高考立体几何知识点和例题(文科学生用)

合集下载

文科数学高考立体几何考点总结学习资料

文科数学高考立体几何考点总结学习资料
图 1-5 (1)证明:GH∥EF; (2)若 EB=2,求四边形 GEFH 的面积.
【例 8】 [2013·安徽卷理]如图,圆锥顶点为 P ,底面圆心为 O ,其母线与底面所成的角为 22.5 。 AB 和 CD 是底面圆 O 上的两条平行的弦,轴 OP 与平面 PCD 所成的角为 60 。
(Ⅰ)证明:平面 PAB 与平面 PCD 的交线平行于底面; (Ⅱ)求 cos COD 。
C
B
D
A
【例 7】如图所示的多面体是由底面为 ABCD 的长方体被截面 AEC1F 所截面而得到的,其
中 AB 4, BC 2,CC1 3, BE 1. (Ⅰ)求 BF 的长; (Ⅱ)求点 C 到平面 AEC1F 的距离.
F D
A
C1
C E B
【例 8】 P ABCD中,ABC BAD 90 ,BC 2AD, PAB与PAD 都是边长为 2 等边三角
【例 5】如图,在多面体 ABCDEF 中,已知平面 ABCD 是边长为 3 的正方形,EF // AB ,
EF 3 ,且 EF 与平面 ABCD 的距离为 2 ,则该多面体的体积为(

2
A. 9 B. 5 C. 6 D. 15
2
2
E
D A
F
C B
【例 6】在三棱锥 A-BCD 中,AB=CD=6,AC=BD=AD=BC=5,则该三棱锥的外接球 的表面积为________.
E
A
D
B
C
2、 探究线面垂直与面面垂直: 【例 1】如图,在四棱锥 S -ABCD 中,平面 SAD⊥平面 ABCD,四边形 ABCD 为正方形,且 P 为 AD 的中点,Q 为 SB 的中点,M 为 BC 的中 点. (1)求证:CD⊥平面 SAD; (2)求证:PQ∥平面 SCD; (3)若 SA=SD,在棱 SC 上是否存在点 N,使得平面 DMN⊥平面 ABCD?并证明你的结论.

专题8.3 立体几何综合问题(原卷版)文科生

专题8.3 立体几何综合问题(原卷版)文科生

【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。

高考文科数学专题5 立体几何 高考文科数学 (含答案)

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何第一讲 空间几何体1.棱柱、棱锥 (1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.(2)柱、锥的内切球找准切点位置,化归为平面几何 问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)体积公式①柱体的体积V =Sh ;②锥体的体积V =13Sh ;③台体的体积V =13(S ′+SS ′+S )h ;④球的体积V =43πR 3.1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2013·江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8 B.9 C.10 D.11答案 A解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.4. (2013·新课全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )答案 A解析根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.5. (2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知,该几何体为正方体和球组成的组合体,正方体的对角线为球的直径.所以2R=23,即R=3,球的表面积为S=4πR2=12π.题型一空间几何体的三视图例1(1)(2012·广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π(2)(2012·陕西)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左(侧)视图为( )审题破题根据三视图先确定原几何体的直观图和形状,然后再解题.答案(1)C (2)B解析 (1)由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.反思归纳 将三视图还原成直观图是解答该类问题的关键,其解题技巧是对常见简单几何体及其组合体的三视图,特别是正方体、长方体、圆柱、圆锥、棱柱、棱锥、球等几何体的三视图分别是什么图形,数量关系有什么特点等都应该熟练掌握,会画出其直观图,然后由三视图验证.变式训练1 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________ cm 3.答案 18解析 由几何体的三视图可知,该几何体由两个直四棱柱构成,其直观图如图所示.上底面直四棱柱的长是3 cm ,宽是3 cm ,高是1 cm ,故其体积为9 cm 3,下底面直四棱柱的高是3 cm ,长是1 cm ,宽是3 cm ,其体积为9 cm 3.故该几何体的体积为V =18 cm 3. 题型二 空间几何体的表面积和体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.审题破题 本题可从两个思路解题:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积,再利用棱锥的体积公式求出其体积; 思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,过O 1作。

高考数学(文科)总复习考点解析及习题第六章立体几何

高考数学(文科)总复习考点解析及习题第六章立体几何

高考数学(文科)总复习考点解析及习题(解析版)第六章立体几何考点1 空间几何体的结构特征及三视图和直观图考点2 空间几何体的表面积和体积考点3 空间点、直线、平面间的位置关系考点4 直线、平面平行的判定及其性质考点5 直线、平面垂直的判定及其性质考点1 空间几何体的结构特征及三视图和直观图高考概览本考点是高考常考知识点,题型为选择题、填空题;分值为5分,中等难度考纲研读1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图一、基础小题1.三视图如图所示的几何体是( )A.三棱锥 B.四棱锥C.四棱台 D.三棱台答案 B解析由三视图可作几何体如图,可知选B.2.以下关于几何体的三视图的论述中,正确的是( )A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆答案 A解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.3.用一个平行于水平面的平面去截球,得到如右图所示的几何体,则它的俯视图是( )答案 B解析俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.4.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x 轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )A.4 cm2 B.4 2 cm2C.8 cm2 D.8 2 cm2答案 C解析依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD 相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.5.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1 C.2 D.3答案 A解析①错误,只有这两点的连线平行于旋转轴时才是母线;②错误,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.6.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱答案 B解析由三视图可知该几何体应为横向放置的三棱柱(如图所示).故选B.7.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )答案 D解析A图是两个圆柱的组合体的俯视图;B图是一个四棱柱与一个圆柱的组合体的俯视图;C图是一个底面为等腰直角三角形的三棱柱与一个四棱柱的组合体的俯视图,采用排除法,故选D.8.将正方体(如图a所示)截去两个三棱锥,得到图b所示的几何体,则该几何体的侧视图为( )答案 B解析还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.9.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A.1 B.2 C.3 D.4答案 D解析由题意知,三棱锥放置在长方体中如图所示,利用长方体模型可知,此三棱锥的四个面全部是直角三角形.故选D.10.在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为( )A.①和③ B.③和① C.④和③ D.④和②答案 D解析由题意得,该几何体的正视图是一个直角三角形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2),且内有一条虚线(一顶点与另一直角边中点的连线),故正视图是④;俯视图即在底面的射影,是一个斜三角形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.11.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( )A.24a2 B.22a2 C.22a2 D.223a2答案 B解析根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=24S,本题中直观图的面积为a2,所以原平面四边形的面积等于a 224=22a 2.故选B.12.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.答案 2 3解析 由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.13.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )答案 A解析 观察图形易知卯眼处应以虚线画出,俯视图为,故选A.14.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2答案 B解析根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.15.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2 C.3 D.4答案 C解析由三视图得四棱锥的直观图如图所示.其中SD⊥底面ABCD,AB⊥AD,AB∥CD,SD=AD=CD=2,AB=1.由SD⊥底面ABCD,AD,DC,AB⊂底面ABCD,得SD⊥AD,SD⊥DC,SD⊥AB,故△SDC,△SDA为直角三角形,又∵AB⊥AD,AB⊥SD,AD,SD⊂平面SAD,AD∩SD=D,∴AB⊥平面SAD,又SA⊂平面SAD,∴AB⊥SA,即△SAB也是直角三角形,从而SB=SD2+AD2+AB2=3,又BC=22+12= 5.SC=22,∴BC2+SC2≠SB2,∴△SBC不是直角三角形,故选C.16.某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16 答案 B解析 由多面体的三视图还原直观图如图.该几何体由上方的三棱锥A -BCE 和下方的三棱柱BCE -B 1C 1A 1构成,其中面CC 1A 1A 和面BB 1A 1A 是梯形,则梯形的面积之和为2×(2+4)×22=12.故选B.17.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .2 答案 B解析 根据三视图可得该四棱锥的直观图(四棱锥P -ABCD )如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD ,PD =22+22+22=2 3.故选B.18.一几何体的直观图如图,下列给出的四个俯视图中正确的是( )答案 B解析 由几何体的直观图知,该几何体最上面的棱横放且在中间的位置上,因此它的俯视图应排除A ,C ,D ,经验证B 符合题意,故选B .19如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )答案 C解析 ∵该几何体的体积为12,且由题意知高为1,故底面积为12,结合选项知选C .20.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为( )A .5B .4C .3D .2答案 B解析 由题知可以作为该几何体俯视图的图形为①②③⑤,故选B .21.已知某几何体的正视图和俯视图是如图所示的两个全等的矩形,给出下列4个图形:其中可以作为该几何体的侧视图的图形序号是( )A.①②③B.②③④C.①②④D.①③④答案D解析符合题意的几何体可以是如下几何体:由此可知选D.22.如图,在正方体ABCD-A1B1C1D1中,已知E是棱A1B1的中点,用过点A,C,E的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为( )答案A解析依题意,截后的多面体如图所示,其中F为棱B1C1的中点,故选A.23.一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是( )A .①②B .①③C .③④D .②④答案 D解析 由点A 经正方体的表面,按最短路线爬行到达顶点C 1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB 1A 1和平面BCC 1B 1展开到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过BB 1的中点,此时对应的正视图为②;若把平面ABCD 和平面CDD 1C 1展开到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过CD 的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D .24.如图,在三棱柱ABC -A′B′C′中,已知侧棱AA′⊥底面A′B′C′,且△A′B′C′是正三角形,若点P 是上底面ABC 内的任意一点,则三棱锥P -A′B′C′的正视图与侧视图的面积之比为(注:以垂直于平面ACC′A′的方向为正视图方向)( )A .12B .32 C .1 D .233答案 D解析 过点P 作AC 的垂线交AC 于P′,则P′为P 在平面ACC′A′上的投影.取A′C′的中点B″,则B″为B′在平面ACC′A′上的投影.由此得正视图与侧视图如图所示.设底面边长为a ,AA′=b .则S 正=12ab ,S 侧=12×32a×b=34ab ,故S 正S 侧=12ab 34ab =233.二、大题1.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(1)请画出该几何体的直观图,并求出它的体积;(2)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD-A 1B 1C 1D 1?如何组拼?试证明你的结论.解 (1)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥,其中底面ABCD 是边长为6的正方形,高为CC 1=6,故所求体积是V =13×62×6=72.(2)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体,其拼法如图2所示.证明:∵面ABCD 、面ABB 1A 1、面AA 1D 1D 为全等的正方形,于是VC1-ABCD =VC1-ABB1A1=VC1-AA1D1D ,故所拼图形成立.2.一个多面体的三视图和直观图如图1、图2所示,其中M ,N 分别是AB ,AC 的中点,G 是DF 上的一个动点,且DG =λDF(0<λ≤1).(1)求证:对任意的λ∈(0,1),都有GN ⊥AC ; (2)当λ=12时,求证:AG ∥平面FMC .证明 (1)由三视图与直观图,知该几何体是一个直三棱柱,CD ⊥DF ,AD ⊥DF ,AD ⊥CD ,且DF =AD =DC .如图,连接BD ,则AC ⊥BD ,且N 为AC 与BD 的交点. 由题意知FD ⊥平面ABCD , 又G 是FD 上的一点, ∴GD ⊥平面ABCD , 又AC ⊂平面ABCD , ∴GD ⊥AC .由AC ⊥BD ,GD ⊥AC 及BD∩GD=D , 知AC ⊥平面GDN ,又GN ⊂平面GDN ,∴AC ⊥GN .(2)当λ=12时,G 是DF 的中点,取DC 的中点S ,连接AS ,GS ,如图所示.∵M 是AB 的中点,∴AS ∥MC ,GS ∥FC ,且AS∩GS=S , MC∩FC=C ,∴平面AGS ∥平面FMC ,又AG ⊂平面AGS ,∴AG ∥平面FMC .考点2 空间几何体的表面积和体积高考概览高考中本考点常见题型为选择题、填空题,分值为5分,中等难度 考纲研读球体、柱体、锥体、台体的表面积和体积计算公式一、基础小题1.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( ) A .2倍 B .4倍 C .8倍 D .16倍 答案 C解析 设原来球的半径为r ,则现在球的半径为2r ,则V 原=43πr 3,V 现=43π·(2r )3,故V 现=8V 原.故选C .2.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案 C解析 设正方体的棱长为a ,则a 3=8,∴a =2.而此正方体的内切球直径为2,∴S 表=4πr 2=4π.3.如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A .2 3B .4 3C .8D .4 答案 D解析 由三视图知,原几何体为两个四棱锥的组合体,其中四棱锥的底面边长为1,斜高为1,所以这个几何体的表面积为S =12×1×1×8=4.4.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为( )A .32B . 3C .2D .4 答案 B解析 由侧视图可知直三棱柱底面正三角形的高为3,容易求得正三角形的边长为2,所以底面正三角形面积为12×2×3=3.再由侧视图可知直三棱柱的高为1,所以此三棱柱的体积为3×1=3.故选B .5.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A .a 2B .3πa 3πC .23πa 3πD .23a 3π答案 C解析 设圆锥的底面半径为r ,母线长为l ,由题意知,2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3答案 B解析 由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163 D .6答案 B解析 依题意,所求几何体是一个四棱台,其中上底面是边长为1的正方形、下底面是边长为2的正方形,高是2,因此其体积等于13×(12+22+1×4)×2=143.故选B .8.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A .24+(2-1)πB .24+(22-2)πC .24+(5-1)πD .24+(23-2)π 答案 B解析 如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得.由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .9.已知一个几何体的三视图如图所示,则其体积为( )A .10+πB .2+π2C .2+π12D .2+π4答案 D解析 根据几何体的三视图还原其直观图如图所示,显然可以看到该几何体是一个底面长为2,宽为1,高为1的正棱柱与一个底面半径为1,高为1的14圆柱组合而成,其体积为V =2×1×1+14×π×12×1=2+π4,故选D .10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 11.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.答案26解析 易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26.12.如图,在平面四边形ABCD 中,已知AB ⊥AD ,AB =AD =1,BC =CD =5,以直线AB 为轴,将四边形ABCD 旋转一周,则所得旋转体的体积为________.答案 12π解析 由题意,该旋转体是一圆台内部挖去一个圆锥,如图1所示:如图2,过点C 作CE ⊥AB ,连接BD .在等腰直角三角形ABD 中,BD =AD 2+AB 2=2. 在△BDC 中,CD 2=BD 2+BC 2-2BD ·BC cos ∠DBC , 所以25=2+25-102cos ∠DBC ,所以cos ∠DBC =210,所以sin ∠DBC =1-cos 2∠DBC=7210. 因为∠CBE =180°-∠ABD -∠DBC =135°-∠DBC ,所以sin ∠CBE =sin(135°-∠DBC )=22cos ∠DBC +22sin ∠DBC =45.在Rt △BCE 中,CE =BC sin ∠CBE =4,所以BE =BC 2-CE 2=3,AE =4.所以圆台上、下底面圆的面积分别为S 上=π,S 下=16π,圆台体积V 1=13(S 上+S 下+S 上S 下)·AE =28π,圆锥体积V 2=13×16π×3=16π,所以旋转体体积V =V 1-V 2=12π.13.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 由三视图可知两个同样的几何体可以拼成一个底面直径为6,高为14的圆柱,所以该几何体的体积V =12×32×π×14=63π.故选B .14.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 答案 C解析 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上、下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm .故直四棱柱的体积V =1+22×2×2=6 cm 3.15.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12π C.82π D.10π答案 B解析根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为S=2π(2)2+2π×2×22=12π.故选B.16.在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( )A.8 B.6 2 C.8 2 D.8 3答案 C解析在长方体ABCD-A1B1C1D1中,连接BC1,根据线面角的定义可知∠AC1B=30°,因为AB=2,ABBC1=tan30°,所以BC1=23,从而求得CC1=BC21-BC2=22,所以该长方体的体积为V=2×2×22=82.故选C.17.设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为( )A.12 3 B.18 3 C.24 3 D.54 3答案 B解析如图所示,点M为三角形ABC的重心,E为AC的中点,当DM⊥平面ABC时,三棱锥D-ABC体积最大,此时,OD=OB=R=4.∵S△ABC=34AB2=93,∴AB=6,∵点M 为三角形ABC 的重心,∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=183.故选B .18.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若△SAB 的面积为8,则该圆锥的体积为________.答案 8π解析 如图所示,∠SAO =30°,∠ASB =90°,又S △SAB =12SA ·SB =12SA 2=8,解得SA =4,所以SO =12SA =2,AO =SA 2-SO 2=23,所以该圆锥的体积为V =π3·OA 2·SO =8π. 19.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.答案112解析 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.20.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案 43解析 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为2,高为1,∴其体积为13×(2)2×1=23,∴多面体的体积为43.21.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .n =4,V =10B .n =5,V =12C .n =4,V =12D .n =5,V =10答案 D解析 由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D . 22.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D解析 如图,可知球的半径R =OH 2+AH 2=12+(3)2=2,进而这个球的表面积为4πR 2=16π.故选D .23.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6 答案 C解析 该几何体的表面积是由球的表面积、球的大圆面积、半个圆柱的侧面积以及圆柱的纵切面面积组成.从而该几何体的表面积为4π×12+π×12+12×2π×3+3×2=8π+6.故选C .24.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .83B .3C .8D .53 答案 A解析 根据三视图还原该几何体的直观图,如图中四棱锥P -ABCD 所示,则V P -ABCD =V P-AFGD+(V AFB -DEC -V G -ECD )=13×(1+2)×22×1+12×1×2×2-13×12×1×2×1=83.故选A .25.我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5 答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=35.故所求为4×35+2×(2×4)=125+16.故选D .26.已知底面边长为42,侧棱长为25的正四棱锥S -ABCD 内接于球O 1.若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.答案 8解析 如图,正四棱锥S -ABCD 内接于球O 1,SO 1与平面ABCD 交于点O .在正方形ABCD 中,AB =42,AO =4.在Rt △SAO 中,SO =SA 2-OA 2=(25)2-42=2.设球O 1的半径为R ,则在Rt △OAO 1中,(R -2)2+42=R 2,解得R =5,所以球O 1的直径为10.当球O 2与平面ABCD 相切于点O 且与球O 1相切时,球O 2的直径最大.又因为SO =2,所以球O 2的直径的最大值为10-2=8.二、大题1.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)由PO 1=2知,O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3).正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h . 连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎪⎫22a 2+h 2=36, 即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h=263(36h -h 3),0<h <6, 从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.2.如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得∠BAC =90°,即AB ⊥AC . 又AB ⊥DA ,且AC ∩DA =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =AC =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V 三棱锥Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.3.如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).4.已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,则DD ′是等腰梯形BCC ′B ′的高,又C ′B ′=20 cm ,CB =30 cm ,所以S 侧=3×12×(20+30)×DD ′=75DD ′.S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD ′=3253, 所以DD ′=1333(cm),又因为O ′D ′=36×20=1033(cm), OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积为V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30 =1900(cm 3).故棱台的体积为1900 cm 3.考点3 空间点、直线、平面间的位置关系高考概览:高考在本考点的常考题型为选择题、解答题,分值为5分或12分,中等难度 考纲研读1.理解空间直线、平面位置关系的定义 2.了解可以作为推理依据的公理和定理3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题一、基础小题1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 答案 A解析 “两条直线为异面直线”⇒“两条直线无公共点”.“两直线无公共点”⇒“两直线异面或平行”.故选A.2.下列命题正确的个数为( )①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3答案 C解析经过不共线的三点可以确定一个平面,∴①不正确;两条平行线可以确定一个平面,∴②正确;两两相交的三条直线可以确定一个或三个平面,∴③正确;命题④中没有说清三个点是否共线,∴④不正确.3.若直线上有两个点在平面外,则( )A.直线上至少有一个点在平面内B.直线上有无穷多个点在平面内C.直线上所有点都在平面外D.直线上至多有一个点在平面内答案 D解析根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.4.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点A B.点BC.点C但不过点M D.点C和点M答案 D解析∵A,B∈γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.5.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( )A.异面或平行 B.异面或相交C.异面 D.相交、平行或异面答案 D解析异面直线不具有传递性,可以以长方体为载体加以说明,a,b异面,直线c的位置如图(可有三种情况)所示,故a,c可能相交、平行或异面.6.以下四个命题中:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E 共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是( )A.0 B.1 C.2 D.3答案 B解析①正确,否则三点共线和第四点必共面;②错误,如图三棱锥,能符合题意但A,B,C,D,E不共面;③错误,从②的几何体知;空间四边形为反例可知,④错误.7.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( ) A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析如果c与a,b都平行,那么由平行线的传递性知a,b平行,与异面矛盾.故选C.8.如图,平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有________条.答案 5解析依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行的棱有AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的棱有5条.。

北京文科高考立体几何大题题型总结

北京文科高考立体几何大题题型总结

立体几何复习一、点、直线、平面之间的关系 (一)、立体几何网络图:1.线线平行的判断:(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(12)、垂直于同一平面的两直线平行。

【例题】(2016丰台一模17)已知在ABC ∆中,90=∠B ,D ,E 分别为边BC ,AC 的中点,将CDE ∆沿DE 翻折后,使之成为四棱锥ABDE C -'(如图) (Ⅱ)设l ABC DE C =''平面平面 ,求证:l AB //ABED C C'DEFBA(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

【例题】(2016西城一模17)如图,在四棱柱1111D C B A ABCD -中,BC AD ABCD BB //,1底面⊥, BD AC BAD ⊥=∠,90(Ⅱ)求证:D B AC 1⊥;【例题】(2016延庆一模17)如图,已知四棱锥ABCD S -,底面ABCD 是边长为2的菱形,60=∠ABC ,侧面SAD 为正三角形,侧面ABCD SAD 底面⊥,M 为侧棱SB 的中点,E 为线段AD 的中点 (Ⅱ)求证:AC SE ⊥(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。

判定定理:性质定理:★判断或证明线面平行的方法⑴ 利用定义(反证法):=αl α=∅,则l ∥α (用于判断); ⑵ 利用判定定理:线线平行线面平行 (用于证明); ⑶ 利用平面的平行:面面平行线面平行 (用于证明);⑷ 利用垂直于同一条直线的直线和平面平行(用于判断)。

文科立体几何知识点、方法总结材料高三复习

文科立体几何知识点、方法总结材料高三复习

立体几何知识点整理(文科)一.直线和平面的三种位置关系: 1. 线面平行符号表示: 2. 线面相交 符号表示: 3. 线在面符号表示: 二.平行关系: 1. 线线平行:方法一:用线面平行实现。

m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα 方法三:用线面垂直实现。

若αα⊥⊥m l ,,则m l //。

方法四:用向量方法:若向量l 和向量m 共线且l 、m 不重合,则m l //。

2. 线面平行:方法一:用线线平行实现。

ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ 方法二:用面面平行实现。

αββα////l l ⇒⎭⎬⎫⊂ 方法三:用平面法向量实现。

若n 为平面α的一个法向量,l n ⊥且α⊄l ,则α//l 。

3. 面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l 三.垂直关系: 1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

(完整)高中文科数学立体几何部分整理.doc

(完整)高中文科数学立体几何部分整理.doc

立体几何高中文科数学立体几何部分整理第一章 空间几何体(一)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图 ——光线从几何体的前面向后面正投影,得到的投影图;侧视图 ——光线从几何体的左面向右面正投影,得到的投影图;正视图 ——光线从几何体的上面向下面正投影,得到的投影图;注:( 1)俯视图画在正视图的下方, “长度”与正视图相等;侧视图画在正视图的右边, “高度”与正视图相等, “宽度”与俯视图。

(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽” .( 2)正视图,侧视图,俯视图都是平面图形,而不是直观图。

3.直观图:3.1 直观图 ——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3.2 斜二测法:step1:在已知图形中取互相垂直的轴 Ox 、 Oy ,(即取 xoy 90);step2:画直观图时,把它画成对应的轴 o ' x ',o ' y' ,取 x ' o ' y' 45 (or 135 ) ,它们确定的平面表示水平平面;step3:在坐标系 x ' o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于 x 轴(或在 x 轴上)的线段保持长度不变,平行于y 轴(或在 y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的2倍 .4解决两种常见的题型时应注意: ( 1)由几何体的三视图画直观图时,一般先考虑“俯视图”.( 2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。

【例题点击】将正三棱柱截去三个角(如图1 所示 A ,B , C 分别是 △GHI 三边的中点)得到几何体如图 2,则该几何体按图 2 所示方向的侧视图(或称左视图)为()HA G ABBB侧视BBBCCIEDEDEEEEF F A .B .C .D .图 1图 2第 1页立体几何解:在图 2 的右边放扇墙 (心中有墙 ), 可得答案 A(二)立体几何1.棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

高三文科数学专题复习——立体几何.doc

高三文科数学专题复习——立体几何.doc

高三文科数学专题复习――立体几何一、本章知识结构:二、题型及典型例题考点二:空间几何体的表面积和体积【内容解读】理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们的侧面展开图,及其对计算侧面积的作用,会根据条件计算表面积和体积。

理解球的表面积和体积的计算方法。

例3、(2007广东)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S例4、(2008山东)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π例5、(湖北卷3)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. 38πB. 328πC. π28 D. 332π考点三:点、线、面的位置关系【内容解读】理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。

例6、如图1,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且CFCB=CGCD=23,则()(A)EF与GH互相平行(B)EF与GH异面(C)EF与GH的交点M可能在直线AC上,也可能不在直线AC上(D)EF与GH的交点M一定在直线AC上例7、(2008全国二10)已知正四棱锥S ABCD-的侧棱长与底面边长都相等,E是SB的中点,则AE SD,所成的角的余弦值为()A.13B.2C.3D.23考点四:直线与平面、平面与平面平行的判定与性质俯视图正(主)视图侧(左)视图2322图1【内容解读】掌握直线与平面平行、平面与平面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题。

例8、(2008安徽)如图,在四棱锥O ABCD-中,底面ABCD四边长为1的菱形,4ABCπ∠=,OA ABCD⊥底面, 2OA=,M为OA的中点,N为BC的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v1.0 可编辑可修改高考立体几何知识点总结整体知识框架:一、空间几何体(一)空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二)几种空间几何体的结构特征1 、棱柱的结构特征棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等;棱柱的面积和体积公式chS=直棱柱侧(c是底周长,h是高)S直棱柱表面 = c·h+ 2S底V棱柱 = S底·h2 、棱锥的结构特征(1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的结构特征Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:1'2S ch=正棱椎(c为底周长,'h为斜高)体积:13V Sh=棱椎(S为底面积,h为高)棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱A B CDPO Hv1.0 可编辑可修改正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

对棱间的距离为a 22(正方体的边长) 正四面体的高a 36(正方体体对角线l 32=)正四面体的体积为3122a (正方体小三棱锥正方体V V V 314=-)正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=)正四面体的外接球半径为a 46,外接球半径为a 126,外接球半径a 423 、棱台的结构特征定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。

正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形;(4)各侧棱的延长线交于一点。

4 、圆柱的结构特征定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

圆柱的性质(1)上、下底及平行于底面的截面都是等圆; (2)过轴的截面(轴截面)是全等的矩形。

圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。

圆柱的面积和体积公式(r 为底面半径,h 为圆柱的高)S 圆柱侧面 = 2π·r ·h S 圆柱全 = 2π r h + 2π r 2V 圆柱 = S 底h = πr 2h 5、圆锥的结构特征圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。

圆锥的结构特征(1) 平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; (2)轴截面是等腰三角形;(3)母线的平方等于底面半径与高的平方和: l 2= r 2+ h 2圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

6、圆台的结构特征圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。

圆台的结构特征⑴ 圆台的上下底面和平行于底面的截面都是圆; ⑵ 圆台的截面是等腰梯形; ⑶ 圆台经常补成圆锥,然后利用相似三角形进行研究。

圆台的面积和体积公式S 圆台侧 = π·(R + r)·l (r 、R 为上下底面半径)图1-5 圆锥v1.0 可编辑可修改 S圆台全= π·r 2 + π·R2 + π·(R + r)·lV圆台 = 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。

空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体。

7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;⑷注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;球外切正方体,球直径等于正方体的边长。

练习:1)将直角三角形绕它的一边旋转一周, 形成的几何体一定是()A.圆锥 B.圆柱 C.圆台 D.上均不正确2)用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥 B.圆柱 C.球体 D.以上都可能3)下左一图是一个物体的三视图,根据图中尺寸(单位:c m),计算它的体积为 c m3.二、典型例题分析例1:(几何体的侧面展开图)如上左二图,长方体1111DCBAABCD-的长、宽、高分别是5cm、4cm、3cm,一只蚂蚁从A到1C点,沿着表面爬行的最短距离是多少.练习:1)如上右二图, 四面体P-ABC中, PA=PB=PC=2, ∠APB=∠BPC=∠APC=300. 一只蚂蚁从A点出发沿四面体的表面绕一周, 再回到A点, 问蚂蚁经过的最短路程是_________.2)边长为5cm的正方形EFGH是圆柱的轴截面, 则从E点沿圆柱的侧面到相对顶点G的最短距离是_______________.练习.1)已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为()A.π34B.π38C.π316D.π3322)棱长为1的正方体的八个顶点都在同一个球的表面上,则这个球的表面积为()()A2π()B3π()C332π()D12π(三)空间几何体的表面积与体积空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积:222S rl rππ=+圆锥的表面积:2S rl rππ=+圆台的表面积:22S rl r Rl Rππππ=+++球的表面积:24S Rπ=扇形的面积公式2211=36022n RS lr rπα==扇形(其中l表示弧长,r表示半径,α表示弧度)空间几何体的体积柱体的体积:V S h=⨯底锥体的体积:13V S h=⨯底台体的体积:1)3V S S S S h=++⨯下下上上(球体的体积:343V Rπ=(四)空间几何体的三视图和直观图A'C'D'B'C DOA B OC'A'A cv1.0 可编辑可修改正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左边向右边正投影,得到的投影图。

俯视图:光线从几何体的上面向右边正投影,得到的投影图。

★画三视图的原则:主视图反映了物体的上、下和左、右位置关系;俯视图反映了物体的前、后和左、右位置关系;侧视图反映了物体的上、下和前、后位置关系。

三个视图之间的投影关系为:正俯长相等、正侧高相同、俯侧宽一样注:球的三视图都是圆;长方体的三视图都是矩形直观图:斜二测画法斜二测画水平放置的平面图形的基本步骤(1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox,Oy,建立直角坐标系;(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox′,Oy′,使∠x′Oy′=45°(或135°),它们确定的平面表示水平平面;(3)画对应图形,在已知图形中平行于x轴的线段,在直观图中画成平行于x′轴,且长度保持不变;平行于y轴的线段,在直观图中画成平行于y′轴,且长度变为原来的一半;(4)擦去辅助线,图画好后,要擦去x轴、y轴及为画图添加的辅助线(虚线).原视图与直观图的关系:直观图原视图原视图直观图,ssss2242==例1、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为 ( )解析:如图所示,点D1的投影为点C1,点D的投影为点C,点A的投影为点B.答案:D练习:(1)如图所示为某一平面图形的直观图,则此平面图形可能是()(2)判断:①水平放置的正方形的直观图可能是等腰梯形②两条相交的线段的直观图可能是平行线段③两条互相垂直的直线的直观图仍然垂直④平行四边形的直观图仍为平行四边形⑤长度相等的两线段直观图仍然相等(3)三角形ABC是边长为1正三角形,求其直观图三角形'''CBA的面积(4)如图,正方形''''CBAO的边长为1,它是水平放置的一个平面图形的直观图,求原图形的周长和面积(5)如上右图,用斜二测画法作∆ABC水平放置的直观图形得∆A1B1C1,其中A1B1=B1C1,A1D1是B1C1边上的中线,由图形可知在∆ABC中,下列四个结论中正确的是()A.AB=BC=AC B. AD⊥BC C. AC>AD>AB>BC D. AC>AD>AB=BC空间几何体三视图(重点)例 1如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( )A.6 3 B.9 3 C.12 3 D.183解析:由三视图可还原几何体的直观图如图所示.此几何体可通过分割和补形的方法拼凑成一个长和宽均为3,高为3的长方体,所求体积V=3×3×3=9 3.答案:B(2)一个空间几何体的三视图如图所示,则该几何体的表面积为( )A.48 B.32+817 C.48+817 D.80(3)某几何体的三视图如图所示,则该几何体的体积为( )A.92π+12 B.92π+18 C.9π+42 D.36π+18【答案】(1)C (2)B【解析】 (1)由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S=2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.2.由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,则其体积为:V=V1+V2=43×π×⎝⎛⎭⎪⎫323+3×3×2=92π+18,故选B.3.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是()A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B可得:10=底S,10=后S,10=右S,56=左S,因此该几何体表面积俯视图5630+=+++=左右后底SSSSS,故选B。

相关文档
最新文档