乘法中的巧算(一)
第十四讲 乘除法的巧算1 四年级数学思维拓展 教师版

第14讲乘除法的巧算积、商的变化规律,通过对算式适当变形,将因数(或被除数、除数)转化成整百、整千的数,或者使算式中的一些数变得易于心算,从而简化计算。
例1计算(1)25×5×64×125 (2)75×16解 (1)25×5×64×125=25×5×2×4×8×125=(25×4)×(5×2)×(8×125)=100×10×1000=1000000(2)75×16=3×25×4×4=(3×4)×(25×4)=12×100=1200【思路点拨】5的好朋友是2,25的好朋友是4,125的好朋友是8。
因为它们相乘后,得到的都是整十整百整千的数。
根据乘法交换律、结合律,可交换题中因数的位置重新分组求积。
因为25×4,5×2,125×8可以“凑整”,所以第(1)题将64分解成2×4×8;第(2)题将75分解成3×2516分解成4×4,可以使计算简便。
例2(1)125×(10+8) (2)(20-4)×25 (3)4004×25 (4)125×798解(1)125×(10+8)=125×10+125×8=1250+1000=2250(2)(20-4)×25=20×25-4×25=500-100=400(3)4004×25=(4000+4)×25=4000×25+4×25=100000+100=100100(4)125×798=125×(800-2)=125×800-125×2=100000-250=99750【思路点拨】凑整是简便运算的一种基本思维方式,上面这些题目都可以运用,同时结合乘法的运算定律来计算。
小学数学10种非常有用的乘法巧算

小学数学10种非常有用的“乘法巧算”1. 个位数是1的两位数相乘的巧算【速算口诀】:头乘头放前,头加头放中间,末尾是1,依次排列即可(头加头如果超过10要往前进1)。
例子:(1)41×21①4×2=8②4+2=6③8-6-1④41×21=861(2)51*61①5×6=30②5+6=11(1进位,与前30相加得31)③31-1-1 ④51×61=31112. 个位数都是9的两位数相乘的巧算【速算口诀】:头数各加1 之后相乘再乘10,再减去两头数加1后的和,得数后面再放1。
例子:(1)49×59①4+1=5②5+1=6③5×6×10=300 ④5+6=11⑤300-11=289⑥49×59=2891(2)69×89①6+1=7 ②8+1=9③7×9×10=630 ④7+9=16⑤630-16=614⑥69×89=61413. 十位数都是1的两位数相乘的巧算(即十几乘十几)【速算口诀】:头乘头是高位积,尾加尾是中积,尾乘尾是末尾的积,最后依次排列即可(遇到满10要进位)。
例子:(1)12×14①1×1=1②2+4=6③2×4=8④1-6-8⑤12×14=168(2)15×19①1×1=1 ②5+9=14(1进位,与头1相加头则变为2)③5×9=45(4进位,与前4相加变为8)④2-8-5⑤15×19=2854. 十位数都是9的两位数相乘的巧算【速算口诀】:100先减前数,得数再被后数减的差为前面两个积。
100减大家,结果相互乘得数为后面两个积,结果为一位数的前面补0,依次排列起来即可。
例子:(1)92×95①100-92=8②95-8=87③100-95=5 ④8×5=40⑤92×95=8740(2)96×98①100-96=4②98-4=94③100-98=2④4×2=08⑤96×98=94085. 首数相同,尾数之和为10的两位数乘两位数的巧算【速算口诀】:头乘“头加1”得前面两个积,尾乘尾得后面两个积,两数之积是一位数的前面补0,再把4个数依次排列起来。
三年级乘法中的巧算

三年级乘法中的巧算本讲介绍一些乘法中的巧算方法。
1.乘11,101,1001的速算法。
一个数乘以11,101,1001时,因为11,101,1001分别比10,100,1000大1,利用乘法分配律可得a×11=a×(10+1)=10a+a,a×101=a×(101+1)=100a+a,a×1001=a×(1000+1)=1000a+a。
例如,38×101=38×100+38=3838。
2.乘9,99,999的速算法。
一个数乘以9,99,999时,因为9,99,999分别比10,100,1000小1,利用乘法分配律可得a×9=a×(10-1)=10a-a,a×99=a×(100-1)=100a- a,a×999=a×(1000-1)=1000a-a。
例如,18×99=18×100-18=1782。
上面讲的两类速算法,实际就是乘法的凑整速算。
凑整速算是当乘数接近整十、整百、整千……的数时,将乘数表示成上述整十、整百、整千……与一个较小的自然数的和或差的形式,然后利用乘法分配律进行速算的方法。
例1计算:(1) 356×1001=356×(1000+1)=356×1000+356=356000+356=356356;(2) 38×102=38×(100+2)=38×100+38×2=3800+76=3876;(3)526×99=526×(100-1)=526×100-526=52600-526=52074;(4)1234×9998=1234×(10000-2)=1234×10000-1234×2==。
3.乘5,25,125的速算法。
两、三位数乘一位数的巧算-三年级-奥数

怎样简便就怎样算。
1
37×25×4 =37×(25×4) =37×100
=3700
相信你一定行!
2
8×15×125×4
=8×125×15×4 =(8×125)×(15×4)
=1000×60 =60000
我能行!
3
(4+20)×25 =4×25+20×25 =100+500 =600
朋友时,可以将其中一 个数的好朋友分拆出来, 进行凑整计算。
=(8×125)×(25×4) 总结:当没有直接的好
用简便方法计算下列各题:
(1)175×34+175×66 =(34+66) ×175 =100×175 =17500 (2)67×12+67×35+67×52+67 =67×12+67×35+67×52+67×1
36×20+36×80 25×32
25×44
(100+3)×21 125×888
102×18
15×18
250×24
25×37×4 =925×4 =3700
=100×37
=3700
找朋友
能告诉我,我的朋友是 谁吗?
25
4
125
8
例3、一共有25个小组,每组里4人负责挖 坑、种树,2人负责抬水浇树。一共有多 少名同学参加了这次植树活动? 4×25+2×25 (4+2)×25
=100+50
=150(人)
=6×25
乘法巧算
找朋友
一、乘法中的巧算
两数的乘积是整十、整百、整千的, 要先乘.为此,要牢记下面这三个特殊的 等式:
数学第五次课——乘法巧算(一)

练习:6×15=(6+3)×10=90 16×15=(16+8)×10=240 116×15=(116+58)×10=1740
几种常见的乘法运算经验
类型5:个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25 如15×15=1×(1+1)×100+25=225 25×25=2×(2+1)×100+25=625 35×35=3×(3+1)×100+25=1225 45×45=4×(4+1)×100+25=2025 55×55=5×(5+1)×100+25=3025 65×65=6×(6+1)×100+25=4225 75×75=7×(7+1)×100+25=5625 85×85=8×(8+1)×100+25=7225 95×95=9×(9+1)×100+25=9025
1、(11 x 10 x 9 x.....x 4 x 3 x 2 x 1)÷ ( 22 x 24 x 25 x 27)
=(11x2÷22)x(4x6÷24)x(5x10÷25)x (3x9÷27)x7x8
=1 x 1 x 2 x 1 x 7 x 8
= 112
总结
类型1:乘除混合运算中的带符号搬家
乘法除法混合运算中的巧算
110÷5 13÷9+5÷9
你们有什么 简便方法
乘法除法混合运算中的巧算
110÷5 13÷9+5÷9
解题过程 =(110 x 2)÷(5 x 2) =220÷10 =22
乘法除法混合运算中的巧算
110÷5 13÷9+5÷9
解题过程 =(13+5)÷9 =18÷9 =2
三年级乘法巧算

三年级乘法巧算一、乘法交换律。
1. 概念。
- 在乘法算式中,交换两个因数的位置,积不变。
例如:a× b = b× a。
2. 例题。
- 计算25×4×3。
- 按照常规顺序计算是先算25×4 = 100,再算100×3=300。
- 如果利用乘法交换律,我们可以先算25×3 = 75,再算75×4 = 300。
这样在一些情况下可以根据数字的特点灵活选择计算顺序。
二、乘法结合律。
1. 概念。
- 三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
即(a× b)× c=a×(b× c)。
2. 例题。
- 计算25×12。
- 把12拆分成3×4,那么25×12 = 25×(3×4)。
- 根据乘法结合律(25×4)×3,先算25×4 = 100,再算100×3 = 300。
三、乘法分配律。
1. 概念。
- 两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。
即(a + b)× c=a× c + b× c。
2. 例题。
- 计算12×(10 + 5)。
- 根据乘法分配律,12×(10 + 5)=12×10+12×5。
- 先算12×10 = 120,12×5 = 60,最后120+60 = 180。
- 还有一种情况是a× c + b× c=(a + b)× c。
例如计算25×11+25×9。
- 这里可以把25提出来,得到25×(11 + 9),先算11+9 = 20,再算25×20 = 500。
四、特殊数的乘法巧算。
乘法中的速算和巧算

乘法中的速算和巧算1.直接利用乘法结合律的速算利用乘法结合律,可以把两个因数相乘积是整十、整百、整千的先进行计算,使计算简便。
为了计算迅速,可以把有些较常用的乘法算式记熟,例如:25×4=100,125×8=1000,12×5=60,……例1 计算236×4×25解:236×4×25=236×(4×25)=236×100=236002.乘法交换律、结合律同时运用的速算几个因数相乘,先交换因数的位置,使因数相乘积为整十、整百、整千的凑在一起,根据结合律分组计算比较简便。
例2 125×2×8×25×5×4解:原式=(125×8)×(25×4)×(5×2)=1000×100×10=10000003.直接利用乘法分配律的简算例3 计算:(1)175×34×175×66(2)67×12+67×35+67×52+67解:(1)根据乘法分配律:原式=175×(34+66)=175×100=17500(2)把67看作67×1后,利用乘法分配律简算。
原式=67×(12+35+52+1)=67×100=67004.把一个因数拆分成两个因数,利用交换律、结合律进行巧算。
例4 计算(1)28×25(2)48×125(3)125×5×32×5解:(1)原式=4×7×25=7×(4×25)=7×100=700(2)原式=6×8×125=6×(8×125)=6×1000=6000(3)原式=125×8×4×5×5=(125×8)×(4×25)=1000×100=1000005.间接利用乘法分配律进行巧算例5 计算(1)26×99(2)1236×199(3)713×101解:(1)由99=100-1,原式=26×(100-1)=26×100-26×1=2600-26=2574(2)由199=200-1,原式=1236×(200-1)=1236×200-1236×1=247200-1236=246000-36=245964(3)原式=713×(100+1)=713×100+713×1=71300+713=720136.几种常见的特殊因数乘积的巧算(1)任何一个自然数乘以0,其积都等于0。
乘法巧算

1
乘法巧算
(1) 双数×5=
把这个双数除2,再加上0;
例12×5=60 (12÷2=6+0)
(2) ( )×9, ×99,
×999=
把这个数后面加0,再减这个数 例:12×99=1200-12=1188
(3)
( )×11=
两边一拉,中间相加,满10进位 (4)
头加1乘头作为前积,尾乘尾作为后积。
注意:两个数之积小于10 时,十位数字应写零。
(5) 尾同头相合(个位同,十位互补)
头乘头后加尾作为前积,尾乘尾作为后积。
例:48×68=3264
4×6=24 24+8=32 作为前积
8×8=64 作为后积
(6) 任意两位数相乘
例:39 × 64= 3×4=12
(7) A(
)×A( ) =
两首位相乘,得数作为前积,两尾数相乘,得数作为后积,(注意:
两个数之积小于10 时,十位数字应写零。
)加上尾数之和乘以首位,
记得十位对齐
例:5 × 5 = 25,(6 + 8) 例:41×91=3731; 4×9=36,1×1=01
(4+9)×1=13
(8)两个接近100的数相乘
×
2。