第八章 弹性体的应力和应变

合集下载

最新力学漆安慎(第二版)答案08节

最新力学漆安慎(第二版)答案08节

力学(第二版)漆安慎习题解答第八章弹性体的应力和应变第八章一、基本知识小结1•弹性体力学研究力与形变的规律;弹性体的基本形变有拉伸压缩形变和剪切形变,弯曲形变是由程度不同的拉伸压缩形变组成,扭转形变是由程度不同的剪切形变组成。

2•应力就是单位面积上作用的内力;如果内力与面元垂直就叫正应力,用c表示; 如果内力方向在面元内,就叫切应力,用T表示。

3•应变就是相对形变;在拉压形变中的应变就是线应变,如果10表示原长,A l表示绝对伸长或绝对压缩,则线应变c =A l/l o;在剪切形变中的应变就是切应变,用切变角书表示。

4.力与形变的基本规律是胡克定律,即应力与应变成正比。

在拉压形变中表示为c = Y c Y是由材料性质决定的杨氏模量,在剪切形变中表示为T = N书,N 是由材料性质决定的切变模量。

5.发生形变的弹性体具有形变势能:拉压形变的形变势能密度E p0弓Y 2,剪切形变的形变势能密度E p01N 26•梁弯曲的曲率与力偶矩的关系12Ybh37•杆的扭转角与力偶矩的关系NR421、思考题解答8.1作用于物体内某无穷小面元上的应力是面元两侧的相互作用力,其单位为N.这句话对不对?答:不对,应力为作用于该无穷小面元两侧单位面积上的相互作用内力,其单位为或。

其面元法向分量称正应力,切向分量称切应力。

8.2(8.1.1)式关于应力的定义当弹性体作加速运动时是否仍然适用?答:适用,(8.1.1)式中的是面元两侧的相互作用内力,它与作用于物体上的外力和物体的运动状态有关。

8.3牛顿第二定律指出:物体所受合力不为零,则必有加速度。

是否合力不为零,必产生变形,你能否举出一个合力不为零但无形变的例子?答:不一定,物体是否发生形变应看物体内应力是否为零,应力为零,则不形变。

自由落体运动,物体受重力作用,但物体内部应力为零,则不发生形变。

8. 4胡克定律是否可叙述为:当物体受到外力而发生拉伸(压缩)形变时,外力与物体的伸长(压缩)成正比,对于一定的材料,比例系数是常数,称作该材料的杨氏模量?答:不对。

弹性力学课后习题及答案

弹性力学课后习题及答案

弹性力学课后习题及答案弹性力学课后习题及答案弹性力学是力学的一个重要分支,研究物体在受力作用下的形变和应力分布规律。

在学习弹性力学的过程中,课后习题是巩固所学知识、提高解题能力的重要环节。

本文将为大家提供一些常见的弹性力学课后习题及其答案,希望对大家的学习有所帮助。

一、弹性体的应力与应变1. 一个长为L,截面为A的弹性体,在受力F作用下产生了长度为ΔL的形变。

求该弹性体的应变。

答案:根据胡克定律,应变ε等于形变ΔL与原始长度L的比值,即ε = ΔL / L。

2. 一个弹性体的应变为ε,如果该弹性体的截面积为A,求该弹性体在受力F作用下的应力。

答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。

二、弹性体的应力分布1. 一个长为L,截面为A的弹性体,在受力F作用下,其应力沿着截面的分布是否均匀?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。

由此可知,应力与截面积成反比,即截面积越大,应力越小;截面积越小,应力越大。

因此,弹性体受力作用下的应力分布是不均匀的。

2. 一个长为L,截面为A的弹性体,在受力F作用下,其应力是否与截面的形状有关?答案:根据胡克定律,应力σ等于受力F与截面积A的比值,即σ = F / A。

由此可知,应力与截面积成正比,即截面积越大,应力越小;截面积越小,应力越大。

因此,弹性体受力作用下的应力与截面的形状有关。

三、弹性体的弹性模量1. 一个弹性体的应力为σ,应变为ε,求该弹性体的弹性模量E。

答案:根据胡克定律,应力σ等于弹性模量E与应变ε的乘积,即σ = E * ε。

由此可得,弹性模量E等于应力σ与应变ε的比值,即E = σ / ε。

2. 一个弹性体的弹性模量为E,如果该弹性体的截面积为A,求该弹性体在受力F作用下的形变。

答案:根据胡克定律,形变ΔL等于弹性模量E与受力F的乘积再除以截面积A,即ΔL = (E * F) / A。

第八章弹性体的应力和应变-盐城师范学院

第八章弹性体的应力和应变-盐城师范学院

第八章弹性体的应力和应变学时安排:3课时教学目的与要求:1、掌握应力和应变的相互关系、拉伸形变的胡克定律及其适用范围;2、了解杨氏模量、泊松比、剪切模量、固体的弹性形变势能、弹性形变势能密度等概念;3、了解梁的弯曲、杆的扭转的基本知识和结论。

教学重点:弹性体的拉伸和压缩。

教学难点:应力、杨氏模量、剪切模量、泊松比等概念的物理意义。

习题:8.1.2 8.1.3 8.1.6Chapter8 弹性体的应力和应变形变的分类:塑性形变:外力撤消后,形变不完全消失;弹性形变:外力撤消后,形变完全消失,此类物体为弹性体——理想模型;本章的研究范围:各向同性的均匀弹性体的弹性形变,均匀弹性体:体内各点的弹性相同。

各向同性的弹性体:体内各点的弹性与方向无关。

弹性形变的种类:伸长、缩短、切变、扭转、弯曲……; 弹性形变的基本种类:长应变、切应变。

§8—1 弹性体的拉伸和压缩一、外力、内力与应力1.外力:对于给定物体,外界(其它物体)对它的作用力2.内力:物体内部各部分之间的相互作用力。

内力的求法:外力→物体形变→内力,为了研究内力,用一假想的平面S 将物体分为两个部分:则S 面的两侧的相互作用力——内力F ' 、F求内力的方法:隔离体法,S 面的两侧分别为一个隔离体。

物体处于平衡时,列出左侧(或右侧)隔离体的平衡方程式,由外力求内力。

S 面上受力不均匀时,在S 面上任一点(O 点)处取面元S ∆,0n 自受力一侧指向施力物一侧,是S ∆的外法向,S ∆确定了即可确定S ∆的受力(内力)。

3.应力:描述物体内部各点处内力强度的物理量(1)定义:①平均应力:F p S ∆=∆ ②应力:0lim S F p S∆→∆=∆ 物理意义:作用于物体某点处某有向面元的平均应力,当面元0S ∆→时的极限——该无限小有向面元上的应力。

③正应力:p n σ=⋅ σ正应力为p 在无穷小有向面元的外法向上的投影,σ取“+”——有向面元的某一侧受到另一侧的拉力σ取“-”——有向面元的某一侧受到另一侧的压力 ④剪切应力:τ,p 在无穷小有向面元的外法线垂直方向上的投影。

弹性的应力和应变

弹性的应力和应变

E是弹性模量(杨氏模量),是描写材料本身弹性的物理量.

A
B
F
B
D 断裂点 弹性极限
l
C
O
P P 是塑性应变.
上页
O
下页
返回
结束
第八章 弹性的应力和应变
表8.3 密质骨的弹性模量/GPa
骨 股骨 胫骨 肱骨 桡骨 股骨 胫骨 马 25.5 23.8 17.8 22.8 牛 猪 人 17.6 18.4 17.5 18.9
(一)剪切形变· 切应力与切应变 (二)剪切形变的胡克定律
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.2 弹性体的剪切形变
(一)剪切形变· 切应力与切应变
1.切应力 剪切形变——物体受到力偶作用使物体两个平行 截面间发生相对平行移动. 物体受到力偶 F F 发生剪切变形 切应力
上页
下页
返回
结束
第八章 弹性的应力和应变
§8.1 弹性体的拉伸和压缩
(一)外力· 内力与应力
外力 F F F F
F' F' F
B
F'
A
F
F
B
en
F
内力 F
A
F F F
F
F
F F
第八章 弹性的应力和应变
第八章 弹性体的应力和应变
§8.1 弹性体的拉伸和压缩
(一)外力· 内力与应力 (二)直杆的线应变
(三)胡克定律
(四)拉伸和压缩的形变势能
上页
下页
返回
结束
第八章 弹性的应力和应变

弹性体力学中的应变与应力关系

弹性体力学中的应变与应力关系

弹性体力学中的应变与应力关系弹性体力学是研究物体在力的作用下变形和恢复原状的力学分支学科,研究的对象主要是固体物质。

在弹性体力学中,应变与应力是两个重要的概念,它们描述了物体的变形和受力状态。

应变和应力之间的关系在弹性体力学中具有重要意义,它们可以通过材料力学模型来描述。

应变是物体在受力作用下发生形变的程度。

一般来说,我们可以将应变分为线性应变和非线性应变。

线性应变是指物体的形变与受力成正比。

例如,当我们拉伸一根弹簧时,弹簧的长度会发生变化,而这种形变与拉力之间是线性相关的。

用数学的语言来表达,线性应变可以用应变量ε表示,其与外力F之间存在着关系ε=ΔL/L,其中ΔL为物体长度的增量,L为物体的原始长度。

非线性应变则是指物体的形变与受力不成比例。

在高强度材料的情况下,非线性应变是不可忽视的。

非线性应变与材料的本构关系有关,常用的本构关系模型包括背应变率本构关系、黏弹性本构关系等。

这些模型可以更准确地描述材料的力学行为,使得我们能够更准确地计算应变。

与应变相对应的是应力。

应力可以看作是物体单位面积的受力情况。

一般来说,应力可以分为正应力和剪应力。

正应力是指垂直于物体内部某一面的力的作用情况。

例如,当我们用一把剪刀剪断一根木棍时,剪刀的受力情况可以被描述为正应力。

剪应力则是指平行于物体内部某一面的力的作用情况。

例如,当我们剪断一个绳索时,绳索的受力情况可以被描述为剪应力。

应变与应力之间的关系又可以通过应力-应变曲线来描述。

应力-应变曲线是弹性体力学研究中的一个重要工具,它可以体现材料的力学性质。

一般来说,应力-应变曲线可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。

在弹性阶段,应力与应变成正比。

这个阶段的曲线是一个直线,斜率即为弹性模量,用来描述材料的刚度。

当应力超过一定值时,物体进入屈服阶段。

在屈服阶段,物体的应变不再与应力成正比,而是呈现出非线性关系。

此时物体会发生塑性变形,形成剩余应变。

当应力进一步增加时,物体可能发生断裂。

弹性体的应力与应变

弹性体的应力与应变

弹性体的应力与应变弹性体是一种在受力作用下可以发生形变,但当受力停止时,能够恢复原来形状和大小的材料。

了解弹性体的应力与应变关系对于工程设计和材料科学具有重要意义。

在本文中,我们将探讨弹性体的应力与应变之间的关系,分析材料的弹性性质以及应力与应变的计算方法。

1. 应力的概念与计算方法应力是指单位面积上作用的力,合理地计算应力是分析弹性体性质的关键。

在计算应力时,常用到两种基本的力学概念:张力和压力。

张力是指沿一维方向的受力情况,通常用F表示,单位为牛顿。

而压力是指在一个平面上均匀分布的力,用P表示,单位是帕斯卡。

应力的计算公式如下:应力 = 受力 / 横截面积2. 应变的概念与计算方法应变是指材料在受力作用下发生的形变,一般用ΔL / L表示。

其中,ΔL是材料长度的变化量,L是材料的初始长度。

应变可以分为线性弹性应变和非线性应变。

线性弹性应变是指材料在受力作用下,形变与受力成正比的状态。

计算线性弹性应变的方法如下:应变 = 形变 / 初始长度而非线性应变则需要更复杂的计算方法来进行分析,涉及到材料的本构关系等。

3. 应力与应变的关系应力与应变之间存在一定的关系,即应力-应变曲线。

弹性体的应力-应变曲线通常可以分为三个阶段:弹性阶段、屈服点和塑性阶段。

在弹性阶段,材料受力时会产生应变,但当受力停止时,材料会完全恢复到原来的状态。

这是因为材料内部的原子或分子只发生了相对位移,而没有发生永久性的结构变化。

当应力超过材料的屈服点时,就进入了屈服点阶段。

在这个阶段中,材料开始发生塑性变形,不再能够完全恢复到原来的状态,具有一定的永久性形变。

塑性阶段是材料的应力与应变不再成正比,继续增加应力会导致更大的应变。

这是由于材料的内部结构发生了永久性的改变,无法恢复原状。

4. 弹性模量和刚度弹性模量是描述材料抵抗形变的能力,可以用来评估材料的刚度。

弹性模量越大,表示材料越难发生形变,具有较高的刚度。

常用的弹性模量有三种:杨氏模量、剪切模量和体积模量。

弹性体的应力和应变

弹性体的应力和应变

弹性体的应力和应变应力和应变是弹性体力学中重要的概念。

弹性体是指在受力作用下能够发生形变,但在去除力后能够恢复原状的物质。

应力是表示物体内部各点在力作用下的应对程度的物理量,而应变则是表示物体形变程度的物理量。

在本文中,我们将探讨弹性体的应力和应变之间的关系,以及弹性体在不同应力条件下的行为。

首先,我们来介绍应力的概念。

应力是由于外部力作用于物体而引起的内部应力,即单位面积上作用的力。

通常情况下,应力可以分为三种类型:拉应力、压应力和剪应力。

拉应力是指沿物体的长度方向作用的力,压应力则是指作用于物体表面的垂直方向力,而剪应力则是作用于物体表面的平行于其平面的力。

这些应力可以通过数学计算来求得。

对于拉伸或压缩情况下的应力,一般可以通过应力=外力/截面积来计算。

而对于剪切情况下的应力,则可以通过应力=外力/接触面积来计算。

接着,我们来谈谈应变的概念。

应变是指物体由于受到外力作用而产生的形变程度。

同样,应变也可以分为三种类型:线性应变、体积应变和剪切应变。

线性应变是指物体沿作用力方向的长度变化与未受力前的原始长度之比,体积应变则是物体单位体积的变化量与未受力前的原始体积之比,剪切应变是物体平行于受力平面上的平面与未受力前的原始平面之间的夹角变化。

这些应变可以通过数学计算来求得。

通常情况下,线性应变可以通过应变=位移/原始长度来计算,体积应变可以通过应变=体积变化/原始体积来计算,而剪切应变可以通过应变=变形角度/90度来计算。

在了解了应力和应变的概念后,我们可以进一步讨论弹性体在不同应力条件下的行为。

根据背景和材料性质的不同,弹性体在应力作用下会出现不同的应变情况。

当应力作用于弹性体时,弹性体会发生形变,但在去除应力后,弹性体又会恢复到原来的形状。

这种恢复力就是弹性体的回弹力,是由于弹性体内部的分子结构和键的特性所决定的。

此外,弹性体还有一个重要的性质,即背应力。

背应力是指在弹性体内部的不同位置上,由于力的传递产生的相对应力差。

弹性体与变形弹性体的应力与应变关系

弹性体与变形弹性体的应力与应变关系

弹性体与变形弹性体的应力与应变关系弹性体是指在外部施加力后能够发生形变,但在去除力后能够恢复原状的物质。

而变形弹性体则是指在外力作用下形变后不能完全恢复原状的物质。

弹性体与变形弹性体在受力时会出现应力与应变的关系,这种关系是研究材料力学性能的重要内容。

一、弹性体的应力与应变关系弹性体在外力作用下,发生形变。

应力是单位面积上的力,定义为单位面积上的力与面积的比值,通常用σ表示,单位为帕斯卡(Pa)。

应变是物体的相对形变,定义为单位长度的变化量与被测长度的比值,通常用ε表示,无单位。

根据弹性体的应力与应变关系,我们可以得到胡克定律,即应力与应变成正比关系。

弹性体的胡克定律可表示为:σ = E * ε其中,E表示弹性体的弹性模量,是反映弹性体变形能力大小的重要参数,单位为帕斯卡(Pa)。

弹性模量越大,代表弹性体越难形变,具有较好的弹性性能。

根据胡克定律,当外力施加于弹性体上时,应力与应变成正比,且两者之间的关系是线性的。

即在弹性极限之内,如果应力增大,应变也会相应增大;如果应力减小,应变也会相应减小。

而且,当外力去除后,弹性体会恢复到原来的形状和大小,应变会回到零。

二、变形弹性体的应力与应变关系变形弹性体与弹性体不同,其在外力作用下形变后不能完全恢复原状。

因此,其应力与应变关系也存在一定的差异。

变形弹性体的应力与应变关系可以用应力-应变曲线来描述。

在应力-应变曲线中,随着应变的逐渐增大,物体的应力并不是线性变化的,而是呈现出一定的非线性特性。

应力-应变曲线通常可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。

在弹性阶段,应力与应变基本保持线性关系,符合胡克定律;而在屈服阶段,应力增加的同时,应变开始出现非比例增长。

当应力达到一定程度后,材料会发生塑性变形,进入塑性阶段;在断裂阶段,材料发生破裂。

变形弹性体的应力与应变关系还可以通过一些指标进行描述,如屈服强度、断裂强度、延伸率等。

这些指标是衡量材料变形能力和抗破坏能力的重要参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 弹性体的应力和应变
习题解答
8.1.1一钢杆的截面积为,所受轴向外力如图所示,试计算A 、B,B 、C ,C 、D
之间的应力。


、。

解:在AB 段、BC 段、CD 段各假想一截面


,对整体
取为隔离体
为拉应力
取为隔离体
为压应力
取为隔
离体
为拉应力
8.1.2利用直径为0.02m的钢杆CD固定刚性杆AB。

若CD
杆内的应力不得超过
,问至多悬挂多大重量(不计杆自重)。

解:设B处悬挂W重的物体时AB杆刚好能承受,由于CD杆静止,故对过A点的垂直轴力矩代数和为零。



8.1.3图中上半段横截面等于且杨氏模量为的铝制杆,下半段横
截面等于且杨氏模量为
的钢杆,铝杆内允许最大应力为
,钢杆内允许最大应力为。

不计杆的自重,求杆下端所能承受的最大负荷以及在此负荷下杆的总伸长量。

解:
钢杆能承受的最大拉力:
铝杆能承受的最大拉力:
杆下端能承担的最大负荷为。

由胡克定律:
8.1.4电梯用不在一条直线上的三根钢索悬挂,电梯质量为500kg。

最大负载极限5.5KN。

每根绳索都能独立承担总负载,且其应力仅为允许应力的70%,若电梯向上的最大加速度为g/5,求钢索的直径为多少?将钢索看作圆柱体,且不计其自重,取钢的允许应力为。

解:电梯与负载总质量:m=500+550=1050(kg)
当电梯向上的加速度上升时,由牛顿第二定律:
因为:,
所以钢索拉力为:
该力与绳索内力相等即:
8.1.5(1)矩形横截面杆在轴向拉力作用下拉伸应变为,此材料的柏松系数为。

求证杆体积的相对改变为。

表示原体积,V表示变形后的体积。

(2)上式是否适用于压缩?
(3)低碳钢杨氏模量为,柏松系数受到的应力为,求杆件体积的相对改变量。

(1
)、解:设杆原长,经过拉伸后变为
两者之间关系分别为:
由纵向应变公式:,
横向相对应变公式:
泊松系数公式:
含有两个或三个项,为高阶无穷小量,可省略。

(2)、压缩
证明同上,同样适用。

(3)、解:,,,
代入(1)的证明结果:体积相对变化
8.1.6(1)杆件受轴向拉力F,其横截面积为S,材料的重度(单位体积物质的重量)为,证明考虑材料的重量时横截面内的应力为:
(2)杆内应力如上式,证明杆的总伸长量:
(1)、解:建立如图所示坐标,任意一点x 处做一微分截面,以斜面下方物体为隔离体: 因为处于平衡状态
所以,为拉应力。

(2)、解:在截面x 处,取dx 杆长,在应力作用
下伸长
,其应变为

由胡克定律:的
并由(1
)的结论:,
设总伸长量为:
8.2.1在剪切材料时,由于刀口不快,没有切断,该钢板发生切变,钢板的横截面积为。

两刀口间的垂直距离为。

当剪切力为
时,求
(1)钢板中的剪切应力, (2)钢板中的切应变,
(3)与刀口相齐的两个截面所发生的相对滑移。

已知钢的剪切模量。

(1
)、解:切应力:
(2
)、解:由剪切形变的胡克定律:,
(3
)、解:由相对滑移:,
8.3.1一铝管直径为4cm,壁厚1mm,长10m,一端固定,另一端作用一力矩50N.m,求铝管的扭转角。

对同样尺寸的钢管再计算一遍。

已知铝管的剪切模量,钢管的剪切模量为。

解:解:依题意铝管的横截面可看作是半径为k=0.02m宽度为圆环,因很薄,圆环上的剪切应力可认为是常量,这些力对中心轴线的力矩为,
剪切应力产生的总力偶矩为:
等于外力矩M其中,:
所以
(1)、对铝管:
(2)、对钢管:
8.3.2矩形横截面长宽比为2:3的梁,在力偶矩的作用下发生钝弯曲,各以横截面的场和宽为梁的高度,求同样力矩作用下曲率半径之比。

解:据公式:
由题意:,, ,
故:
8.3.3某梁发生纯弯曲,梁长度为L,宽度为b,厚度为h,弯曲后曲率半径为R,材料杨氏模量为Y,求总形变势能。

解:取对应角一段横梁中性层半径,距中性层一层的伸长为:
,应变
长宽厚
一层势能为:该梁形变势能为:。

相关文档
最新文档