矩阵理论矩阵的标准型ppt课件

合集下载

矩阵理论(第三章矩阵的标准型)

矩阵理论(第三章矩阵的标准型)

100
2100 2 2101 2 0 100 101 2 1 2 1 0 2100 1 2101 2 1
第一节
矩阵的相似对角形
一、矩阵的特征值与特征向量 1、相似矩阵:设V是n维线性空间,T是线性变换, e1, e2,…,en与e'1,e'2,…,e' 是两组基,过渡矩阵 P,则T在这两组基下的矩阵A与B相似,
i
1
i Js
这些约当块构成的分块对角阵J,称为A的约当标准形。
J2
例5 Jordan标准形。
例5的初级因子为 ( 1),( 1),( 2) Jordan标准形为
1 J 1 2
2、k级行列式因子:特征矩阵A(λ)中所有非零的k 级子式的首项(最高次项)系数为1 的最大公因 式Dk(λ)称为 A(λ)的k级行列式因子。
A( ) E A
例5 求矩阵的特征矩阵的行列式因子 解:特征矩阵为
1 1 E A 2
若A能与对角形矩阵相似,对角阵是由特征值构 成的P是由对应特征值的特征向量构成的。
例3
解:
4 6 0 A 3 5 0 3 6 1
100 A ,计算:
4 A E 3 3
6
0
5 0 (1 )2 ( 2) 0 6 1
3级因子,因为
0 0 0 2 1 1 2 3 3 0
1
3
0 0 0, 2 0
2 2(( 1)3 ,( 1)2 ( 2), 2 2 7,0,...) 1
4级因子

矩阵理论矩阵的标准型(ppt)

矩阵理论矩阵的标准型(ppt)

定义 3.1 设有 n 阶 –矩阵 A( ) 、 B( ) ,若可使 A( )B( ) B( )A( ) En
成立,则称 A( ) 为可逆的, B( ) 称为 A( ) 的逆矩 阵,记为 A1( ) . 满秩的 –矩阵不一定可逆.
定理 3.1 n 阶 –矩阵 A( ) 可逆的充要条件是 A( ) 的行列式是一个非零常数.
–矩阵也有初等变换和初等矩阵.
–矩阵的初等行(列)变换,是指以下三种变换: 1.交换 A( ) 的第 i 行(列)与第 j 行(列); 2.用非零的数 k 乘以 A( ) 的第 i 行(列); 3.将 A( ) 的第 j 行(列)乘以一个多项式 ( ) 后,
加到第 i 行(列)上.
–矩阵的初等矩阵是指由一个单位矩阵经过一次 –矩阵的初等行(列)变换后所得的方阵.
还可注意到,如果两个 –矩阵等价,则其秩相等;反之则不然. 这也是 –矩阵与数字矩阵的不同之处.例如:
A(
)
0
1 1
,
B(
)
1 0
1
的秩相等,但不等价.
定理 3.3 若 rank(A()) r ,则
d1()
d2()
A()
D()Biblioteka dr ()00
其中 di ( ) | di1( ) , i 1, 2, , r 1 (依次相除性), di ( ) 为首 1 多项式, i 1, 2, , r . D( )为 A( ) 的等价标准形,称为 Smith 标准形.
定理 3.4 等价的 n 阶 -矩阵有相同的各阶行列式因子及 不变因子. 两个 n 阶 -矩阵等价当且仅当它们有相同的行列式因子 或相同的不变因子.
由此可知 n 阶 -矩阵的 Smith 标准形唯一.

Ch2 矩阵的标准形PPT课件

Ch2  矩阵的标准形PPT课件

(1)d(x) | f (x) d(x) | g(x) (2)若多项式h(x)满足h(x) | f (x) h(x) | g(x),
则有h(x) | d(x)
精选ppt课件2021
4
定理 设f(x),g(x)是F[x]中的两个多项式,则在F[x] 中存在f(x)与g(x)的一个最大公因式d(x),而且存在 u(x),v(x)F(x), 使得
则称
dk()
Dk() Dk1()
(1kr)
为A()的第k个不变因子,其中D0()1.
精选ppt课件2021
15
例求
a b
A
(
)
0
a
0
0
的等价标准形.
0
b
a
精选ppt课件2021
16
定义(初等因子)
在 复 数 域 中 讨 论 , A( )中 的 各 个 不 变 因 子 分 解 为 一次因子如下:
精选ppt课件2021
22
2.5 若当标准形
定 义 ( Jo rd an 块 与 Jo rd an 矩 阵 ) 形 如 下 面 的 矩 阵 称 为 Jo rd an 块
i 1
i 1
Ji
称 矩 阵 J diag{J1, J 2 ,
1
i
, J s }为 若 当 矩 阵 .
精选ppt课件2021
定 理设 p(x)为 数 域 F上 的 不 可 约 多 项 式 , f(x),g(x) 是 数 域 F上 的 两 个 多 项 式 , 如 果 p(x)|f(x)g(x), 那 么 一 定 有 p(x)|f(x)或 p(x)|g(x)
精选ppt课件2021
7
定理(因式分解定理) 数域F上的任一个次数 1的多项式f (x)都可以 惟一地分解成数域F上有限个不可约多项式的 乘积,惟一性是指,若

(精品课件)研究生教材《矩阵理论》PPT演示文档

(精品课件)研究生教材《矩阵理论》PPT演示文档

列和第
行, x ( x1 , x2 ,, xn ) ,则有
( 2) ( n)
Ax x1 A x2 A xn A
这就是说,矩阵乘一个列向量,其结果是将该矩 阵的列向量进行线性组合,组合系数即是该列向量 的对应系数。 若令 y ( y1 , y2 ,, ym ), 则有:
yA y1 A(1) x2 A( 2) xm A( m)
其余元素均为0的矩阵。借助这些矩阵,任意 矩阵 A aij , 均能唯一地表示成: A
m n
n ij ij

a E .
i 1 j 1
m
对矩阵乘法的表达,可以利用下述性质:
Eij Ekl jk Eil ,1 i, j, k , l n,
其中 jk 是Kronecker符号,即当
.函数与极限
5
【定义1.1.4 】 一个 一个
m p
pn
p
矩阵 B bij
m n
矩阵 C cij , 其中


矩阵 A aij

的乘积是一个
cij aik bkj ,1 i m,1 j n.
j 1
★矩阵的乘法有下述性质: (M1)结合律:( AB)C A( BC);
并将其分块成
P Q1P2 ,
P 11 P P 21
.函数与极限
P 12 P22
26
其中
P 11 , P 12 , P 21 , P 22
分别为
r1 r2 ,
r1 ( p r2 ), ( p r1 ) r2 , ( p r1 ) ( p r2 )
A( E pq Eqp ) (aii Eii E pq aii Eii Eqp ) a pp E pq aqq Eqp ;

2024年度矩阵分析课件精品PPT

2024年度矩阵分析课件精品PPT

2024/3/24
6
矩阵性质总结
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
05
2024/3/24
(A+B)+C=A+(B+C),(AB)C=A(BC)。 A+B=B+A,但AB≠BA。 (A+B)C=AC+BC,C(A+B)=CA+CB。 λ(μA)=(λμ)A,(λ+μ)A=λA+μA。 λ(A+B)=λA+λB。
12
03
线性方程组与矩阵解法
2024/3/24
13
线性方程组表示形式
80%
一般形式
Ax = b,其中A为系数矩阵,x为 未知数列向量,b为常数列向量 。
100%
增广矩阵形式
[A|b],将系数矩阵A和常数列向 量b合并为一个增广矩阵。
80%
向量形式
x = Ab,表示通过矩阵A的逆求 解未知数列向量x。
04
典型例题解析
10
秩及其求法
2024/3/24
01
矩阵秩的定义与性质
02
利用初等变换求矩阵秩的方法
03
利用向量组的极大无关组求矩阵秩的方法
04
典型例题解析
11
典型例题解析
01 02 03 04
2024/3/24
初等变换与初等矩阵相关例题 矩阵等价性判断相关例题 秩及其求法相关例题 综合应用相关例题
矩阵分析课件精品PPT
2024/3/24
1

CONTENCT

2024/3/24
• 矩阵基本概念与性质 • 矩阵变换与等价性 • 线性方程组与矩阵解法 • 特征值与特征向量 • 相似对角化与二次型 • 矩阵函数与微分方程求解

矩阵理论第四章 矩阵的标准形

矩阵理论第四章 矩阵的标准形

β = (0,1, −1)
T
综合上述, 综合上述,可得
0 1 0 2 0 0 0 2 1 , J = 0 1 1 P = A 1 −1 −1 0 0 1
例 4
标准型理论求解线性微分方程组 用 Jordan标准型理论求解线性微分方程组 标准型理论求解
T
−1 1 0 A = −4 3 0 1 0 2
由上例,存在可逆线性变换 x = P y 使得 由上例,存在可逆线性变换
P −1 AP = J A
其中
0 1 0 2 0 0 0 2 1 , J = 0 1 1 P = A 1 −1 −1 0 0 1
(1) ij
A−λi I
A−λi I
A−λi I
其中, p 其中,
( j = 1, 2, ⋯ , k i ) 是矩阵 A 关于特征 ( ni j ) (2) 的一个特征向量, 值 λ i 的一个特征向量, p i j , ⋯ , p i j 则称为 λ i ( ni j ) 广义特征向量,称 根向量。 为 λ i 的 ni j 级根向量。 的广义特征向量 称 p i j
所以原方程组变为
dy −1 d x −1 −1 =P = P A x = P AP y = J A y dt dt

d y3 d y1 d y2 = 2 y1 , = y2 + y3 , = y3 dt dt dt
解得
y1 = c1e , y2 = c2e + c3 t e , y3 = c3e ,
−1 1 0 −4 3 0 A= 1 0 2
解: A 特征值为 λ`1 = 2, λ`2 = λ`3 = 1 ,所以设

2024版第5章矩阵分析ppt课件

2024版第5章矩阵分析ppt课件

矩阵函数以及矩阵微分方程等问题时,都可以利用若尔当标准型来简化
计算。
05
二次型及其标准型
二次型定义及性质
二次型定义
对称性
线性变换下的不变性
二次型的值
二次型是n个变量的二次多项式, 其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n} a_{ij}x_ix_j$,其中$a_{ij}$为常 数,且$a_{ij} = a_{ ji}$。
若尔当标准型简介
01
若尔当标准型定义
对于任意一个n阶方阵A,都存在一个可逆矩阵P,使得$P^{-1}AP=J$
为若尔当标准型,其中J由若干个若尔当块组成。
02
若尔当块
一个若尔当块是一个上三角矩阵,它的对角线上的元素相等,且对角线
上方的元素或者是1,或者是0。
03
若尔当标准型的应用
若尔当标准型在矩阵分析中有着广泛的应用,例如在求解矩阵的高次幂、
矩阵性质总结
结合律 $(AB)C = A(BC)$。
数乘结合律 $(kA)(lB) = kl(AB)$。
分配律
$(A + B)C = AC + BC, C(A + B) = CA + CB$。
数乘分配律
$(k + l)A = kA + lA, k(A + B) = kA + kB$。
02
矩阵变换与等价类
求解过程
先求出矩阵A的特征值,然后将其代 入(A-λE)X=0,解出对应的特征向量。
特征值和特征向量在矩阵分析中的应用
判断矩阵是否可对角化
如果矩阵A有n个线性无关的特征向量,则A可对角化。

矩阵理论第三章矩阵的Jordan标准型[可修改版ppt]

矩阵理论第三章矩阵的Jordan标准型[可修改版ppt]

若 A( ) 的秩为 r ,则 Dr ( ) 0 ,但 Dr1( ) 0 ,

d1( ) D1( )
dk ( )
Dk ( ) , k Dk1( )
2, ..., r
则 di ( )(i 1, , r) 是 r 个首 1 的多项式.
定义 3.4 上式中的 di ( ) (i 1, , r) 称为 A( ) 的不变因子. 其中 r 为 A( ) 的秩. 定理 3.3 里 A( ) 的 Smith 标准形中的 d1( ), , dr ( ) 就是 它的不变因子.
–矩阵也有初等变换和初等矩阵.
–矩阵的初等行(列)变换,是指以下三种变换: 1.交换 A( ) 的第 i 行(列)与第 j 行(列); 2.用非零的数 k 乘以 A( ) 的第 i 行(列); 3.将 A( ) 的第 j 行(列)乘以一个多项式 ( ) 后,
加到第 i 行(列)上.
–矩阵的初等矩阵是指由一个单位矩阵经过一次 –矩阵的初等行(列)变换后所得的方阵.
等价关系具有以下性质:
1.自反性: A( ) A( ) ; 2.对称性:如果 A( ) B( ) ,那么 B( ) A( ) . 3.传递性:如果 A( ) B( ) 且 B( ) C( ) ,
那么 A( ) C( ) .
由初等变换与初等矩阵的对应关系可得
A() B() 的充要条件是存在一些 m 阶与 n 阶的初等矩阵, 分别左乘与右乘 A( ) 得到 B( ) .
A( ) ( 1
c
A( ) )
En ,
所以 A( ) 是可逆的, A( )1 1 A( ) ,其中 A( ) 是 A( ) 的伴随矩阵.
c
例 3.1 –矩阵
1
A(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

–矩阵的相等、加法、数乘和乘法等概念与运算 都与数字矩阵相同,而且有相同的运算规律. 对 n n 的 -方阵可类似定义行列式、子式、余子式、 伴随矩阵等概念.
如果 –矩阵 A( ) 中有一个 r 阶子式 (r 1) 不为零,
而所有 r 1 阶子式(如果存在的话)全为零,则称
A( ) 的秩为 r ,记为 rankA( ) r .零矩阵的秩为 0 . 当 rank( Ann ( ) ) n 时,称 Ann ( ) 为满秩的或非奇异的.
矩阵理论矩阵的标准型
3.1不变因子与初等因子
形如
a11( )
A(
)
a21 (
)
am1
(
)
a12( ) a22( )
am2( )
a1n( )
a2n
(
)
amn
(
)
的 m n 型矩阵称为 –矩阵或多项式矩阵,
其中 aij ( ) (i 1, 2, , m; j 1, 2, , n) 为 的多项式.
若 A( ) 的秩为 r ,则 Dr ( ) 0 ,但 Dr1( ) 0 ,

d1( ) D1( )
dk ( )
Dk ( ) , k Dk1( )
2, ..., r
则 di ( )(i 1, , r) 是 r 个首 1 的多项式.
定义 3.4 上式中的 di ( ) (i 1, , r) 称为 A( ) 的不变因子. 其中 r 为 A( ) 的秩. 定理 3.3 里 A( ) 的 Smith 标准形中的 d1( ), , dr ( ) 就是 它的不变因子.
解 A( ) 虽然是对角形,但对角元素不满足依次相除性,
故不是 Smith 标准形. 方法一 用初等变换
( 1)
推论 2 可逆 -矩阵可表示为若干个初等矩阵之积.
定义 3.3 n 阶 -矩阵 A( ) 中所有非零 k 阶子式的 首项系数为 1 的最大公因式称为 A( ) 的 k 阶行列 式因子,记为 Dk ( ) .
由定义知 Dn( ) 即为 A( ) 的行列式的值,显然 Dk ( ) | Dk1( ) (称为依次相除性), k 1, 2, , n 1 .
还可注意到,如果两个 –矩阵等价,则其秩相等;反之则不然. 这也是 –矩阵与数字矩阵的不同之处.例如:
A(
)
0
1 1
,
B(
)
1 0
1
的秩相等,但不等价.
定理 3.3 若 rank(A()) r ,则
d1 ( )
d2 ( )
A(
)
D(
其中 di ( ) | di1( ) , i 1, 2, , r 1 (依次相除性), di ( ) 为首 1 多项式, i 1, 2, , r . D( )为 A( ) 的等价标准形,称为 Smith 标准形.
定理 3.4 等价的 n 阶 -矩阵有相同的各阶行列式因子及 不变因子. 两个 n 阶 -矩阵等价当且仅当它们有相同的行列式因子 或相同的不变因子.
由此可知 n 阶 -矩阵的 Smith 标准形唯一.
( 1)
例 3.4
设 A( )
,求
A(
)

( 1)2
Smith 标准型及不变因子.
证明 若 –矩阵 A( ) 可逆,则有 A( )B( ) B( )A( ) En 成立, 对其两边取行列式便有 A( ) B( ) 1 ,由于 A( ) 、 B( ) 都是 的多项式, 所以 A( ) 、 B( ) 都是常数.
反之,设
A( ) c 0 ,则 ( 1 c
A( ) ) A( )
初等变换和初等矩阵都是可逆的
定理 3.2 对任意一个 mn 型的 –矩阵 A( ) , 作一次某种初等行(列)变换,相当于给 A( ) 左(右)乘一个相应的 m 阶( n 阶)初等矩阵.
定义 3.2 设 A() 、 B() 是两个同型的 –矩阵, 如果 A() 可以经过有限次初等变换化为 B() , 则称 A( ) 与 B( ) 是等价的,记作 A( ) B( ) .
定义 3.1 设有 n 阶 –矩阵 A( ) 、 B( ) ,若可使 A( )B( ) B( )A( ) En
成立,则称 A( ) 为可逆的, B( ) 称为 A( ) 的逆矩 阵,记为 A1( ) . 满秩的 –矩阵不一定可逆.
定理 3.1 n 阶 –矩阵 A( ) 可逆的充要条件是 A( ) 的行列式是一个非零常数.
1 2
例 3.2

A(
)

Smith
标准形.

1 2 2 2
1 2
1 2
A( ) c1c3 0
1
2 2
r3 r1
0
0
0
2
1 0 0
1 0 0
c2 (
2
)c1
0
c3 ( )c1
0
0
2
c3 c2
0
c3(1) 0
0
0
( 1)
推论 1 任一 n 阶可逆 -矩阵均可经过若干次初等 变换化为 n 阶单位矩阵 En .
–矩阵也有初等变换和初等矩阵.
–矩阵的初等行(列)变换,是指以下三种变换: 1.交换 A( ) 的第 i 行(列)与第 j 行(列); 2.用非零的数 k 乘以 A( ) 的第 i 行(列); 3.将 A( ) 的第 j 行(列)乘以一个多项式 ( ) 后,
加到第 i 行(列)上.
–矩阵的初等矩阵是指由一个单位矩阵经过一次 –矩阵的初等行(列)变换后所得的方阵.
等价关系具有以下性质:
1.自反性: A( ) A( ) ; 2.对称性:如果 A( ) B( ) ,那么 B( ) A( ) . 3.传递性:如果 A( ) B( ) 且 B( ) C( ) ,
那么 A( ) C( ) .
由初等变换与初等矩阵的对应关系可得
A() B() 的充要条件是存在一些 m 阶与 n 阶的初等矩阵, 分别左乘与右乘 A( ) 得到 B( ) .
A( ) ( 1
c
A( ) )
En ,
所以 A( ) 是可逆的, A( )1 1 A( ) ,其中 A( ) 是 A( ) 的伴随矩阵.
c
例 3.1 –矩阵
1
A(
)
2
3
3 2 5
4

B(
)
3 2
1
2
中,因为 det A() 4 , det B( ) 3 2 ,所以
A( ) 是可逆的, B() 是不可逆的.
相关文档
最新文档