函数的四则运算的微分法则共29页文档

合集下载

微积分运算法则

微积分运算法则

微积分运算法则微积分是数学中的一个重要分支,它主要研究函数的变化规律和数量的无限逼近。

微积分运算法则是微积分中常用的一些规则和定理,它们可以帮助我们更方便、更准确地进行微积分运算。

本文将介绍微积分运算法则的一些基本内容。

一、导数的四则运算法则导数的四则运算法则是微积分中最基本的法则之一。

它规定了导数运算在加减乘除运算中的运用。

根据这个法则,我们可以根据已知函数的导数来求得新函数的导数。

二、链式法则链式法则是微积分中的另一个重要法则。

它用于求复合函数的导数。

复合函数是由两个或多个函数复合而成的函数。

链式法则告诉我们,复合函数的导数等于外函数对内函数的导数乘以内函数的导数。

三、反函数的导数反函数的导数是指如果函数f的值域上的每一个点都有唯一的反函数g,则g的导数等于f的导数的倒数。

这个法则在求反函数的导数时非常有用。

四、隐函数求导隐函数求导是指在某些情况下,函数的表达式无法直接写出,但是我们仍然可以通过一些方法求得函数的导数。

隐函数求导的关键是利用已知条件,通过求解方程组来求得导数值。

五、极限的四则运算法则极限的四则运算法则是指在求极限运算时,可以将各个极限运算符号分别作用于各个函数,并进行相应的加减乘除运算。

这个法则在求极限时非常有用。

六、泰勒公式泰勒公式是微积分中的一个重要定理,它用于将任意一个光滑函数表示为无穷级数的形式。

泰勒公式可以通过求导数的方式来推导得出,它在近似计算中有着广泛的应用。

七、微分中值定理微分中值定理是微积分中的一个重要定理,它用于研究函数在某个区间内的变化情况。

微分中值定理告诉我们,如果函数在某个区间内连续并可导,那么在这个区间内一定存在某个点,函数在这个点的斜率等于函数在整个区间上的平均斜率。

八、积分的四则运算法则积分的四则运算法则是指在求积分运算时,可以将各个积分运算符号分别作用于各个函数,并进行相应的加减乘除运算。

这个法则在求积分时非常有用。

九、换元积分法换元积分法是微积分中的一个重要方法,它用于将一个积分问题转化为另一个更容易求解的积分问题。

微分法则汇总速查

微分法则汇总速查

微分法则汇总速查微分法则是微积分中的重要内容,它是求导数的一种方法。

在微分法则中,有一些常用的公式和规则,可以帮助我们简化求导的过程。

本文将对常用的微分法则进行汇总,以便于大家在学习和应用中能够快速查找和使用。

一、基本微分法则1. 常数法则:若f(x) = C,其中C为常数,则f'(x) = 0。

2. 幂函数法则:若f(x) = x^n,其中n为常数,则f'(x) =nx^(n-1)。

3. 指数函数法则:若f(x) = a^x,其中a为常数,则f'(x) =a^x * ln(a)。

4. 对数函数法则:若f(x) = log_a(x),其中a为常数,则f'(x) = 1 / (x * ln(a))。

5. 三角函数法则:若f(x) = sin(x),则f'(x) = cos(x);若f(x) = cos(x),则f'(x) = -sin(x);若f(x) = tan(x),则f'(x) = sec^2(x)。

6. 反三角函数法则:若f(x) = arcsin(x),则f'(x) = 1 /sqrt(1 - x^2);若f(x) = arccos(x),则f'(x) = -1 / sqrt(1 -x^2);若f(x) = arctan(x),则f'(x) = 1 / (1 + x^2)。

二、常用微分法则1. 和差法则:若f(x) = u(x) ± v(x),其中u(x)和v(x)可导,则f'(x) = u'(x) ± v'(x)。

2. 积法则:若f(x) = u(x) * v(x),其中u(x)和v(x)可导,则f'(x) = u'(x) * v(x) + u(x) * v'(x)。

3. 商法则:若f(x) = u(x) / v(x),其中u(x)和v(x)可导且v(x) ≠ 0,则f'(x) = (u'(x) * v(x) - u(x) * v'(x)) / v^2(x)。

一微分的定义二微分的基本公式三微分的四则运算法则

一微分的定义二微分的基本公式三微分的四则运算法则
d(uv) (uv)dx (uv uv)dx
v udx u vdx vdu udv.
定理3.9 设u=u(x),v=v(x)可微,且 v 0 ,则 u 可微,
v
且有
d(u v)Fra bibliotekvdu v2
udv.
证 d(u) (u)dx vv
uv v2
uv dx
v
udx v2
u
vdx
vdu v2
微分及其运算
一、微分的定义 二、微分的基本公式 三、微分的四则运算法则 四、微分形式的不变性 五、微分在近似计算中的应用
一、微分的定义
当正方形的边长从 x0 变到 x0 x 时,相应的面积 增量 S (x0 x)2 x02 2x0x (x)2 .函数增量 S 分成两部分,一部分是 x 的线性部分 2x0 x ,一部 分是关于x 的高阶无穷小 (x)2 o(x).

f (x) f (x0 ) f (x0 ) (x x0 ).
当 f (x0 ), f (x0 ) 容易计算时,就可以用上述的 近似公式来计算 x0附近点的函数值.
例6 计算 2的近似值. 解 1.96 1.4, 令 f (x) x,则
2 f (2) f (1.96) f '(1.96) (2 1.96) 1.4 1 0.04 1.414 3. 2 1.4
五、微分在近似计算中的应用
设y=f(x)在 x0 可导,当自变量从 x0 变到x(即取得 增量 x x x0),则有
x f (x) f (x0 ) f (x0 ) (x x0 ) o(x x0 ). 当x很接近 x0 时,即| x || x x0 |很小时,就有近 似公式
f (x) f (x0 ) f (x0 ) (x x0 ),

导数的基本公式和四则运算法则

导数的基本公式和四则运算法则

导数的基本公式和四则运算法则导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。

导数的基本公式和四则运算法则是学习导数的基础,也是解决导数相关问题的重要工具。

首先,我们来看导数的基本公式。

对于函数f(x),它在点x处的导数可以用以下公式表示:f'(x) = lim(h->0) [f(x+h) f(x)] / h.这个公式描述了函数在点x处的变化率,也就是函数曲线在该点的切线斜率。

通过这个公式,我们可以求得函数在任意点的导数值,从而描绘出函数的变化规律。

接下来,我们来看四则运算法则在导数中的应用。

四则运算法则包括加法、减法、乘法和除法。

在导数的计算中,我们可以利用这些法则简化复杂函数的导数计算。

对于两个函数f(x)和g(x),它们的和、差、积和商的导数计算规则如下:1. 和的导数,(f+g)'(x) = f'(x) + g'(x)。

2. 差的导数,(f-g)'(x) = f'(x) g'(x)。

3. 积的导数,(fg)'(x) = f'(x)g(x) + f(x)g'(x)。

4. 商的导数,(f/g)'(x) = (f'(x)g(x) f(x)g'(x)) / g(x)^2。

利用四则运算法则,我们可以将复杂函数的导数计算转化为简单函数的导数计算,从而更方便地求得函数的导数值。

在实际问题中,导数的基本公式和四则运算法则是非常有用的工具。

它们可以帮助我们分析函数的变化规律,解决最优化问题,以及研究曲线的性质。

因此,掌握导数的基本公式和四则运算法则对于理解微积分的重要性不言而喻。

希望通过本文的介绍,读者对导数的基本概念有了更清晰的认识,也能够更加灵活地运用导数的基本公式和四则运算法则解决实际问题。

函数的微分

函数的微分
从而, 有
dy f ( x)dx. ——微分计算公式 dy 此时, 定理可重述为: dy f ( x)dx f ( x). dx
10
dy dy dx. 故导数也称为“微商”. dx 导数的这种定义在某些场合下应用会很方便 .
求函数导数或微分的方法也称为“微分法”. 可微、可导、连续的关系
2
第五节
函数的微分
一、微分的定义 设有函数 y f ( x) , 当 x 在 x0 处有增量 x 时, 函数 y 有对应的增量 y f ( x0 x) f ( x0 ) .
当函数 f ( x ) 较为复杂时, y 的计算就比较麻烦.
例如 y arctan x , 在 x0 1 处有增量 x 0.02 , 求 y .
(保留3位小数)
y arctan1.02 arctan1 计算困难
任务: 为 y 寻求一个既简单(容易计算)又满足一定精度 要求的近似表达式.
3
实例:正方形金属薄片受热后面积的改变量.
设边长由 x0变到x0 x,
x0
x
( x ) 2
x
正方形面积 A x ,
2 0
2 A ( x0 x)2 x0
y f ( x0 ) , (2) 充分性 设 函数f ( x)在点x0可导, 则 lim x 0 x y f ( x 0 ) x lim 0 , 于是 y f ( x0 )x o(x) , x 0 x
即 y Ax o(x ) , 函数 f ( x )在点x0可微 .
3
求函数的改变量 y .
3 y ( x 0 x ) 3 x 0 2 3 x0 x 3 x 0 ( x ) 2 ( x ) 3 .

微分公式和运算法则

微分公式和运算法则

(cos x)sin x
d(cos x)sin xdx
(tan x)sec2 x
d(tan x)sec2xdx
(cot x)csc2x
d(cot x)csc2xdx
(sec x)sec x tan x
d(sec x)sec x tan xdx
(csc x)csc x cot x
d(csc x)csc x cot xdx
§ 2.2.1 微分概念
一、微分的定义
引例: 一块正方形金属薄片受温度变化的影响, 其
边长由 变到
问此薄片面积改变了多少?
设薄片边长为 x , 面积为 A , 则
当x在 取
得增量 时, 面积的增量为
关于△x 的
时为
线性主部 高阶无穷小

称为函数在 的微分
1
定义1: 若函数
在点 的增量可表示为
( A 为不依赖于△x 的常数)
解: 已知球体体积为
镀铜体积为 V 在
时体积的增量
因此每只球需用铜约为 (g)
17
2.误差估计 某量的精确值为 A , 其近似值为 a , 称为a 的绝对误差 称为a 的相对误差 若 称为测量 A 的绝对误差限 称为测量 A 的相对误差限
18
误差传递公式 :
若直接测量某量得 x , 已知测量误差限为
12
§ 2.2.3 高阶微分
1、二阶微分:一阶微分的微分称为二阶微分。记作
且有
(1)
2、n 阶微分:n-1阶微分的微分称为n阶微分,记作
且有
(2)
3、高阶微分:二阶以及二阶以上的微分统称为高阶微分。
例设
(2)求
解由

依公式(1)得 类似地,依公式(2)得

导数的基本公式及四则运算法则

导数的基本公式及四则运算法则

导数的减法法则
总结词
导数的减法法则是导数的基本运算法则 之一,它指出两个函数的导数的差等于 它们各自导数的差的负值。
VS
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处 可导,那么$(f(x) - g(x))' = f'(x) - g'(x)$ 。
导数的乘法法则
总结词
导数的乘法法则是说,如果一个函数乘以一 个常数,那么它的导数就是这个常数乘以该 函数的导数。
详细描述
对于对数函数f(x)=ln(x),其导数为f'(x)=1/x。这个公式告诉我们,对数函数的斜率与x 的倒数有关。
03
导数的四则运算法则
导数的加法法则
总结词
导数的加法法则是指两个函数的导数的和等于它们各自导数的和。
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处可导,那么$(f(x) + g(x))' = f'(x) + g'(x)$。
04
导数在实际问题中的应用
最大值和最小值问题
总结词
导数在求解最大值和最小值问题中具有广泛 应用。
详细描述
通过求导找到函数的极值点,进而确定函数 的最大值或最小值。在经济学、工程技术和 科学研究等领域中,求解最大值和最小值问 题是一个常见的问题,导数的应用为这些问
题提供了有效的解决方案。
速度和加速度问题
导数在实际问题中的应用案例分析
总结:导数在实际问题中有着广泛的应用,通过分析导数 ,我们可以解决许多实际问题,如最优化问题、经济问题 等。
例如,在物理学中,导数可以用来描述速度和加速度的变 化;在经济学中,导数可以用来分析边际成本和边际收益 ;在工程学中,导数可以用来设计最优化的方案。

一、微分的定义二、微分的基本公式三、微分的四则运算法则

一、微分的定义二、微分的基本公式三、微分的四则运算法则

dy | x x0 , 或df | x x0 , 即 dy | x x0 A x.
定理3.7 y=f(x)可微的充分必要条件是y=f(x)可导,且 有 dy f ( x)dx .
dy 由于 f ( x) ,即函数的导数等于函数的微 dx 分与自变量微分之比,因此导数也称微商.

d(u v) (u v)dx (u v)dx
udx vdx du dv.
d(uv) (uv)dx (uv uv)dx
v udx u vdx vdu udv.
u 定理3.9 设u=u(x),v=v(x)可微,且 v 0 ,则 可微, v u vdu udv 且有 d ( ) . 2 v v
(a 0,a 1).
d tan x sec2 xdx.
d cot x csc xdx.
2
d sec x sec x tan xdx. d csc x csc x cot xdx.
1 d arsin x dx. 2 1 x 1 d arccos x dx. 2 1 x
当立方体的边长从 x0 变到 x0 x 时,相应的体 积增量
3 2 2 V ( x0 x) 3 x0 3 x0 x (3x0 (x) 2 (x) 3 ).
函数增量 V 分成两部分,一部分是 x 的线性部分
2 3x0 x, 一部分是关于 x 的高阶无穷小
1 d arctan x dx . 2 1 x 1 d arccot x dx . 2 1 x
三、微分的四则运算法则
定理3.8 设u=u(x),v=v(x)可微 ,则 u v , u , v可微, 且有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档