七年级定义新运算教学内容
(完整版)定义新运算(最新整理)

例 1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9 的值?
练习:(1)对定义运算※为 a※b=(a+b)×2。 求 5※7 和 17※5 的结果?
(2)对于任意的两个数 a 和 b,规定 a b= 3a-b÷3。求 6 9 和 9 6 的值。
1
例题延伸:若 A * B 表示(A+3×B)×B,求 5 * 7 的值。
小结:在没有算式的新运算符号问题中,解决问题的关键在于要将题干中的文字语言转化为 数学语言,能够根据题意列出新符号代表的数学算式。
PQ
例 4:P、Q 表示两个数,P△Q=
,求 4△(6△9)的值是多少?
3
2
练习:(1)如果 a b= a b ,那么 1998 2000 的值是多少? 2
a 1
二、教学重难点:
1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法
四、教学过程:
(一)导入:
1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5、已知符号“#”表示 a#b=a+b,求:3#5、5#9、88#13 的值? (体现对应思想和解题的三
个步骤)
加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72 的值?
小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运 算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义 的算式含义,能够将新定义的运算方法转化为旧的运算规则。 一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与 定义算式中字母的对应;(3)将对应数字代入算式计算 (二)例题引导: 第一类:(直接运算型) 例题引导: ①表示求两个平均数的运算,则 a①b=(a+b)÷2,当 a=5,b=15 时,求 a①b?
第1讲:定义新运算讲义

定义新运算(★★)(迎春杯试题)规定n※b=3×n-b÷2。
例如:1※2=1×3-2÷2=2。
根据以上的规定,10※6=()(★★)两个不相等的自然数a、b(b≠0),较大的数除以较小的数商为a△b,余数记为a◇b,如3△11=3、3◇11=2,那么6◇(2△7)=()。
⑴(★★★)(“从小爱数学”邀请赛)设a※b表示a的3倍减去b的2倍,即a※b=3a-2b,例如,当a=6,b=5时,6※5=3×6-2×5=8。
①计算:(8※7)※9;②已知:x※(4※1)=7,求:x。
⑵(★★★)规定a○b=(3a-2b),例如4○5=3×4-2×5=2,那么当x○5比5○x大5时,x等于几?⑴(★★)规定a⊗b=a×3+b÷2,其中a、b都是自然数。
①6⊗8的值;②8⊗6的值。
⑵(★★★)定义运算※为a ※b =a ×b -(a +b ),①求12※(3※4),(12※3)※4;②这个运算“※”有结合律吗?③如果3※(5※x )=3,求x 。
⑴(★★★)(“祖冲之杯”数学邀请赛)如图是一个运算器的示意图,A 、B 是输入的两个数据,C 是输出的结果,右下表是输入A 、B 数据后,运算器输出C 的对应值,请你据此判断,当输入A 值是1999,输入B 值是9时,运算器输出的C 值是_____。
⑵(★★★★)(中环杯试题)已知A *B =A ×B +A +B则101*9*9*9**9*9 共次运算=__________。
(★★★★★)定义a *b 为a 与b 之间(包含a 、b )所有与a 奇偶性相同的自然数的平均数,例如:7*14=(7+9+11+13)÷4=10,18*10=(18+16+14+12+10)÷5=14。
在算式□*(19*99)=80的方格中填入恰当的自然数后可使等式成立,那么所填的数是多少?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
七年级上-探索规律与定义新运算

探索规律与定义新运算知识集结知识元数字规律知识讲解数字规律就是一列数按一定规律排列起来,常见的规律有:1、正整数规律:1、2、3、4、5、……可以表示为n(其中n为正整数)2、奇数规律:1、3、5、7、9、……可以表示为(其中n为正整数)3、偶数规律:2、4、6、8、10、……可以表示为2n(其中n为正整数)4、正、负交替规律变化:一组数,不看他们的绝对值,只看其性质,为正负交替(1)-、+、-、+、-、+、-、+可以表示为(2)+、-、+、-、+、-、+、-可以表示为5、平方数规律:1、4、9、16、……可以表示为(其中n为正整数),能看得出:上面的规律数+1、+2、-1、-2例题精讲数字规律例1.已知一组数:1,3,5,7,9,…按此规律,第n个数是.例2.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。
例3.观察下列算式:;;;,…(1)左边各项的底数与右边幂的底数之间的关系是什么?(2)猜想的规律是什么?(3)用第五个关系式进行验证。
算式规律知识讲解算式规律就是一些等式按一定的规律排列起来,这类规律寻找的方法一般是:应对的一般原则:①找出等式中的各个部分;②找出等式中的各个部分中不变的部分;③找出等式中的各个部分中变化的部分、并寻找他们的变化规律.例题精讲算式规律例1.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。
例2.观察下列各式:;;;;…,把发现的规律用含自然数的式子表示:_______________________。
数字循环的规律知识讲解循环排列规律是运动着的规律,就是一列数或图形按几个固定的数或图形循环重复出现,我们只要根据题目的已知部分分析出图案或数据每隔几个就会循环出现,看看最后所求的与循环的第几个一致即可,关键是找出“循环节数”。
定义新运算教案初中

定义新运算教案初中一、教学目标:1. 让学生理解异或运算的概念和性质;2. 培养学生运用异或运算解决实际问题的能力;3. 提高学生对数学符号和逻辑思维的认知水平。
二、教学内容:1. 异或运算的概念和符号;2. 异或运算的性质和规律;3. 异或运算在实际问题中的应用。
三、教学重点:1. 异或运算的概念和性质;2. 异或运算的规律和应用。
四、教学难点:1. 异或运算的性质和规律;2. 异或运算在实际问题中的应用。
五、教学过程:1. 导入:引导学生回顾之前学过的运算,如加法、减法、乘法、除法等,为新运算——异或做铺垫。
2. 讲解:(1)介绍异或运算的概念:两个数进行异或运算,结果为1,当且仅当这两个数不相等。
用符号表示为:a ^ b = 1(a ≠ b)。
(2)讲解异或运算的性质:① 交换律:a ^ b = b ^ a② 结合律:a ^ (b ^ c) = (a ^ b) ^ c③ 分配律:a ^ (b + c) = (a ^ b) + (a ^ c)④ 自反性:a ^ a = 0⑤ 单位元:0 ^ a = a⑥ 互补性:a ^ 0 = a,0 ^ a = 0(3)举例说明异或运算的应用:① 判断两个数是否相等:若a ^ b = 0,则a = b;若a ^ b = 1,则a ≠ b。
② 交换两个数的值:设a、b为两个变量,a ^= b;b ^= a;a ^= b。
此时a、b的值互换。
③ 判断一个数是否为偶数:若一个数的二进制表示中最低位为0,则该数为偶数。
利用异或运算可以实现:a & (a ^ 1) = 0。
3. 练习:让学生独立完成以下练习题,巩固所学知识。
(1)判断下列运算是否正确:a. 2 ^ 3 = 6b. 4 ^ 5 ^ 6 = 2c. 7 ^ 7 = 0(2)利用异或运算解决实际问题:已知一个数的二进制表示为1011,将其转化为十进制数。
4. 小结:对本节课的内容进行总结,强调异或运算的概念、性质和应用。
第一讲 定义新运算

随堂练习
1、设a*b=(a+b)×(a-b),请计算27*9。 27*9=(27+9)×(27-9) =36×18 =648
2、设a*b= a2 +2b ,求 10*6 和 5*(2*8)。
10*6= 102 +2×6 =100+12 = 11 2
2*8= 22 +2×8=20
5*20= 52 +2×20=65
2.定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算 符号,如:△、□、◇、*、!等,这与四则运算中的“+、-、×、÷” 不同。
3.新定义运算中有括号的要先算括号里面的。
例题1 已知新式运算a*b=(a+b)+(a-b),求13*5的结果 13*5=(13+5)+(13-5)
= 18+8 = 26 你会求13*(5*4)吗? 5*4 =(5+4)+(5-4)=10 13*10=(13+10)+(13-10)=26
第一讲
定义新运算
专题解析
定义新运算是指用一个符号和已知运算表达式表示一种新的运算。 比如:a&b=a×b-a+b 新定义的运算和符号=运算表达式(运算方法) 1.要正确理解新式运算的含义,将数值代入,转化为常规的四则运算。
例如:2#3=2×3-(2+3) 符号“#”的含义是:两个数的积减去两个数的和
2
=16-2+2
=16 x&16=4x-2×16+ 1 ·x ·16 =34
2
=4x-32+8x =34
12x-32=34
12x=34+32
x=66÷12
第一讲 定义新运算

五年级春季第一讲定义新运算对于+、-、×、÷四则运算,我们已经熟知它们的运算规则和计算方法,还学会了四则混合运算,以及速算与巧算。
这一讲我们要学习一种新的运算,简称为定义新运算。
所谓定义新运算就是用一种新的符号来自主定义或规定一种运算规则,然后按照这一规则进行计算。
典例精讲例1 设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3。
②这个运算“△”有交换律吗?③求(17△6)△2, 17△(6△2)。
④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b。
【思路点拨】解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面数的2倍。
【详细解答】例2 对于任意两个整数a、b,定义两种运算“☆”“☉”:a☆b=a+b-1,a☉b=a×b-1,计算4☉[(6☆8)☆(3☆5)]的值。
【思路点拨】这题是两种新运算的混合运算,首先要弄清楚每一种运算的运算规则,再确定运算顺序;在新运算中,也是按照先算括号内再算括号外的运算顺序进行计算,先将定义的新运算符号前后运算好后再进行新运算,计算时可以分步进行。
【详细解答】例3 定义x☉y=a×x+2×y,并且已知5☉6=6☉5,求a是几?【思路点拨】先根据对新运算的定义,把等式5☉6=6☉5转化成含有未知数的等式,然后,再求出未知数a的值。
【详细解答】例4 有一个数学运算符号“◎”使下列算式成立:2◎4=8,5◎3=13,3◎5=11,9◎7=25,求7◎3=?【思路点拨】题目没有明确告知对新运算进行定义,该如何进行运算呢?我们可以通过对题目提供的算式进行观察、分析,找出规律,从而确定新运算的运算规则。
可以看出“◎”表示前面的数的2倍加上后一个数。
【详细解答】达标练习1.定义一种新的运算“△”,规定:a△b=a×b+a+b。
5△8是多少?2.定义新运算“□”为x□y等于2xy-(x+y)。
定义新运算教案

定义新运算教案教案:定义新运算一、教学目标:1. 理解运算的概念和基本属性;2. 通过引入新运算,培养学生的逻辑思维和运算能力;3. 掌握使用新运算进行简单计算的方法。
二、教学重点:1. 掌握新运算的定义和特征;2. 能够运用新运算进行简单的数值计算。
三、教学内容:1. 运算的基本概念回顾:a. 运算是数学中的一种基本操作,包括加法、减法、乘法和除法;b. 运算具有封闭性、结合律、交换律和分配律等基本属性。
2. 引入新运算:a. 介绍新运算的概念:新运算是指在数学运算中引入全新的运算符号和规则;b. 引入新运算的目的:通过新运算的引入,培养学生的逻辑思维和运算能力。
3. 新运算的定义和特征:a. 定义:新运算是指将两个数相加并加上它们的乘积的运算,用符号“@”表示;b. 特征:新运算满足封闭性和结合律。
4. 使用新运算进行计算:a. 通过示例演示如何使用新运算进行简单计算;b. 培养学生使用新运算进行计算的能力。
四、教学方法:1. 教师讲解法:通过示例演示和讲解,引导学生理解新运算的定义和特征;2. 练习与讨论法:设计一些实际问题,供学生在课堂上进行练习和讨论。
五、教学过程:1. 导入新课:a. 引入了运算的概念和基本属性;b. 介绍了新运算的概念和目的。
2. 新运算的定义和特征:a. 定义:新运算是将两个数相加并加上它们的乘积的运算,用符号“@”表示;b. 特征:新运算满足封闭性和结合律。
3. 示例演示:a. 讲解新运算的使用方法;b. 设计一些简单的示例,演示如何使用新运算进行计算。
4. 练习与讨论:a. 分发练习题,要求学生用新运算计算;b. 学生自主完成练习题,并与同桌讨论解题思路和答案。
六、巩固与拓展:1. 巩固:a. 整理新运算的定义和特征,并与学生讲解;b. 师生共同总结使用新运算进行计算的方法和技巧,并进行归纳。
2. 拓展:a. 引导学生思考和讨论:是否存在其他类似的新运算?b. 引导学生运用已学知识,尝试定义其他新运算,并进行计算。
定义新运算 教案(详)公开课

定义新运算教案(详)公开课第一章:引言1.1 课程目标让学生了解并掌握新运算的基本概念,通过实例理解新运算的运算规则,培养学生的逻辑思维能力和创新意识。
1.2 教学内容新运算的定义、新运算的运算规则、新运算的应用。
1.3 教学方法采用讲授法、案例分析法、小组讨论法,引导学生主动探究,培养学生的创新能力和团队合作精神。
第二章:新运算的定义2.1 课程目标让学生了解新运算的定义,理解新运算的基本概念。
2.2 教学内容新运算的定义、新运算的基本概念。
2.3 教学方法采用讲授法,通过讲解新运算的定义,使学生掌握新运算的基本概念。
第三章:新运算的运算规则3.1 课程目标让学生掌握新运算的运算规则,能够运用新运算进行简单的计算。
3.2 教学内容新运算的运算规则、新运算的计算方法。
采用案例分析法,通过分析新运算的运算规则,使学生掌握新运算的计算方法。
第四章:新运算的应用4.1 课程目标让学生能够运用新运算解决实际问题,培养学生的应用能力。
4.2 教学内容新运算在实际问题中的应用、新运算的计算技巧。
4.3 教学方法采用小组讨论法,让学生通过合作解决实际问题,培养学生的团队合作精神。
第五章:总结与展望5.1 课程目标使学生对新运算有一个全面的认识,激发学生对新运算的兴趣和进一步学习的动力。
5.2 教学内容本章对新运算的学习进行总结,对新运算的未来发展进行展望。
5.3 教学方法采用讲授法,通过总结和展望,使学生对新运算有一个全面的认识。
第六章:新运算的数学原理6.1 课程目标让学生理解新运算背后的数学原理,培养学生的理性思维和问题解决能力。
6.2 教学内容新运算与传统运算的差异、新运算的数学基础、新运算的运算逻辑。
采用讲解法,通过分析新运算与传统运算的差异,引导学生理解新运算的数学原理。
第七章:新运算的编程实现7.1 课程目标让学生能够通过编程实现新运算,提高学生的编程能力和创新实践能力。
7.2 教学内容新运算的编程方法、新运算的算法实现、新运算的编程实践。