七年级:三角形三线合一性质专题模板.doc
2022年初中数学利用等腰三角形的“三线合一”性质解题

现在如果把两开关C和D都按上,两条电路都接通,此时应该是1+1,但小灯泡B只会发出同样的亮光,所以此时还是1.
这个过程我们用数学式子来表示,就是:
1+1=1.
这正是逻辑代数的加法.
0和1这些数字,本来是代表数的.在逻辑代数里,我们知道0和1不只表示数,而且更代表一种情况.正因为这样,所以得出了1+1不等于2的结果.1+1不光只等于2或等于1.在采用二进制的计算方法中,1+1是等于10.可见,我们习惯的数字计算法那么,在一些数学新概念中得出的结果不再是人们预料的.。
最新人教中考总复习知识点专题三线合一三角形证明的应用专题

专题训练(一)
类型二 证明两线垂直
3.如图1-ZT-3,在五边形ABCDE中,AB=AE,BC=ED, ∠ABC=∠AED,F是CD的中点.求证:AF⊥CD.
图1-ZT-3
专题训练(一)
证明:如图,连接AC,AD. 在△ABC和△AED中, ∵AB=AE,∠ABC=∠AED,BC=ED, ∴△ABC≌△AED(SAS), ∴AC=AD. 又∵AF是CD边上的中线, ∴AF⊥CD.
第一章 三角形的证明
专题训练(一) “三线合一”的灵活应用
第一章 三角形的证明
专题训练(一)
“三线合一”的灵活应用
专题训练(一)
等腰三角形“顶角的平分线、底边上的高线、底边上的中线”只 要知道其中“一线”,就可以说明是其他“两线”.运用等腰三 角形“三线合一”的性质证明角相等、线段相等或垂直关系,可 减少证全等的次数,简化解题过程.
类型一 证明线段相等或求线段的长
1.如图1-ZT-1,已知AD=AE,BD=CE,试探究AB和AC的 大小关系,并说明理由.
图1-ZT-1
专题训练(一)
解: AB=AC. 理由:∵AD=AE, ∴△ADE是等腰三角形.取线段DE的中点F,连接AF,则AF既是 △ADE的中线,又是△ADE底边上的高,即AF⊥DE,DF=EF. 又∵BD=CE, ∴BD+DF=CE+EF,即BF=CF, ∴AF是线段BC的垂直平分线,根据线段垂直平分线的性质可得 AB=AC.
谢 谢 观 看!
专题训练(一)
类型三 证明角度之间的关系
4.已知:如图 1-ZT-4,AB=AC,BD⊥AC 于点 D.求证:∠DBC =12∠B过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC, ∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC, ∴∠CAF+∠C=∠DBC+∠C=90°, ∴∠DBC=∠CAF, ∴∠DBC=12∠BAC.
专题54 巧作三线合一构造全等三角形(解析版)

专题54 巧作三线合一构造全等三角形
【专题说明】
三线合一:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
【模型展示】
①若
AB=AC,,
①若
AB=AC, ,则
,;
①若AB=AC, ,
;
①
若
,则AB=AC, ;
①
若, ,则
①若
, 则
AB=AC,;
等腰三角形三线合一的应用非常广泛,它包含了多层意义,可以用来证明角相等、线段相等、垂直关系等。
等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或的倍分关系。
在等腰三角形中,虽然顶角的平分
线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分。
初中数学-暑假第2讲-三线合一-学生版

三线合一知识讲授等腰三角形的“三线合一”性质应用十分广泛,可以利用它来巧妙地证明角相等、线段相等或直线垂直等问题.1.三角形的“三线”是指三角形中的高线、中线及角平分线。
2.“三线合一”定理在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。
简记为“三线合一”。
(前提一定是在等腰三角形中,其它三角形不适用)(1)如图,在等腰△ABC中,AB=AC,AD⊥BC,求证:∠BAD=∠CAD,BD=CD。
证明:∵AB=AC,AD⊥BC,AD=AD∴Rt△ADB≌Rt△ADC(HL)∴∠BAD=∠CAD,BD=CD总结:等腰三角形中,底边的高线,既是顶角平分线也是底边中线。
(2)如图,在等腰△ABC中,AB=AC,∠BAD=∠CAD,求证:AD⊥BC,BD=CD。
证明:∵AB=AC,∠BAD=∠CAD,AD=AD∴△ADB≌△ADC(SAS)∴∠BDA=∠CDA,BD=CD又∵∠BDA+∠CDA=180°∴∠BDA=∠CDA=90°∴AD⊥BC,BD=CD总结:等腰三角形中,顶角平分线,既是底边高线也是底边中线。
(3)如图,在等腰△ABC中,AB=AC,BD=CD,求证:AD⊥BC,∠BAD=∠CAD。
证明:∵AB=AC,BD=CD,AD=AD∴△ADB≌△ADC(SSS)∴∠BDA=∠CDA,∠BAD=∠CAD又∵∠BDA+∠CDA=180°∴∠BDA=∠CDA=90°∴AD⊥BC,∠BAD=∠CAD总结:等腰三角形中,底边中线,既是底边高线也是顶角平分线。
3.“三线合一”逆定理在三角形中,高线、中线、角平分线中只要两线重合,则可推出这条线也是第三条线,且这个三角形为等腰三角形。
简言之:两线合一,必等腰。
(1)如图,在△ABC中,BD=CD,AD⊥BC,求证:AB=AC,∠BAD=∠CAD。
证明:∵BD=CD,AD⊥BC,AD=AD∴△ADB≌△ADC(SAS)∴AB=AC,∠BAD=∠CAD总结:在三角形中,高线和中线重合,则这条线也为角平分线,且三角形为等腰三角形。
七级三角形三线合一性质专题

F E D C B A E DC B AB 'C BA 专题四(第九讲):三角形三线性质金牌数学专题系列 导入知识要点三角形的重要线段意义 图形表示法三角形 的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段 D CB A1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°. 三角形 的中线三角形中,连结一个顶点和它对边中的 线段 D CB A1.AE 是△ABC 的BC 上的中线.2.BE=EC=12BC. 三角形的 角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段21D CB A1.AM 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC.双基练习一、选择题:1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )A.是边BB ′上的中线B.是边BB ′上的高C.是∠BAB ′的角平分线D.以上三种性质合一(1) (2)(3) 2.如图2所示,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法正确的是( )A.DE 是△BCD 的中线B.BD 是△ABC 的中线C.AD=DC,BD=ECD.∠C 的对边是DE3.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( )小学时上课爱睡觉。
一次语文课老师布置作业写一篇作文,题目是《假如我是蜘蛛》。
F E DC B A 654321F E CB A 140︒80︒1 A.2cm 2B.1cm 2C.12cm 2 D.14cm 24.在△ABC,∠A=90°,角平分线AE 、中线AD 、高AH 的大小关系为( )A.AH<AE<ADB.AH<AD<AEC.AH ≤AD ≤AED.AH ≤AE ≤AD5.在△ABC 中,D 是BC 上的点,且BD:DC=2:1,S △ACD =12,那么S △ABC 等于( ) A.30 B.36 C.72 D.246.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形 7.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60° 8.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为( ) A.60°,90°,75° B.48°,72°,60° C.48°,32°,38° D.40°,50°,90°9.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A.100° B.120° C.140° D.160° 10.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形 11.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角 12.在△ABC 中,∠A=12∠B=13∠C,则此三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形13.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定14.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( ) A.30° B.60° C.90° D.120°15.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120° 16.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形;B.一般的等腰三角形;C.等边三角形;D.等腰钝角三角形 17.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( )A.120°B.115°C.110°D.105°(1) (2) (3) 18.如图2所示,在△ABC 中,E,F 分别在AB,AC 上,则下列各式不能成立的是( )A.∠BOC=∠2+∠6+∠A;B.∠2=∠5-∠A;C.∠5=∠1+∠4;D.∠1=∠ABC+∠4 二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC 中,∠B=80°,∠C=40°,AD,AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________. 5.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.E D C A21C 'FE C A 6.在△ABC 中, 若∠A+∠B >∠C,则此三角形为_______三角形,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B <∠C,则此三角形是_____三角形.7.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______. 8.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 9.三角形的三个外角中,最多有_______个锐角. 10.如图3所示,∠1=_______. 11.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是____度. 12.已知等腰三角形的一个外角为150°,则它的底角为_____.13.∠ABC 的内角平分线与∠ACB 的外角平分线交于点D,∠ABC 与∠ACB 的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=________.14.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC 的度数为________三、基础训练:1.如图所示,在△ABC 中,∠C-∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.2.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.3.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.4321DCBA4.如图所示,在△ABC 中,AD ⊥BC 于D,AE 平分∠BAC(∠C>∠B), 试说明∠EAD=12(∠C-∠B).5.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.四、提高训练: 1.在△ABC 中,∠A=50°,高BE,CF 所在的直线交于点O,求∠BOC 的度数.2.如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.21D A CA43P21DC B A3.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 求∠EDF 的度数.4.如图,已知,在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D . (1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.五、探索发现:1. 如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s 与n 有什么关系,并求出当n=13时,s 的值.2. 如图所示,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.(1)PC BA (2)PCBA(3)PCBAF E D C B An=2,s=3n=3,s=6n=4,s=9。
“三线合一”定理的灵活应用-三线合一定理

“三线合一”定理的灵活应用:三线合一定理“三线合一”定理是等腰三角形所特有的性质,即等腰三角形底边上的中线、顶角的平分线、底边上的高互相重合.该定理其实包括如下三个方面的内容:1.等腰三角形底边上的中线,既是顶角的平分线,又是底边上的高线;2.等腰三角形顶角的平分线,既是底边上的高线,又是底边上的中线;3.等腰三角形底边上的高线,既是底边上的中线,又是顶角的平分线.显见,以上三方面的内容,给我们提供了证明线段相等、角相等、直线垂直的新思想和新方法.在解答一些证明问题时,要注意灵活应用它们.例1如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.分析:依题意,DE和DF分别为点D到∠BAC两边的距离,要证明它们相等,可先证明点D在∠BAC的平分线上,即证明AD是∠BAC的平分线.证明:连接AD.因为AB=AC,BD=CD,所以AD是等腰△ABC底边BC上的中线.所以AD平分∠BAC.因为DE⊥AB于E,DF⊥AC于F,所以DE=DF.说明:本题的解答过程中,应用了等腰△ABC底边BC上的中线AD是顶角∠BAC的平分线的性质.例2如图,在△ABC中,AB>AC,AD平分∠BAC,P是AD 上的一点,求证:AB-AC>PB-PC.分析:证明四条线段之间的不等关系,应把这四条线段转化为同一个三角形中的三边.为了得到AB-AC的结果,可在AB 上截取AE=AC,则有BE=AB-AC.为此,只要证明BE>PB-PC即可.证明:在AB上截取AE=AC,连接PE、CE,CE交AD于F.因为AE=AC,AD平分∠BAC,所以AF是等腰△ACE的顶角∠CAE的平分线.所以AF⊥CE,CF=EF.即,AF是CE的垂直平分线.因为P在AF上,所以PE=PC.因为BE>PB-PE,BE=AB-AE,所以AB-AC>PB-PC.说明:本题的解答过程中,应用了等腰△ACE顶角∠CAE的平分线AF,是底边CE上的高线,同时又是底边CE上的中线的性质.例3如图,在△ABC中,AB=AC,D在BA的延长线上,E在AC上,且AD=AE,求证:DE⊥BC.分析:注意到△ABC是以BC为底边的等腰三角形,那么底边上的高与顶角平分线重合.要证明DE⊥BC,应先证明DE与这条高平行.证明:过A作AF⊥BC于F.因为AB=AC所以AF平分∠BAC.所以∠BAC=2∠BAF.因为AD=AE,所以∠D=∠AED.所以∠BAC=∠D+∠AED=2∠D.所以∠BAF=∠D,DE∥AF.所以DE⊥BC.说明:本题的解答过程中,应用了等腰△ABC底边BC上的高AF是顶角∠BAC的平分线的性质.例4如图,△ABC中,AB=AC,BD⊥AC于点D,求证:∠CBD=1/2∠BAC.分析:为了得到1/2∠BAC,可考虑作∠BAC的平分线.这样,把证明两角成倍数关系转化为证明两角是相等关系.证明:作∠BAC的平分线AE交BC于点E,那么∠1=∠2=1/2∠BAC.因为AB=AC,AE平分∠BAC,所以AE是等腰△ABC顶角∠BAC的平分线.所以AE⊥BC于点E.所以∠AEC=90°,∠1+∠C=90°,因为BD⊥AC于点D,所以∠BDC=90°,∠CBD+∠C=90°.所以∠CBD=∠1=1/2∠BAC.说明:本题的解答过程中,应用了等腰△ABC顶角∠BAC的平分线是底边BC上的高线的性质.。
初中几何等腰三角形三线合一经典题型及变式题汇总

初中几何等腰三角形三线合一经典题型及变式题汇总三线合一,是等腰三角形里最重要的性质定理之一。
所谓三线,就是等腰三角形中,顶角的角平分线,底边的中线,底边的高线。
必然三线合一。
今天主要举例说明一下等腰三角形三线合一,求解的问题。
并出几个变形题目,供大家练习,在从其他方面来解答等腰等腰三角形问题。
题:如图1,等腰△ABC中,AB=AC,P是BC上的点。
求证:PA^2=AB^2-PBPC。
证明:作高AD。
则由勾股定理,得AB^2-PA^2=BD^2+AD^2-( PD^2+AD^2)= BD^2-PD^2=(BD-PD)(BD+PD)=PB(BD+PD),因为AB=AC,AD⊥BC,所以BD=DC,所以BD+PD=DC+PD=PC,所以AB^2-PA^2=PBPC,所以PA^2=AB^2-PBPC。
变式一:如图2,D是等腰△ABC底边BC延长线上的点,AB=AC=CD=2BC,则AD:BC=______。
(答案:√10)变式二:已知等腰△ABC中,AB=AC,P是底边BC延长线上的点。
求证:PA^2=AB^2+PBPC。
(提示:作△ABC的高AD)变式三:已知等腰Rt△ABC中,AB=AC=2√2,∠BAC=90°,P 是BC上的点,Q是BC延长线上的点,且∠PAQ=90°,如果PQ=5,则PB=______.(答案:1)初中英语下册期末复习第11单元重点知识汇总Unit11 How was your school trip?【重点单词】milk v.挤奶cow n.奶牛milk a cow 给奶牛挤奶horse n.马ride a horse 骑马feed v.喂养;饲养feed chickens 喂鸡farmer n.农民;农场主quite adv.相当;安全quite a lot(of…) 许多anything pron.(常用于否定句或疑问句)任何东西;任何事物grow v.种植;生长;发育farm n.农场;务农;种田pick v.采;摘excellent adj.极好的;优秀的countryside n.乡村;农村in the countryside 在乡下;在农村yesterday n.昨天flower n.花worry v.担心;担忧luckily adv.幸运地;好运地sun n.太阳museum n.博物馆fire n.火灾fire station 消防站painting n.油画;绘画exciting adj.使人兴奋的;令人激动的lovely adj.可爱的expensive adj.昂贵的cheap adj.廉价的;便宜的slow adj.缓慢的;迟缓的fast adv&adj快地(的)robot n.机器人guide n.导游;向导gift n.礼物;赠品all in all 总的说来everything pron.一切;所有事物interested adj.感兴趣的be interested in 对……感兴趣dark adj.黑暗的;昏暗的hear(heard)v.听到;听见【重点短语】1. school trip 学校旅行2. go for a walk 去散步3. milk a cow 挤牛奶4. ride a horse 骑马5. feed chickens 喂鸡6. talk with a farmer 与农民交谈7. take some photos 照相8. ask some questions 问一些问题9. grow apples 种苹果10. show sb. around splace. 带某人逛某地11. learn a lot 学到许多12. pick some strawberries 摘草莓13. last week 上周14.In the countryside 在乡村15. visit my grandparents 拜访我的祖父母16. go fishing 去钓鱼17. sound good 听起来很好18. climb the mountains 去爬山19. play some games 玩一些游戏20. visit a museum 参观博物馆21. visit a fire station 参观消防站22.draw pictures 画画23. go on a school trip 去旅行24 visit the science museum 参观科技博物馆25. how to make a model robot 如何制作机器人模型26. gift shop 礼品店27. buy sth for sb. 为某人买某物28. all in all 总得来说29. be interested in... 对…感兴趣30. be expensive 昂贵的31. not...at all 一点儿也不【重点句型】1.—Did you see any cows?你见到奶牛了吗一Yes, I did. I saw quite a lot.我见到了而且见到了很多很多2.—Did Carol take any photos?罗尔拍照片了吗?—Yes, she did.是的,她拍了。
专题突破:等腰三角形性质-三线合一

◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
Hale Waihona Puke ◎类型一 ◎类型二 ◎类型三◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
◎类型一 ◎类型二 ◎类型三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F E D C B A E D
C B A
B '
C B
A 专题四(第九讲):三角形三线性质
金牌数学专题系列 导入
知识要点
知识点1 :
三角形的 重要线段
意义 图形
表示法
三角形 的高线
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段 D C
B A
1.AD 是△ABC 的BC 上的高线.
2.AD ⊥BC 于D.
3.∠ADB=∠ADC=90°.
三角形 的中线
三角形中,连结一个顶点和它对边中的 线段 D C
B A
1.AE 是△ABC 的BC 上的中线.
2.BE=EC=
12
BC. 三角形的 角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
21
D C
B A
1.AM 是△ABC 的∠BAC 的平分线.
2.∠1=∠2=
1
2
∠BAC.
双基练习
一、选择题:
1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )
A.是边BB ′上的中线
B.是边BB ′上的高
C.是∠BAB ′的角平分线
D.以上三种性质合一
(1) (2)
(3) 2.如图2所示,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法正确的是( )
A.DE 是△BCD 的中线
B.BD 是△ABC 的中线
C.AD=DC,BD=EC
D.∠C 的对边是DE
小学时上课爱睡觉。
一次语文课老师布置作业写一篇作文,题目是《假如我是蜘
蛛》。
下课了问了同学 ,晚上在家绞尽脑汁,写了一篇轰动全校 的《假如我是只猪》
F E D
C B A 6
5
4
321F E B A 140︒80︒13.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2
,则S 阴影等于( ) A.2cm 2
B.1cm 2
C.
12cm 2 D.14
cm 2
4.在△ABC,∠A=90°,角平分线AE 、中线AD 、高AH 的大小关系为( )
A.AH<AE<AD
B.AH<AD<AE
C.AH ≤AD ≤AE
D.AH ≤AE ≤AD
5.在△ABC 中,D 是BC 上的点,且BD:DC=2:1,S △ACD =12,那么S △ABC 等于( ) A.30 B.36 C.72 D.24
6.如果三角形的三个内角的度数比是2:3:4,则它是( )
A.锐角三角形
B.钝角三角形;
C.直角三角形
D.钝角或直角三角形 7.下列说法正确的是( )
A.三角形的内角中最多有一个锐角;
B.三角形的内角中最多有两个锐角
C.三角形的内角中最多有一个直角;
D.三角形的内角都大于60° 8.已知三角形的一个内角是另一个内角的
23,是第三个内角的4
5
,则这个三角形各内角的度数分别为( ) A.60°,90°,75° B.48°,72°,60° C.48°,32°,38° D.40°,50°,90°
9.已知△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A.100° B.120° C.140° D.160° 10.已知三角形两个内角的差等于第三个内角,则它是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等边三角形 11.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )
A.有两个锐角、一个钝角
B.有两个钝角、一个锐角
C.至少有两个钝角
D.三个都可能是锐角 12.在△ABC 中,∠A=
1
2
∠B=13∠C,则此三角形是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
13.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定
14.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( ) A.30° B.60° C.90° D.120°
15.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A.90° B.110° C.100° D.120° 16.已知等腰三角形的一个外角是120°,则它是( )
A.等腰直角三角形;
B.一般的等腰三角形;
C.等边三角形;
D.等腰钝角三角形 17.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( )
A.120°
B.115°
C.110°
D.105°
(1) (2) (3) 18.如图2所示,在△ABC 中,E,F 分别在AB,AC 上,则下列各式不能成立的是( )
A.∠BOC=∠2+∠6+∠A;
B.∠2=∠5-∠A;
C.∠5=∠1+∠4;
D.∠1=∠ABC+∠4 二、填空题:
1.直角三角形两锐角的平分线所夹的钝角为_______度.
2.等腰三角形的高线、角平分线、中线的总条数为________.
3.在△ABC 中,∠B=80°,∠C=40°,AD,AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________.
E D C B A
1
E
A 5.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.
6.在△ABC 中, 若∠A+∠B >∠C,则此三角形为_______三角形,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B <∠C,则此三角形是_____三角形.
7.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______. 8.在△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=_______度. 9.三角形的三个外角中,最多有_______个锐角. 10.如图11.如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是____度. 12.已知等腰三角形的一个外角为150°,则它的底角为_____.
13.∠ABC 的内角平分线与∠ACB 的外角平分线交于点D,∠ABC 与∠ACB 的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=________.
14.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC 的度数为________
三、基础训练:
1.如图所示,在△ABC 中,∠C-∠B=90°,AE 是∠BAC 的平分线,求∠AEC 的度数.
2.在△ABC 中,AB=AC,AD 是中线,△ABC 的周长为34cm,△ABD 的周长为30cm, 求AD 的长.
3.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.
4
321
D
C
B
A
4.如图所示,在△ABC 中,AD ⊥BC 于D,AE 平分∠BAC(∠C>∠B), 试说明∠EAD=
1
2
(∠C-∠B).
5.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P 的度数.
四、提高训练: 1.在△ABC 中,∠A=50°,高BE,CF 所在的直线交于点O,求∠BOC 的度数.
2.如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.
2
1D C B E
C
B
A
43
P 21
D
C
B A
3.如图所示,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 求∠EDF 的度数.
4.如图,已知,在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D . (1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.
五、探索发现:
1. 如图5所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s 与n 有什么关系,并求出当n=13时,s 的值.
2. 如图所示,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α
与β的关系,并选择一个加以说明.
(1)
P
C B
A (2)
P
C
B
A
(3)
P
C
B
A
F E A
n=2,s=3
n=3,s=6n=4,s=9。