范围; (3)记函数()f x 在[22]-,上最大值为()g a ,求()g a 的最小值. 【参考答案】一、选择题 1.C 【分析】先求得,A B ,然后求得UB ,再求得()U A B ∩.【详解】20y x =≥,所以[)0,A =+∞, 30,3x x ->>,所以()3,B =+∞,(],3UB =-∞,()[]0,3UAB =.故选:C 2.A 【分析】根据函数定义域的求法列不等式,解不等式求得x 的取值范围. 【详解】依题意()()21204304x x x x x +-≥⇔+-≥⇔≤-或3x ≥,所以x 的取值范围是(][),43,-∞-+∞.故选:A3.C 【分析】推导出sin 0θ<,cos 0θ<,由此能求出θ的终边在第几象限. 【详解】解:角θ满足条件sin cos 1θθ+<-,sin 0θ∴<,cos 0θ<,θ∴的终边在第三象限.故选:C . 4.C 【分析】由三角函数的定义求出4tan 3α=-,再由两角和的正切公式计算即可.【详解】4tan 3α=-,41tantan 134tan 4471tan tan 143παπαπα-+⎛⎫+===- ⎪⎝⎭-+故选:C 5.B 【分析】利用零点存在定理得到零点0x 所在区间求解. 【详解】因为函数()2ln f x x x=-在定义域(0,)+∞上连续的增函数,且()()22ln 210,3ln 303f f =-<=->, 又∵0x 是函数()2ln f x x x=-的零点,∴()02,3x ∈, 所以[]02x =, 故选:B . 6.B 【分析】设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数) ,B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C选项:分①a A ∈,b A ∈;②a B ∈,b B ∈;③a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【详解】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数, 故选项A 错误; 对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅; ②当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;③当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误, 故选:B. 【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析. 7.D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点, 所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数,可得02sin 13x ≤+≤,解得:1sin 12x -≤≤,由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈,所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤. 8.C 【分析】由平面向量的线性运算得:得:(1)PQ OQ O P OA B O t t =-=--,由向量模的运算得:222||[(1)](54cos )2(12cos )1PQ tOB t OA t t αα=--=+-++,由二次函数图象的性质可得:当012cos 54cos t t αα+==+时,PQ 取最小值,再求向量夹角的取值范围即可. 【详解】由题意可得21cos 2cos ,(1)OA OB PQ OQ OP t t OA OB αα⋅=⨯⨯==-=--, , ∴222[(1)](54cos )2(12cos )1PQ tOB t OA t t αα=--=+-++,由二次函数图像性质知,当012cos 54cos t t αα+==+时,PQ 取最小值,即12cos 1054cos 5αα+<<+,求得1cos 02α-<<,又[0,]απ∈,∴223ππα<<,故选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上册期末数学综合试卷答案一、选择题1.已知实数集为R ,集合12A x y x ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭,则A =R( ).A .(],0-∞B .(),0-∞C .∅D .()0,∞+2.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],3.如果cos 0θ<,且tan 0θ>,则θ是( ) A .第一象限的角 B .第二象限的角 C .第三象限的角D .第四象限的角4.已知角α的终边经过点()3,4P -,则tan α=( ) A .34-B .43-C .45-D .54-5.函数3()81ln +382x f x x -=-的零点所在的区间为( )A .(1e,1)B .(1,2)C .(2,)eD .(,3)e6.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它球:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升到8000,则C 大约增加了( ) A .10%B .20%C .30%D .50%7.已知函数(32()log 31x f x x =-+,若()2(21)22f a f a -+-≤-,则实数a 的取值范围是( ) A .(0,2]B .[0,2]C .[3,1]-D .[4,1]-8.已知正数a ,b 满足21a b +=,则12a b+的最小值为( )A .8B .9C .10D .不存在二、填空题9.下列判断正确的是( ) A .函数1()f x x=在定义域内是减函数 B .若函数()y g x =为奇函数,则一定有(0)0g = C .已知0,0x y >>,且111x y+=,若23x y m m +>+恒成立,则实数m 的取值范围是(4,1)-D .已知25(1)()(1)x ax x f x a x x ⎧---≤⎪=⎨>⎪⎩在(,)-∞+∞上是增函数,则a 的取值范围是[3,2]--10.使得“a b >”成立的充分不必要条件可以是( ) A .1a b >-B .11a b< C .a b > D .10.30.3a b -<11.下列结论正确的是( )A .命题:0x ∀>,22x x >的否定是00x ∃≤,0202x x ≤B .已知0a b >>,则22b ba a+>+ C .已知1x y >>,01a <<,则a a x y --< D .()00,πx ∃∈,使得222sin x=成立 12.一半径为4米的水轮如图所示,水轮圆心O 距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要20秒B .当水轮转动155秒时,点P 距离水面2米C .当水轮转动50秒时,点P 在水面下方,距离水面2米D .点P 距离水面的高度h (米)与t (秒)的函数解析式为4sin 2306h t ππ⎛⎫=++ ⎪⎝⎭三、多选题13.已知命题“x R ∀∈,240x x a -+>”的否定是______. 14.已知lg 3a b +=,100b a =,则lg2a b ⋅=______. 15.已知0x >,0y >,且2183x y x y ++≤+,则2xy x y+的最大值为____. 16.设正实数a ,b 满足:1a b +=,则4aa b+的最小值为___________________;四、解答题17.已知集合{}()(23)0A x x m x m =+-+<,其中m ∈R ,集合203x B xx ⎧⎫-=>⎨⎬+⎩⎭. (1)当1m =-时,求A B ; (2)若B A ⊆,求实数m 的取值范围.18.已知函数())22sin cos 0f x x x x ωωωω=+>,当()()124f x f x -=时,12x x -的最小值为π2.(1)求实数ω的值;(2)将()y f x =的图象上的所有点向左平移π12个单位得到函数()y g x =的图象,求函数()y g x =,ππ,26x ⎡⎤∈-⎢⎥⎣⎦的最值以及相应x 的值.19.已知函数()f x 的图象向左平移3个单位后,再关于y 轴对称可得到函数()22g x x x =-的图象. (1)求()f x 的表达式;(2)()g x 的图象与直线y b =有两个交点时,求b 的取值范围.20.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表:()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?21.已知()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数. (1)求()f x 与()g x 的解析式;(2)判断函数()f x 在其定义域上的单调性; (3)解关于t 不等式()()12130f t f t t -++->.22.已知函数()2xf x =,()()()g x f x f x =+.(1)解不等式:(2)(1)3f x f x -+>; (2)当1[1,]2x ∈-时,求函数()g x 的值域;(3)若1x ∀∈(0,+∞),2x ∃∈[﹣1,0],使得112(2)()2()0g x ag x g x ++>成立,求实数 a 的取值范围.【参考答案】一、选择题 1.B 【分析】化简得[0,)A =+∞,即得解. 【详解】由题得[0,)A =+∞, 所以A =R(),0-∞.故选:B2.A 【分析】先根据函数(1)f x +的定义域为[0 1],,求出112x ≤+≤,再令1lg 2x ≤≤即可求求解. 【详解】因为函数(1)f x +的定义域为[0 1],, 所以112x ≤+≤, 所以1lg 2x ≤≤, 解得:10100x ≤≤,所以(lg )f x 的定义域为[10 100],, 故选:A. 3.C 【分析】根据三角函数在各象限的符号确定即可. 【详解】因为cos 0θ<则θ在第二、第三象限或x 轴的负半轴上,tan 0θ>则θ在第一、第三象限,所以θ是第三象限的角. 故选:C 【点睛】本题主要考查了角在各象限的三角函数的符号,属于容易题. 4.B 【分析】直接利用三角函数的定义求解即可. 【详解】因为角α的终边经过点()3,4P -, 所以44tan 33y x α-===-, 故选:B. 5.D 【分析】()f x 为定义域内的单调递增函数,计算选项中各个变量的函数值,判断在正负,即可求出零点所在区间. 【详解】解:3()81ln +382x f x x -=-在()0,∞+上为单调递增函数, 又33()81ln +38231110e e f e e --=-=-<-=, 33(3)81ln 3+38281ln 38181810f -=-=->-=所以()f x 的零点所在的区间为(),3e . 故选:D. 6.C 【分析】根据所给公式、及对数的运算法则代入计算可得. 【详解】 当1000SN =时,12log 1000C W =,当8000S N=时,22log 8000C W =, ∴2212log 8000lg800033lg 2 1.3log 1000lg10003C W C W +===≈,∴ 约增加了30%. 故选:C . 7.C 【分析】先证明()()2f x f x +-=-,可得[]()1()1f x f x +=--+,构造函数()()1g x f x =+可得()()1g x f x =+是奇函数,根据复合函数的性质可判断()()1g x f x =+在R 上单调递增,所解不等式等价于()()2212g a g a -≤-,可得2212a a -≤-,即可求解.【详解】((3322()()log log 3131x x f x f x x x -+-=-+--++(322log 3131xxx x -=---++()3231223log 102311331x xx xx +⨯=--=-=-+++ 即()()2f x f x +-=-,所以[]()1()1()1f x f x f x +=---=--+, 设()()1g x f x =+,则()()g x g x =--, 可得()()1g x f x =+是奇函数.因为3log y t =和t x =(3log y x =为增函数,因为31x y =+单调递增,所以231xy =-+在R 上单调递增,所以函数(32()log 31x f x x =+-+,在R 上单调递增, 所以()()1g x f x =+在R 上单调递增,由()2(21)22f a f a -+-≤-可得()()22(21)12121f a f a f a ⎡⎤-+≤---=--+⎣⎦,即()()()222122g a g a g a -≤--=-,所以2212a a -≤-,整理得:2230a a +-≤,解得:31x -≤≤ , 故选:C 【点睛】关键点点睛:本题解题的关键点是计算出()()2f x f x +-=-,构造函数()()1g x f x =+是R 上的奇函数且是增函数,原不等式等价于()()2212g a g a -≤-,根据奇偶性和单调性脱掉f 即可求解.8.B 【分析】由题中条件,得到()12122a b a b a b ⎛⎫+=++ ⎪⎝⎭,展开后,利用基本不等式,即可求出结果.【详解】因为正数a ,b 满足21a b +=,所以()12122221459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当22b a a b =,即13a b ==时,等号成立. 故选:B. 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.二、填空题9.CD 【分析】根据函数单调性的性质、奇函数的性质、基本不等式进行判断即可. 【详解】A :因为(1)1,(1)1f f -=-=,显然不符合减函数的性质,所以本判断不正确;B :设1()g x x =,定义域为非零的实数集,11()()g x g x x x-==-=--,显然()y g x =为奇函数,但是(0)g 的值不存在,故本判断不正确;C :因为0,0x y >>,所以有11()()224y x x y x y x y ++=++≥+=,当且仅当y x x y =时取等号,即当2x y ==时取等号,要想23x y m m +>+恒成立,只需23441m m m +<⇒-<<,故本判断正确;D :当1x ≤时,222()5()524a a f x x ax x =---=-++-.要想该函数在(,)-∞+∞上是增函数,所以有:212032115a a a a a ⎧≤-⎪⎪<⇒-≤≤-⎨⎪--⋅-≤⎪⎩, 故选:CD 10.CD 【分析】因为判断的是充分不必要条件,所以所选的条件可以推出a b >,且a b >无法推出所选的条件,由此逐项判断即可. 【详解】A .因为1a b >-不能推出a b >,但a b >可以推出1a b >-,所以1a b >-是a b >成立的必要不充分条件,故不满足;B .因为11a b <不能推出a b >(例如:1,1a b =-=),且a b >也不能推出11a b<(例如:1,1a b ==-),所以11a b<是a b >成立的既不充分也不必要条件,故不满足; C>0a b >≥能推出a b >,且a b >1,1a b ==-),a b >成立的充分不必要条件,故满足;D .因为函数0.3x y =在R 上单调递减,所以10.30.3a b -<可以推出1a b ->,即1a b >+, 所以10.30.3a b -<可以推出a b >,且a b >不一定能推出10.30.3a b -<(例如:1,1a b ==), 所以10.30.3a b -<是a b >成立的充分不必要条件,故满足, 故选:CD. 【点睛】结论点睛:充分、必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分也不必要条件,则p 对应集合与q 对应集合互不包含.11.BCD 【分析】根据全称命题的否定是变量词否结论可判断A ;利用作差法比较22b a ++和ba的大小可判断B ;由幂函数的单调性可判断C;解方程2sin x=D ,进而可得正确选项. 【详解】对于A :命题:0x ∀>,22x x >的否定是00x ∃>,0202x x ≤,故选项A 不正确;对于B :当 0a b >>时,()()()()()22220222a b b a a b b b a a a a a a+-+-+-==>+++,所以22b ba a +>+, 故选项B 正确;对于C :当01a <<时,10a -<-<,因为幂函数a y x -=在()0,∞+上单调递减,所以1x y >>可得a a x y --<,故选项C 正确;对于D:由2sin x =2sin 2x ,解得:04x π=或34π,所以存在04x π=或34π使得2sin x=D 正确; 故选:BCD. 12.ABC 【分析】设点P 距离水面的高度h (米)和时间t (秒)的函数解析式为()sin B h A t ωϕ=++,根据题意,求出A B ωϕ,,,的值,对照四个选项一一验证. 【详解】设点P 距离水面的高度h (米)和时间t (秒)的函数解析式为 ()sin (0,0,||)2h A t B A πωϕωϕ=++>><,由题意得:max min 622=60(0)sin(?0)0h A B h A B T h A B πωωϕ=+=⎧⎪=-=-⎪⎪⎨=⎪⎪=++=⎪⎩解得:422=306A B T ππωπϕ=⎧⎪=⎪⎪⎨=⎪⎪=-⎪⎩∴4sin 2306h t ππ⎛⎫=-+ ⎪⎝⎭.故D 错误;对于A.令h =6,即4sin 2306h t ππ⎛⎫=-+ ⎪⎝⎭,解得:t =20,故A 对;对于B 令t =155,代入4sin 2306h t ππ⎛⎫=-+ ⎪⎝⎭,解得:h =2,故B 对;对于C. 令t =50,代入4sin 2306h t ππ⎛⎫=-+ ⎪⎝⎭,解得:h = -2,故C 对.故选:ABC 【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证; (2)在实际问题中求三角函数解析式的方法: ①求A 通常用最大值或最小值; ②求ω通常用周期;③求φ通常利用函数上的点代入即可求解.三、多选题13.x R ∃∈,240x x a -+≤ 【分析】由全称命题的否定即可得解. 【详解】因为命题“x R ∀∈,240x x a -+>”为全称命题, 所以该命题的否定为“x R ∃∈,240x x a -+≤”. 故答案为:x R ∃∈,240x x a -+≤.14.4【分析】由100b a =,可得2b lga=,从而可得lg a ,进而解得a b ,,从而得解. 【详解】由100b a =,可得1002blga lg ==, 所以2b lga =,代入lg 3a b +=中,可得:2lg 3a lga+=,解得lg 1a =或2. 所以10,2a b ==或100,b 1a ==. 当10,2a b ==时,lg2224a b ⋅=⨯=; 当100,1a b ==时,lg2414a b ⋅=⨯=; 综上:lg24a b ⋅=. 故答案为4. 【点睛】本题主要考查了对数的运算,属于中档题.15.16【分析】由0x >,0y >2183x y x y ++≤+,2212121(8)()()3()x y x y x y x y+⋅+≤+-+ 利用均值不等式得22121()3()18x y x y+-+≥, 解得21x y+的取值范围,进而求得2xy x y +的最大值. 【详解】由0x >,0y >2183x y x y ++≤+,得2183x y x y+≤+-, 即2212121(8)()()3()x y x y x y x y+⋅+≤+-+又2116(8)()101018y x x y x y x y+⋅+=++≥+, 当且仅当16y x x y=,即4x y =时,取等, 故22121()3()18x y x y+-+≥, 解得216x y +≥或213x y+≤-(舍) 故111226xy x y y x=≤++,即2xy x y +的最大值为16, 故答案为:16. 16.8【分析】根据1a b +=,4a a b +可化为44()a a b a a b a b++=+,化简后利用均值不等式求解即可. 【详解】因为正实数a ,b 满足:1a b +=,所以44()444448a a b a b a a b a b a b ++=+=++≥+=+=, 当且仅当4b a a b =时,即21,33a b ==时等号成立,所以4a a b+的最小值为8, 故答案为:8【点睛】本题主要考查了均值不等式的应用,考查了“1”的变形,属于中档题.四、解答题17.(1){}52x x -<<;(2)(,2][3,)-∞-⋃+∞【分析】(1)先分别求出集合,A B ,再根据集合间的运算即可求解;(2)由B A ⊆知:A ≠∅,对m 进行讨论即可求解.【详解】解:(1)由203x x ->+, 解得:32x -<<, 故{}20323x B x x x x ⎧⎫-=>=-<<⎨⎬+⎩⎭∣, 当1m =-时,()(23)0x m x m +-+<可化为:(5)(1)0x x +-<,解得:51x -<<,∴集合{}51A x x =-<<, 故{}52A B x x ⋃=-<<;(2)显然A ≠∅,即1m ≠,当23m m -<-,即1m 时,{}23A x m x m =-<<-,又B A ⊆,13232m m m >⎧⎪∴-≤-⎨⎪-≥⎩, 解得:3m ≥;当23m m ->-,即1m <时,{}23A x m x m =-<<-,又B A ⊆,12332m m m <⎧⎪∴-≤-⎨⎪-≥⎩, 解得:2m ≤-,综上所述:实数m 的取值范围为(,2][3,)-∞-⋃+∞.18.(1)1ω=;(2)最大值为1,π2x =-或π6x =,最小值为2-,π6x =-. 【分析】 (1)首先利用三角函数的关系式的变换,把函数的关系式变形成正弦型函数,()()124f x f x -=时,12x x -的最小值为π2,可得函数的最小正周期,进一步求出结果; (2)利用函数的平移变换求出函数()g x 的关系式,进一步利用函数的定义域结合整体思想求出函数的最值.【详解】(1)()22sin cos f x x x x ωωω=+π22sin 23sin 2x x x ωωω⎛⎫=- ⎪⎝⎭=, 因为当()()124f x f x -=时,12x x -的最小值为π2, 所以函数的最小正周期为π, 即2π2πω=,解得1ω=. (2)由(1)知()π2sin 23f x x ⎛⎫=- ⎪⎝⎭, ()πππ2sin 22sin 21236g x x x ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∵ππ,26x ⎡⎤∈-⎢⎥⎣⎦,∴7πππ2666x -≤-≤. ∴π11sin 262x ⎛⎫-≤-≤ ⎪⎝⎭,π22sin 216x ⎛⎫-≤-≤ ⎪⎝⎭. ()y g x =的最大值为1,此时π1sin 262x ⎛⎫-= ⎪⎝⎭,π2x =-或π6x =. ()y g x =的最小值为2-,此时πsin 216x ⎛⎫-=- ⎪⎝⎭,π6x =-. 19.(1)()243f x x x =-+;(2)1b =-或0b >.【分析】(1)()g x 关于y 轴对称的函数()22F x x x =+,再根据函数的平移法则得到答案.(2)将()g x 化简为分段函数,画出函数图象,根据图象得到参数范围.【详解】(1)()g x 关于y 轴对称的函数()()2222F x x x x x =--=+,()F x 的图象向右平移3个单位可得到函数()f x 的图象,()()()2232343f x x x x x ∴=-+-=-+;(2)()2222,022,0x x x g x x x x x x ⎧-≥=-=⎨+<⎩,作出()g x 的图象可知: ()g x 的图象与直线y b =有两个交点时,b 的范围:1b =-或0b >.【点睛】本题考查了函数的平移和对称,利用分段函数图象解决交点个数问题,意在考查学生的计算能力和转化能力,画出图象是解题的关键.20.(1)()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时.【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,,则()()()()max minmax min2,522f t f t f t f t A B -+====, 又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<, 所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭. (2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭, 即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+,又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时.【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.21.(1)()()()()22121log log 22222,x f x g x x x x ⎛⎫-==+ ⎝+⎭-⎪;(2)详见解析;(3)()1,0-. 【分析】(1)根据()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数,得到()()()2log 2f x g x x -+=+,两式联立求解.(2)由(1)知()f x 的定义域为()2,2-,令24122x t x x-==-+++,用函数单调性的定义,证明t 在()2,2-上递减,再利用复合函数的单调性证明.(3)将()()12130f t f t t -++->转化为()()()()112121f t t f t t --->-+-+⎡⎤⎣⎦,令()()g x f x x =-,()()121g t g t ->-+再研究()g x 在()2,2-上的单调性和奇偶性求解.【详解】(1)()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数.所以()()()2log 2f x g x x -+-=+,即()()()2log 2f x g x x -+=+,两式联立解得()()()()22121log log 22222,x f x g x x x x ⎛⎫-==+ ⎝+⎭-⎪. (2)由(1)知()f x 的定义域为()2,2-, 令24122x t x x-==-+++, 任取()1212,2,2,x x x x ∈-<, 则()()()21121212444112222x x t t x x x x -⎛⎫-=-+--+= ⎪++++⎝⎭, 因为()12,2,2∈-x x ,所以()()12220x x ++>,因为12x x <,所以210x x ->,所以120t t ->,即12t t >,所以t 在()2,2-上递减, 又21log 2y x =在()0,∞+上递增, 由复合函数的单调性得:()f x 在()2,2-上递减.(3)因为()()12130f t f t t -++->,所以()()()()112121f t t f t t --->-+-+⎡⎤⎣⎦,令()()h x f x x =-,由(2)知()h x 在()2,2-上递减,又()()221212log log 2222x x h x x x h x x x +⎡-⎤⎛⎫⎛⎫-=+=--=- ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎣⎦, 所以()h x 在()2,2-上是奇函数,即()()()12121h t h t h t ->-+=--,则2122212121t t t t -<-<⎧⎪-<--<⎨⎪-<--⎩, 解得10t -<<,所以不等式的解集是()1,0-.【点睛】方法点睛:复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.22.(1){}2|log 3>x x ;(2);(3)()+∞.【分析】(1)由(2)(1)3f x f x -+>,化简得(23)(21)0-+>x x ,结合对数的运算性质,即可求解;(2)由()()()22=+=+xx g x f x f x ,分类讨论,结合指数的单调性,即可求解. (3)根据题意,转化为[]1112min (0,),(2)()2()x ∈+∞+∀>-g x ag x g x ,由(2)求得2max 5(())2=g x ,分离参数,得到115(2)22>-+⋅x x a 恒成立, 结合基本不等式,即可求解. 【详解】(1)由题意,函数()2x f x =,又由不等式(2)(1)3f x f x -+>,可得212230+-->x x ,即(23)(21)0-+>x x ,解得23x >,可得2log 3x >,所以不等式的解集为{}2|log 3>x x ;(2)由()()()22=+=+xx g x f x f x ,①当10,2x ⎡⎤∈⎢⎥⎣⎦时,1()2+⎡=∈⎣x g x ; ②当[1,0)x ∈-时,1()22x xg x =+, 令2x t =,则2111,,1,102'⎡⎤=+∈=-<⎢⎥⎣⎦y t t y t t , 即1y t t =+在1,12⎡⎤⎢⎥⎣⎦上为减函数,故5()2,2⎡⎤∈⎢⎥⎣⎦g x ;综上得:当11,2x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域为. (3)由题意得,[]1112min (0,),(2)()2()x ∈+∞+∀>-g x ag x g x ,当[]21,0x ∈-,由(2)得2max 5(())2=g x ,所以[]2min 2()5-=-g x , 所以1122(2)225⋅+⋅>-x x a 恒成立,即115(2)22>-+⋅x x a 恒成立,又115222+≥⋅x x 12log =x所以实数a 的取值范围为()+∞.【点睛】有关任意性和存在性问题的求解:此类逻辑推理的关键要素是:逻辑的起点、推理的形式、结论的表达,解决此类问题是对“任意性或存在性”问题进行“等价转化”为两个函数的最值或值域之间的关系,结合基本不等式或不等式的解法等进行求解.。

相关文档
最新文档