二面角专题习题
高考数学试卷二面角

一、选择题1. 下列关于二面角的叙述中,正确的是()A. 二面角是由两个平面相交形成的角B. 二面角是由两个平面相交形成的两条线段所夹的角C. 二面角是由两个平面相交形成的两条射线所夹的角D. 二面角是由两个平面相交形成的两条直线所夹的角答案:C2. 在二面角中,一个平面内两条相交直线与另一个平面所成的角分别为α和β,则二面角的度数是()A. α + βB. α - βC. |α - β|D. 90°答案:C3. 若二面角的平面角为θ,那么这个二面角的度数范围是()A. 0° < θ < 90°B. 0° ≤ θ ≤ 180°C. 0° < θ ≤ 180°D. 90° < θ ≤ 180°答案:C4. 下列图形中,能表示二面角的是()A. 一个等腰三角形B. 一个等边三角形C. 一个矩形D. 一个正方形答案:C5. 若二面角的平面角为60°,则其补角的度数是()A. 60°B. 120°C. 180°D. 240°答案:B二、填空题6. 在二面角中,若一个平面内两条相交直线与另一个平面所成的角分别为α和β,则二面角的平面角为______。
答案:|α - β|7. 若二面角的平面角为θ,那么这个二面角的度数范围是______。
答案:0° < θ ≤ 180°8. 若一个二面角的平面角为45°,则其补角的度数是______。
答案:135°三、解答题9. 已知二面角的平面角为60°,求这个二面角的补角的度数。
解答过程:根据题意,设二面角的平面角为θ,则有:θ = 60°由补角的定义可知,二面角的补角为180° - θ,因此:补角= 180° - 60° = 120°所以,这个二面角的补角的度数是120°。
二面角典型习题

二面角1.二面角的计算:1)定义法;2)三垂线定理法;3)垂面法;4)面积射影法;例1、已知P 是二面角AB αβ--棱上一点,过P 分别在αβ、内引射线PM ,PN ,且45,60BPM BPN MPN ∠=∠=︒∠=︒,求此二面角的度数。
例2、已知P 为锐二面角l αβ--棱上的点,,4530PQ PQ l αβ⊂︒︒与成,与成,则二面角l αβ--的度数是多少。
例3、已知二面角l αβ--的度数为θ,在面α内有一条射线AB 与棱l 成锐角δ,与面βγ成角,则必有( )(A )sin sin sin θδγ= (B )sin sin cos θδγ=(C )cos cos sin θδγ= (D )cos cos cos θδγ=例4、在120︒的二面角l αβ--的面α、β内分别有A 、B 两点,且A 、B 到棱l 的距离AC 、BD 分别长2、4,AB=10,求:(1)直线AB 与棱l 所成角的正弦值。
(2)直线AB 与平面β所成角的正弦值。
例5、已知二面角MN αβ--为60︒,,,A B BC AB αββ∈∈为在上的射影,且C 在棱MN 上,AB 与β所成角为60︒,且45AC MCB ∠=︒,求线段AB 的长。
例6、已知二面角DC αβ--的度数为θ,,,A B ADC αβ∈∈∆的面积为S ,且DC=m ,AB DC ⊥,AB 与平面β成30︒角,当θ变化时,求DBC ∆面积最大值。
例7、已知C 是以AB 为直径的圆周上的一点,30ABC ∠=︒,45PA ABC PBA ⊥∠=︒面,,求二面角A-PB-C 的正弦值。
例8、在正方体1111ABCD A BC D -中,利用cos S S θ=射影解下列各题1)P 、Q 分别为1,A A AB 的中点,求平面1C PQ 与底面ABCD 所成角的余弦值2)求二面角11C BD C --的大小;3)M 是棱BC 的中点,求二面角111D B M C --的余弦值。
二面角专题

1
二面角专题
题1: 设P 是二面角α-l -β内一点,P 到面α、β的距离PA 、PB 分别为8和5,且AB =7,求 这个二面角的大小。
题2. 在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,且AC =BC =5,SB =55.
(Ⅰ)证明:SC ⊥BC ;
(Ⅱ)求侧面SBC 与底面ABC 所成二面角的大小;
题3.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点。
(1)求证AM //平面BDE ;
(2)求二面角A -DF -B 的大小;
A
D
E
F
M
B
C
题4.如图,在正四棱柱ABCD-A1B1C1D1中,已知AB=2,AA1=2
2,M为棱A1A上的点,若A1C⊥平面MB1D1。
(Ⅰ)确定点M的位置;(Ⅱ)求二面角D1-MB1-B的大小。
题 5. 如图所示,∆ADB和∆CBD都是等腰直角三角形,且它们所在的平面互相垂直,∠=∠=︒=
ADB CBD AD a
90,
(I)求异面直线AD、BC所成的角。
(II)设P是线段AB上的动点,问P、B两点间的距离多少时,∆PCD与∆BCD所在平面成45︒的二面角?;
A
P
B
D
C
题 6.四棱锥A BCDE
-中,底面BCDE为矩形,侧面ABC⊥底面BCDE,2
BC=,2
CD=,AB AC
=.
(Ⅰ)证明:AD CE
⊥;
(Ⅱ)设CE与平面ABE所成的角为45 ,求二面角C AD E
--的大小的余弦值.
C D E
A
B
2。
完整版二面角练习题

周练六1.如图,已知在三棱柱ABC ABQ,中,三个侧棱都是矩形,点D为AB的中点+AC 3,BC 4, AB 5,AA, 4 ,(I)求证AC BC i;(n )求证AC1 P平面CDB1;(川)求异面直线AC i与B i C所成角的余弦值+2 .如图,已知正方形ABCD和正方形ABEF所在平面成60°的二面角,所成角的正弦值。
求直线BD与平面ABEF A —"DF3.如图,在棱长为a的正方体ABC—ABCD中,求:(1 )面AABB与面ABCD所成角的大小;(2)二面角C-BD-C的正切值(3)二面角B1 BC1 DP4•过正方形ABCD的顶点A作PA A平面ABCD ,设PA=AB=a , (1)求二面角B- PC- D的大小;(2)求二面角C-PD-AB C5.如图所示,四棱锥P —ABCD的底面ABCD是边长为1的菱形,/ BCD = 60°, E是CD的中点,PA丄底面ABCD , PA= .3•⑴证明:BE丄平面PAB;⑵求二面角A—BE—P的大小(3) PB与面PAC的角6如图,在底面为直角梯形的四棱锥P ABCD 中,AD//BC, ABC 90 ,PA 平面ABCD PA 3, AD 2, AB ^3 BC=6(1)求证:BD平面PAC;⑵求二面角P BD A的大小.(3)求二面角B-PC-A的大小7.如图,直二面角D —AB —E中,四边形ABCD是边长为2的正方形,AE=EB , F为CE 上的点,且BF丄平面ACE.(I)求证AE丄平面BCE;(H)求二面角B—AC —E的大小; (川)求点D到平面ACE的距离.8•如图,在四棱锥P ABCD中,底面ABCD是矩形•已知AB 3 , AD 2 ,PA 2 , PD 2近,/ PAB 60°.(I)证明AD 平面PAB ;(n)求异面直线PC与AD所成的角的大小;(川)求二面角P BD A的正切值.。
二面角专项训练(人教A版)(含答案)

二面角专项训练(人教A版)一、单选题(共7道,每道10分)1.等于90°的二面角内有一点P,过P有PA⊥α于点A,PB⊥β于点B,如果PA=PB=a,则P 到交线的距离为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:与二面角有关的点、线、面间的距离计算2.如图,在三棱锥F-ABC中,FC⊥底面ABC,CA=CB=CF,∠ACB=120°,则二面角F-AB-C的正切值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:二面角的平面角及求法3.如图,在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是腰长为的等腰三角形,则二面角V-AB-C的平面角为( )A.30°B.45°C.60°D.90°答案:C解题思路:试题难度:三颗星知识点:二面角的平面角及求法4.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥AB,PA=AB=2,AC=1,则二面角A-PC-B的正弦值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二面角的平面角及求法5.如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1,∠ACB=90°,D是棱AA1的中点,则二面角B-DC1-C的余弦值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二面角的平面角及求法6.如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD,则二面角A1-BD-C1的大小为( )A.30°B.45°C.60°D.90°答案:A解题思路:试题难度:三颗星知识点:二面角的平面角及求法7.如图,在直三棱柱ABC-A1B1C1中,AB1⊥A1C,AB=4,AC=BC=3,D为AB的中点,则二面角A1-CD-C1的平面角的余弦值为( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:二面角的平面角及求法。
二面角典型习题

二面角1.二面角的计算:1)定义法;2)三垂线定理法;3)垂面法;4)面积射影法;例1、已知P 是二面角棱上一点,过P 分别在内引射线PM ,PN ,且AB αβ--αβ、,求此二面角的度数。
45,60BPM BPN MPN ∠=∠=︒∠=︒例2、已知P 为锐二面角棱上的点,,则二l αβ--,4530PQ PQ l αβ⊂︒︒与成,与成面角的度数是多少。
l αβ--例3、已知二面角的度数为,在面内有一条射线AB 与棱l 成锐角,与面l αβ--θαδ,则必有( )βγ成角(A ) (B )sin sin sin θδγ=sin sin cos θδγ=(C ) (D )cos cos sin θδγ=cos cos cos θδγ=例4、在的二面角的面、内分别有A 、B 两点,且A 、B 到棱l 的距离120︒l αβ--αβAC 、BD 分别长2、4,AB=10,求:(1)直线AB 与棱l 所成角的正弦值。
(2)直线AB 与平面所成角的正弦值。
β例5、已知二面角为,上的射影,且C 在棱MN αβ--60︒,,A B BC AB αββ∈∈为在MN 上,AB 与所成角为,且,求线段AB 的长。
β60︒45AC MCB =∠=︒例6、已知二面角的度数为,的面积为S ,且DC=m ,DC αβ--θ,,A B ADC αβ∈∈∆,AB 与平面成角,当变化时,求面积最大值。
AB DC ⊥β30︒θDBC ∆in例7、已知C是以AB为直径的圆周上的一点,,30ABC∠=︒,求二面角A-45PA ABC PBA⊥∠=︒面,PB-C的正弦值。
例8、在正方体中,利用解下列各题1111ABCD A B C D-cosSSθ=射影1)P、Q分别为的中点,求平面与底面ABCD所成角的余弦值1,A A AB1C PQ2)求二面角的大小;11C BD C--3)M是棱BC的中点,求二面角的余弦值。
111D B M C--例9、已知D 、E 分别是边长为a 的等边三角形ABC 的边AB 、AC 上的点,DE//BC ,现沿DE 将三角形ADE 折起,是二面角A-DE-B 成60度角,当DE 在什么位置时,使折起后的顶点A 到BC 边距离最短?最短是多少?例10、等腰Rt 和Rt 有公共边AC ,,ADC ∆BCA ∆90,60ADC BCA ABC ∠=∠=︒∠=︒以AC 为棱折起多少度的二面角时,有BD=BC ?两个平面垂直1、两个平面垂直的证明1)定义2)判定定理2、两个平面垂直的性质例1、已知ABCD 为矩形,E 为半圆CED 上一点,且平面ABCD 平面CDE ⊥1)求证DE 是AD 与BE 的公垂线2)若AD=DE=AB ,求AD 与BE 所成角的大小。
二面角习题及标准答案
二面角习题及答案————————————————————————————————作者:————————————————————————————————日期:二面角1.如图三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC是边长为 2的正三角形,求二面角 P-AB -C 的大小。
解2.如图在三棱锥 S-ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交 AC 、SC 于D 、E ,又SA =AB ,BS =BC , 求以BD 为棱,BDE 与BDC 为面的二面角的度数。
解:3. 如图:ABCD 是矩形,AB =8,BC =4,AC 与 BD 相交于O 点,P 是平面 ABCD 外一点,PO ⊥面ABCD ,PO =4,M 是 PC 的中点,求二面角 M-BD-C 大小。
解:4.如图△ABC 与△BCD 所在平面垂直,且AB =BC =BD ,∠ABC =∠DBC =0120,求二面角 A-BD-C 的余弦值。
解:DPC A BE DB ASCS R NMO B DPA CB A EC5.已知正方体 AC',M 、N 分别是BB',DD'的中点,求截面 AMC'N 与面ABCD ,CC'D'D 所成的角。
解:6.如图 AC ⊥面BCD ,BD ⊥面ACD ,若AC =CD =1,∠ABC =30°,求二面角D AB C --的大小。
解:7. 三棱锥 A-BCD 中,∠BAC =∠BCD =90°,∠DBC =30°,AB =AC =6,AD =4,求二面角 A-BC-D 的度数。
解:9. 如图所示,四棱锥P —ABCD 的底面是边长为a 的菱形,∠A =60°,PC ⊥平面ABCD ,PC =a,E 是PA 的中点.(1)求证平面BDE ⊥平面ABCD.(2)求点E 到平面PBC 的距离.(3)求二面角A —EB —D 的平面角大小. 解析:D BD ACBAC M N B F E ACDDOA BC10. 如图,已知正方体ABCD —A1B1C1D1的棱长为1,E 、F 分别在棱AB 、BC 上,G 在对角线BD1上,且AE =41,BF =21,D1G ∶GB =1∶2,求平面EFG 与底面ABCD 所成的二面角的大小.11. 如图,设ABC —A1B1C1是直三棱柱,E 、F 分别为AB 、A1B1的中点,且AB =2AA1=2a,AC =BC =3a. (1)求证:AF ⊥A1C(2)求二面角C —AF —B 的大小12.如图1111D C B A ABCD -是长方体,AB=2,11==AD AA ,求二平面C AB 1与1111D C B A 所成二面角的大小.13. 在正方体1111D C B A ABCD -中,1BB K ∈,1CC M ∈,且141BB BK =,143CC CM =..求:平面AKM 与ABCD 所成角的大小.14. 如图,将边长为a 的正三角形ABC 按它的高AD 为折痕折成一个二面角C AD C --'. (1)若二面角C AD C --'是直二面角,求C C '的长; (2)求C A '与平面CD C '所成的角;(3)若二面角C AD C --'的平面角为120°,求二面角D C C A -'-的平面角的正切值.参考答案解:由已知条件,D 是BC 的中点∴ CD =BD =2 又△ADC 是正三角形 ∴ AD =CD =BD =2∴ D 是△ABC 之外心又在BC 上 ∴ △ABC 是以∠BAC 为直角的三角形, ∴ AB ⊥AC , 又 PC ⊥面ABC ∴ PA ⊥AB (三垂线定理)∴∠PAC 即为二面角 P-AB-C 之平面角, 易求 ∠PAC =30°2、解:∵ BS =BC ,又DE 垂直平分SC ∴ BE ⊥SC ,SC ⊥面BDE ∴ BD ⊥SC ,又SA ⊥面ABC ∴ SA ⊥BD ,BD ⊥面SAC ∴ BD ⊥DE ,且BD ⊥DC 则 ∠EDC 就是所要求的平面角 设 SA =AB =a ,则 BC =SB =2a 且 AC = 3易证 △SAC ∽△DEC ∴ ∠CDE =∠SAC =60° 3、解:取OC 之中点N ,则 MN ∥PO ∵ PO ⊥面ABCD∴ MN ⊥面ABCD 且 MN =PO/2 =2, 过 N 作 NR ⊥BD 于 R ,连MR , 则 ∠MRN 即为二面角 M-BD-C 的平面角 过 C 作 CE ⊥BD 于S则 RN =21CE 在 Rt △BCD 中,CD ·BC =BD ·CE ∴ 58BD BC CD CE =⋅=DPCA BE DBASCS R N MO B DPA C∴ 54RN =25RN MN MRN tan ==∠ ∴ 25arctanMRN =∠ 4. 解:过 A 作 AE ⊥CB 的延长线于E , 连结 DE , ∵ 面ABC ⊥面BCD ∴ AE ⊥面BCD∴ E 点即为点A 在面BCD 内的射影∴ △EBD 为△ABD 在面BCD 内的射影设 AB =a 则AE =DE =ABsin60°=a 23 ∴ AD =41ABD cos 26=∠, ∴ sin ∠ABD =415∴ 22ABD a 815415a 21S =⨯=∆ 又 a 21BE = ∴ 2BDE a 83a 21a 2321S =⋅⋅=∆ ∴ 55S S cos ABD BDE ==θ∆∆ 5. 解:设边长为a ,易证 ANC'N 是菱形 且MN =a 2,A'C =a 3 ∴S□AMC'N = 2a 26'AC 21MN =⋅由于AMC'N 在面ABCD 上的射影即 为正方形ABCD ∴ S□ABCD =2aD B D AC BAC MN∴ 36a 26a cos 221==θ ∴ 36arccos1=θ 取CC'的中点M',连结DM'则平行四边形DM'C'N 是四边形AMC'N 在CC'D'D 上的射影,S□DM'C'M =2a 21 ∴ 66a 26a21cos 222==θ ∴66arccos2=θ 6. 解:作DF ⊥AB 于F ,CE ⊥AB 于E , ∵ AC =CD =1 ∠ABC =30° ∴ AD =2,BC =3 , AB =2, BD =2 在Rt △ABC 中, 23231AB BC AC CE =⨯=⋅=,同理 1222ABBDAD DF =⨯=⋅= ∴ 1DF BD BF 22=-=21CE AC AE 22=-= ∴ 212112EF =--= ∴ θ⋅-++=cos DF EF 2EF DF CE CD 2222∴ 33cos =θ BF E ACD即所求角的大小为33arccos。
二面角专题训练
二面角专题训练一.解答题(共14小题)1.如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.2.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A﹣A1C﹣B的余弦值.3.如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.4.如图,一张平行四边形的硬纸片ABC0D中,AD=BD=1,.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置.(Ⅰ)证明:平面ABC0D⊥平面CBC0;(Ⅱ)如果△ABC为等腰三角形,求二面角A﹣BD﹣C的大小.5.如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ,求证:θ+φ=.6.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC的中点.(I)证明:CD⊥AE;(II)证明:PD⊥平面ABE;(III)求二面角A﹣PD﹣C的大小.7.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1(Ⅰ)求四面体ABCD的体积;(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.8.如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.9.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.10.如图,在五面体ABCDEF中,AB∥DC,,CD=AD=2,四边形ABFE为平行四边形,FA⊥平面ABCD,,求:(Ⅰ)直线AB到平面EFCD的距离;(Ⅱ)二面角F﹣AD﹣E的平面角的正切值.11.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.12.如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(I)设E是DC的中点,求证:D1E∥平面A1BD;(II)求二面角A1﹣BD﹣C1的余弦值.13.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形.(1)求证:AD⊥BC.(2)求二面角B﹣AC﹣D的大小.(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.14.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC.已知,求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角E﹣PC﹣D的大小.二面角专题训练参考答案与试题解析一.解答题(共14小题)1.如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.中,,故所求二面角的大小为2.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A﹣A1C﹣B的余弦值.=ADB=,ADB=,的余弦值为3.如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.BC得同理可得的平面角.的大小4.如图,一张平行四边形的硬纸片ABC0D中,AD=BD=1,.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置.(Ⅰ)证明:平面ABC0D⊥平面CBC0;(Ⅱ)如果△ABC为等腰三角形,求二面角A﹣BD﹣C的大小.所以与的大小.由夹角公式求与,所以∠因此只有中,,的坐标为,所以与夹角的大小等于二面角,.5.如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1﹣BC﹣A的大小为φ,求证:θ+φ=.,即可得到结论.=D==.6.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC的中点.(I)证明:CD⊥AE;(II)证明:PD⊥平面ABE;(III)求二面角A﹣PD﹣C的大小.,可得.中,.的大小是7.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1(Ⅰ)求四面体ABCD的体积;(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.=的坐标,同时易得,>,进而由同角三角函,=AC CD=AB==AB BC=V=×=,从而EF=;DEF=的平面角的正切值为,由⊥||=1或(舍),||=1|或(舍),)||=,||=1V=××|||h=(Ⅱ)由(Ⅰ)知(,,)设非零向量=的法向量,则由⊥可得,l+m=0⊥可得,m+,n==,﹣=<>=,>的平面角的正切值为8.如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.,PG=BG=,因此二面角的余弦值为9.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2.(1)求直线AM与平面BCD所成的角的大小;(2)求平面ACM与平面BCD所成的二面角的正弦值.OB=MO=,则,,所以所以,所求二面角的正弦值是10.如图,在五面体ABCDEF中,AB∥DC,,CD=AD=2,四边形ABFE为平行四边形,FA⊥平面ABCD,,求:(Ⅰ)直线AB到平面EFCD的距离;(Ⅱ)二面角F﹣AD﹣E的平面角的正切值.的法向量,则直线=AB.的距离为,知中,,,从而,的平面角的正切值为点为坐标原点,的方向为)可得.即因,解得.②联立①,②解得,所以.得,.即.故,,,11.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.BCABAB==所成角的正弦值为12.如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(I)设E是DC的中点,求证:D1E∥平面A1BD;(II)求二面角A1﹣BD﹣C1的余弦值.得,则为平面,,则的余弦值为13.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形.(1)求证:AD⊥BC.(2)求二面角B﹣AC﹣D的大小.(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.=BC=ACAB=AC=BC=BM=,MN=CD=,BN=AD=BMN= BMN=arccos=x=CE=14.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC.已知,求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角E﹣PC﹣D的大小.:PD=,,,的大小为.。
高考数学二面角专题训练
高考数学二面角专题训练1.(06某某卷)如图,P 是边长为1的正六边形ABCDEF 所在平面外一点,1PA =,P 在平面ABC 内的射影为BF 的中点O 。
(Ⅰ)证明PA ⊥BF ;(Ⅱ)求面APB 与面DPB 所成二面角的大小。
解:(Ⅰ)在正六边形ABCDEF 中,ABF 为等腰三角形,∵P 在平面ABC 内的射影为O ,∴PO ⊥平面ABF ,∴AO 为PA 在平面ABF 内的射影;∵O 为BF 中点,∴AO ⊥BF ,∴PA ⊥BF 。
(Ⅱ)∵PO ⊥平面ABF ,∴平面PBF ⊥平面ABC ;而O 为BF 中点,ABCDEF 是正六边形 ,∴A 、O 、D 共线,且直线AD ⊥BF ,则AD ⊥平面PBF ;又∵正六边形ABCDEF 的边长为1,∴12AO =,32DO =,BO =。
过O 在平面POB 内作OH ⊥PB 于H ,连AH 、DH ,则AH ⊥PB ,DH ⊥PB ,所以AHD ∠为所求二面角平面角。
在AHO 中,,1tan AO AHO OH ∠==。
在DHO中,3tan 27DO DHO OH ∠===;而tan tan()AHD AHO DHO ∠=∠+∠== (Ⅱ)以O 为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,12-,0),B(2,0,0),D(0,2,0),∴1(0,,1)2PA =--,3(1)2PB =-,(0,2,1)PD =-设平面PAB 的法向量为111(,,1)n x y =,则1n PA ⊥,1n PB⊥,得111102102y x ⎧--=⎪⎪-=⎪⎩,123(2,1)3n =-;设平面PDB 的法向量为222(,,1)n x y =,则2n PD ⊥,2n PB ⊥,得22210102y x -=⎧-=⎩,2231(,1)32n =;121212cos ,||||n n n n n n ⋅<>==⋅2. (06卷)如图,在底面为平行四边表的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证://PB 平面AEC ; (Ⅲ)求二面角E AC B --的大小.解法一:(Ⅰ)PA ⊥平面ABCD ,∴AB 是PB 在平面ABCD 上得射影, 又AB ⊥AC ,AC ⊂平面ABCD , ∴AC ⊥PB.(Ⅱ)连接BD ,与AC 相交与O ,连接EO , ABCD 是平行四边形 ∴O 是BD 的中点 又E 是PD 的中点, ∴EO PB.又PB ⊄平面AEC ,EO ⊂平面AEC , ∴PB 平面AEC ,(Ⅲ)取BC 中点G ,连接OG ,则点G 的坐标为,,022a b ⎛⎫ ⎪⎝⎭,0,,02b OC ⎛⎫= ⎪⎝⎭又(,0,0),OE AC a =b b=(0,-,),220,0,OE AC OG AC ∴==,,OE AC OG AC ∴⊥⊥EOG ∴∠是二面角E AC B -=的平面角。
二面角1练习及答案
二面角练习1班级姓名1.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是()A.互为余角B.相等C.其和为周角D.互为补角【答案】D【解析】画图知从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角互为补角,所以选D.2.如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为的等腰三角形,则二面角V-AB-C的大小为()A.30°B.45°C.60°D.120°【答案】C【解析】如图所示,由题意可得四棱锥V-ABCD是正四棱锥,连接AC,BD,相交于点O,连接VO,则VO⊥平面ABCD.取AB的中点M,连接VM,OM,则AB⊥OM,∴AB⊥VM.∴∠OMV是二面角V-AB-C的平面角.由正方形可得OB=BD=×2=,∴VO==.在Rt△VOM中,tan∠VMO===,∴∠VMO=60°.3.如图在长方体中,AB=AD=2,CC1=,则二面角C1-BD-C的大小为()A.30°B.45°C.60°D.90°【答案】A【解析】连接AC,交BD于点O,连接OC1,⊥平面ABCD,因为ABCD为正方形,则AC⊥BD,又CC所以CC1⊥BD,则BD⊥平面CC1O,所以BD⊥OC1,所以∠COC1是二面角C1-BD-C的平面角.又OC=AC=×AB=.在Rt△OCC1中,CC1=,所以tan∠COC1==,所以∠COC1=30°,故选A.4.在四面体ABCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的余弦值为()A.B.C.D.【答案】C【解析】取AC的中点E,取CD的中点F,连接BE,EF,BF.∵△BCD为等边三角形,F为CD中点,∴CD⊥BF.∵CD=AD=1,AC=,∴△ACD为等腰直角三角形,∴CD⊥AD.又EF∥AD,∴EF⊥CD.∴∠EFB为A-CD-B的平面角.又EF=,BE=,BF=,∴△BEF为直角三角形,cosθ==.5.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,此时∠B′AC=60°,那么这个二面角的大小是()A.90°B.60°C.45°D.30°【答案】A【解析】连接B′C,则△AB′C为等边三角形.设AD=a,则B′C=AC=a,B′D=DC=a,所以∠B′DC=90°.6.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍.沿AD将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为()A.30°B.45°C.60°D.90°7.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,PA=,那么二面角P-BC-A的大小为________.【答案】90°【解析】取BC的中点O,连接OA,OP,则∠POA为二面角P-BC-A的平面角,OP=OA=,PA=,所以△POA为直角三角形,∠POA=90°.8.如图,长方体ABCD-A1B1C1D1中,ABCD是边长为1的正方形,D1B与平面ABCD所成的角为45°,则棱AA的长为________;二面角B-DD1-C的大小为________.【答案】45°【解析】因为ABCD是边长为1的正方形,所以对角线BD=.又因为D1B与平面ABCD所成的角为45°,即∠D1BD=45°.所以AA1=DD1=.由于CD⊥DD1,BD⊥DD1.所以二面角B-DD1-C的平面角为∠CDB.又因为△CDB为等腰直角三角形,所以二面角B-DD1-C的平面角∠CDB=45°.9.如图,在正方体ABCD-A1B1C1D1中,截面C1D1AB与底面ABCD所成的二面角C1-AB-C的大小为________.【答案】45°【解析】∵AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1-AB-C的平面角,大小为45°.10.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD=,则二面角B-AC-D的余弦值为________.【答案】【解析】如图所示,由二面角的定义,知∠BOD即为二面角的平面角.∵DO=OB=BD=,∴∠BOD=60°.∴cos∠BCD=.11.如图所示,在长方体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF∥AB,若二面角C1-EF-C等于45°,则BF=________.,C1F⊂平面BC1,CF⊂平面BC1,【答案】1【解析】∵AB⊥平面BC∴AB⊥C1F,AB⊥CF,又EF∥AB,∴C1F⊥EF,CF⊥EF,∴∠C1FC是二面角C1-EF-C的平面角,∴∠C1FC=45°,∴△FCC1是等腰直角三角形,∴CF=CC1=AA1=1.又BC=2,∴BF=BC-CF=2-1=1. 12.如图,已知三棱锥A-BCD的各棱长均为2,求二面角A-CD-B的余弦值.13.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小.14.如图,已知VA,VB,VC两两垂直,VA=VB=VC=a.(1)求平面ABC和平面ABV所成的二面角的余弦值;(2)求三棱锥V-ABC的体积.【答案】(1)∵VA,VB,VC两两垂直,VA=VB=VC=a,∴AB=BC=AC=a,∴S△ABV=a2,S△ABC=a2.∴平面ABC和平面ABV所成的二面角的余弦值为=.(2)三棱锥V-ABC的体积为××a×a×a=a3.15.如图所示,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.【答案】如图所示,在平面α内,过O作OD⊥BC,垂足为D,连接AD.∵AO⊥α,BC⊂α,∴AO⊥BC.又∵AO∩OD=O,∴BC⊥平面AOD.而AD⊂平面AOD,∴AD⊥BC.∴∠ADO是二面角A-BC-O的平面角.由AO⊥α,OB⊂α,OC⊂α,知AO⊥OB,AO⊥OC.又∠ABO=30°,∠ACO=45°,∴设AO=a,则AC=a,AB=2a.在Rt△ABC中,∠BAC=90°,∴BC==a,∴AD===.在Rt△AOD中,sin∠ADO===,∴∠ADO=60°.即二面角A-BC-O的大小是60°.16.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:DE⊥A1D;(2)求AE等于何值时,二面角D1-EC-D的大小为45°?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求二面角专题
1.如图,屮血E丸DL平面ABCD, ADE 边三怖形.ABCD是竝阪F, G分别足AE
AD 的中点* EC 与平面ABCD ijlfli 30'^ ft.
⑴求迹:EG LYii! ABCD;
⑵若AD=£求二血伯E-FGG的度斂"
2.如I图.和楼长为倒的止方体OABC-O,A,B,C,屮,生F分别是棱AB. BC 上的別乩JLA3RE
(1)戏证:A'PC氏
⑵当三楼锚B J BEF的休积取得最人値时,求-血处B^-FF-R的人小
(结杲用反三角函数表示)・
3、如图,已知I平行六回体ABCD-A]B|C|D|的底血ABCD兄菱形・R "「R="UD=ZRC:D=6(r-
⑴证明;GC丄BD;
3 旳=-
⑵假定CD=2t 2・记面CBD为山血
CBD为b.求二血角
a-BD*b的T血角的氽歿値:
CD
⑴当的值为爭少时,能使加C丄YlIU C.BD?
如图MMI) ARG6是反方体,侧棱AA」长为1,底面为正方体且边长为2,E是棱
BC 中点,求面GDE与血CDE所成二血角的正切值.
A,
C
B
抽图:已知四棱锥P^ABCD的底面为肖低梯昭ADMBC, ZBCD^9(h PA=PB- PC=PD.
1)证明平面PABL平面ARCD:
2)如果CD二AD+BC*二面角P—BC—A等十60",求二面侑P—CD—A矗大
小.
L过正方形4BCD的顶点A作〃人平liMBCD, 设PA二AR=s 求二面角〃-PC- D的大小一
D
2.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,ZBCD=6Q。
, E是CD的中点,丹丄底面PA = £
・(1)证明:平面卩EE•丄平面乃1〃;
(II )求二面角
A-BE-P的大小
3.如图,在底面为直角
梯形的四棱锥P-^CD^ADJ/BC, ZABC = W°, PA丄平
面ABCD PA = 3,AD = 2,AB = 2y/3 Bc=6
(I)求证:购丄平面"°;
(II)求二面角P — BD — A的大小.
4:如图,在四棱锥P-ABCD中,PA丄底面4BCD AB 丄AD, AC 丄CD. ZABC = 60°
PA = AB = BC, E 是PC的中点.
(I )求砂和平面PAD所成的角的大小;
(II)证明处丄平面兀5
(HI)求二面角的人小.
S如图,在四梭卸[P一人方OD中,底血魁炬形.己知 = AI》= 2 , PA = 2 . PD = 2V2 , /PAR = fiO*
■
(I ) -UEH^ AD 丄平面PAH ;
C IT > 求并VM自线八C 与AZ>妙丘成的角的人刀、c HJK 过人
.
(III)求二眉角厂一"。
一人的正切值
x
如何用空间向量求解二面角
求解二面角大小的方法很多,诸如定义法、三垂线法、垂面法、 射影法、向量法等若干种。
而这些方法中最简单易学的就是向量法, 但在实际教学中本人发现学生利用向量法求解二面角还是存在一些 问题,究其原因应是对向量法的源头不尽了解。
本文就简要介绍有关 这类问题的处理方法,希望对大家有所帮助。
在立体几何中求二面角可归结为求两个向量的夹角问题.对于空 间向量a 、b ,有COS V a , b >二丄丄.利用这一结论,我们可以 |a| |b| 较方便地处理立体几何中二面角的问题.
例1在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正 三角形,平面VAD L 底面ABCD 求面VAD 与面VDB 所成的二面角的大 小.
证明: 建立如图空间直角坐标系,并设正方形边
长为1,依题意
得AB = (0 , 1, 0),是面VAD 的法向量,
1,
3 n 二(1
, — 1
,—
3|AB| |n|
设门=(1 , y , z)是面VDB 的法向量,则
f)
n VB 0, n VB 0.
/. COS V AB ,
n >3—=—运
*z
3
3
又由题意知,面 VAD 与面VDB 所成的二面角为锐角,所以其大小为
|CD | |B i G|
例3如图,在四棱锥P — ABC 冲,底面ABCD^正方形,侧棱PD
丄底面ABCD PD=DC E 是PC 的中点,作EF 丄PB 交PB 于点F .求二 面角C- PB-D
的大小
例2如图,直三棱柱ABC — ABC 1中,/ ACB=90 ,
AC=1 CB=2,侧棱AA=1,侧面AABB 的两条对角
线交点为D, B i C i 的中点为M
⑵求面B i BD 与面CBD 所成二面角的大小. 解:⑴略
⑵如图,以C 为原点建立坐标系.设BD 中点为G,连结B i G,则
BD • B i G = 0 ,「• BDL B i G.
又CDL BD 二CD 与B i G 的夹角 等于所
求二面角的平面角.
二 COS
=CD B i G
所以所求二面角的大小等于
—arccos 泌.
7
1
,1),
B i G =(
3 4
解:如图所示建立空间直角坐标系,D 为坐标原点,设DC a
设点F的坐标为
(X。
,
y o, z o),
PA= PB ,贝S (x o, y o,Z
o
a)
从而X o a, y o a, Z
o
(1 PE = )a .所以
(a, a , a).
a a
(x o, y o, 2 z o)( a,( )a,
1 (2)a).
由条件EF± PB知,PE-PB = 0,即 1
(2
)a2 (
二点F的坐标为(|汽, 2a
-
,且PE (
a
FD (-
3
2a),
二PB • FD 2a2
3
即PB FD,故EFD是二面角C
—PB- D的平面角.
2
a 18 且|PE|
2
a
36
2
a
36
|FD| 將4a2
9
…cos EFD丄邑
|PE ||FD |
6 .'6
a a
6 3
EFD
所以,二面角C-PB-D的大小为
*z
3
3
例4 已知三棱柱OAB — O i A i B i 中,平面0BBO 丄平面OAB , /
AOB = 90,/ 06=60,且 OB =OO 1= 2 , OA = ,3,
求二面角O i — AB- O 的大小.
解:以O 为原点,分别以OA , OB 所在 的直线为X, y 轴,过O 点且与平面AOB 垂直 的直线为Z 轴,建立空间直角坐标系.如图, 则 O (0,
0, 0) , O i (0 , 1, 3) , A(
3 , 0,
0) , A i ( 3 , 1,
3), B(0 , 2 , 0).
二 AO i = ( — 3 , 1 , 3 ) , AB =
( — 3 , 2 , 0).
显然OZ 为平面AOB 的法向量,取n i = (0 , 0 , 1),设平面O i AB 的
法向量为n 2 = (X , y , z),贝卩
n ? • AO i = 0 , n ? • AB = 0 .
即 今 y Mz 0 ,令 y = 73 , x = 2 , z = 1 ,则 n 2= (2 , <3 , .3x 2y 0
1).
故二面角O 1 — AB — O 的大小为arccos 2 .
4
• • COS n i ,n 2
n 1 n 2 I n i | | n 2 |
1 2、
n i , n 2 > = arcd
4
4。