10结构的动力计算习题解答,重庆大学,文国治版教材课后答案

合集下载

结构动力学:Chapter_10(结构动力学)

结构动力学:Chapter_10(结构动力学)

= =
C1 sin ωt + C1ω cosωt
C2 cos
− C2ω
ωt
sin
ωt
得:⎧⎪C2 = y0
⎨ ⎪⎩C1
=
y0
ω
于是:
y=
y0
ω
sin ωt +
y0
cos ωt
进一步可确定式 y = C sin(ωt + φ) 中的C和φ
⎧ ⎪C = ⎪
C12 +C22 =
y02
+(
y0
ω
)2

⎪⎪⎩φ
第10章 结构动力学
本章内容的基本要求
本章课程的任务是使学生了解和掌握结构的动力特性和动力响应 的计算分析方法 ,具体为:
(1)掌握结构动力分析的基本方法,掌握单自由度及两自由度体 系的自由振动及其在简谐荷载作用下的强迫振动的计算方法 ;
(2)了解阻尼的作用,了解频率的近似计算方法。
1/109
10-1 动力计算概述
φ
C2
C1
y

ω

C
φ
ωt
31/109
3、几个术语
(1)周期:振动一次所需的时间。
(2)工程频率
T = 2π ω
单位时间内的振动次数(与周期互为倒数)。
f=1= ω T 2π
(3)频率(圆频率)
旋转向量的角速度,即体系在2π秒内的振动 次数。自由振动时的圆频率称为“自振频率”。
32/109
自振频率是体系本身的固有属性,与体系的 刚度、质量有关,与激发振动的外部因素无关。
P(t)
固端弯矩 M = PL
自由端位移 w = Pδ1 δ1: 单位荷载下的位移

结构的动力计算习题

结构的动力计算习题

《结构的动力计算》习题一、判断题1、图示等效体系的关系是:3211111k k k k ++=。

( )2、结构的动力反应只与初始条件及动荷载有关。

( )3、任何动力荷载作用下均可以采用公式:1221-⎪⎪⎭⎫⎝⎛-=ωθβ计算动力系数。

( ) 4、外界感干扰力只影响振幅、不影响体系的自振频率。

( )5、体系的动力自由度数与质点的个数无关、也与结构静定或超静定无关。

( )6、图示体系各杆自重不计、EA =∞,则该体系在初始时刻的干扰力作用下将做竖向振动。

( )二、选择题1、增加单自由度体系的阻尼、但仍保持为低阻尼体系,其结果是( )。

A 、周期变长 B 、周期不变 C 、周期变短 D 、 周期视具体体系而定2、图示两个等效结构,正确的刚度关系是( )。

A 、k=k 1+k 2 B 、21111k k k += C 、21211k k k k k += D 、2112k kk k k +=3、图示体系不计阻尼,平稳阶段最大动位移y max =4Pl 3/7EI ,其最大动力弯矩为( )。

A 、3Pl /7 B 、4Pl /7 C 、12Pl /7 D 、4Pl /21 4、下列哪句话有错误或不够准确()。

第3题图A、在多自由度体系自由振动问题中,主要问题是确定体系的全部自振频率和相应的主振型; B 、多自由度体系的自振频率不止一个,其个数与自由度个数相等;C 、每个自振频率都有自己相应的主振型,主振型就是多自由度体系振动时各质点的位移变化形式;D 、与单自由度体系相同,多自由度体系的自振频率和相应的主振型也是体系本身的固有性质。

5、图示单自由度体系自振周期的关系为( )。

A 、(a)=(c)B 、(a)=(b)C 、(b)=(c)D 、都不相等6、单自由度振动体系中,若质点在杆的中点,各杆EI 、l 相同,其自振周期的大小排列顺序为(A 、(c)>(a)>(b)B 、(c)>(b)>(a) C 、(a)>(b)>(c) D 、(b)>(c)>(a)三、分析计算题1、梁的抗弯刚度为EI2m3、柱的自重不计,求图示刚架的自振频率。

结构力学课后答案第10章结构动力学

结构力学课后答案第10章结构动力学
\
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106Nm2,t1=,FP0=8×104N。
(a)
则同样有: 。
10-9图示结构AD和DF杆具有无限刚性和均布质量 ,A处转动弹簧铰的刚度系数为kθ,C、E处弹簧的刚度系数为k,B处阻尼器的阻尼系数为c,试建立体系自由振动时的运动方程。
*
解:
取DF隔离体, :
取AE隔离体:
将R代入,整理得:
/
10-10试建立图示各体系的运动方程。
(a)
解:(1)以支座B处转角作为坐标,绘出梁的位移和受力图如下所示。图中惯性力为三角形分布,方向与运动方向相反。
图 图
(1)求结构运动方程
如所示弯矩图,图乘后,
其中 ,稳态解:
所示结构的运动方程为 ,C点最大动位移幅值为
(2)求B点的动位移反应


B点的动位移幅值为
(3)绘制最大动力弯矩图
图 图
最大动力弯矩图
10-20试求图示集中质量体系在均布简谐荷载作用下弹簧支座的最大动反力。设杆件为无限刚性,弹簧的刚度系数为k。
(2)画出 和 图(在B点处作用一附加约束)

(3)列出刚度法方程
, ,
代入 、 的值,整理得:
(b)
解:
图 图

试用柔度法解题
此体系自由度为1 。设质量集中处的竖向位移y为坐标。
y是由动力荷载 和惯性力矩 共同引起的。

结构动力学课后习题答案

结构动力学课后习题答案

结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。

它涉及到结构的振动、冲击响应、疲劳分析等方面。

课后习题是帮助学生巩固课堂知识、深化理解的重要手段。

以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。

系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。

习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。

特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。

习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。

结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。

冲击响应分析的结果可以用来评估结构的耐冲击性能。

习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。

结构动力学习题解答

结构动力学习题解答

(4)
将(4)式代入方程(3)可以求得:
A= h

2
n
−ω
2 2
)
= + 4n ω 2 nω
2 2
6F

L 6 K − mω
(
2 2
)
+ 9C ω
2
2
α = arctg
ω n −ω
2
2
= arctg
3Cω 6 K − mω 2

(2) 求 f (t ) = δ (t ) 的解; 将 f (t ) = δ (t ) 代入方程(1)得
∑ M ,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤: (1)设系统的广义坐标为 θ ,写出系统对于坐标 θ 的动能 T 和势能 U 的 表 达 式 ; 进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
ωn =
=
1 rA

1.8 已知图1-37所示振动系统中,匀质杆长为 L,质量为 m,两弹簧刚度皆为 K,阻尼系
̇ = 0时 数为 C,求当初始条件 θ 0 = θ 0

结构动力学习题答案

结构动力学习题答案

结构动力学习题答案在结构动力学中,习题答案通常涉及对结构在动态载荷下的行为进行分析和计算。

这些习题可能包括自由振动分析、受迫振动分析、随机振动分析、模态分析、响应谱分析等。

以下是一些典型的结构动力学习题答案示例。

习题一:单自由度系统的自由振动问题:一个单自由度系统具有质量m=2kg,阻尼系数c=0.5N·s/m,弹簧刚度k=800N/m。

初始条件为位移x(0)=0.1m,速度v(0)=0。

求该系统自由振动的位移时间历程。

答案:首先,确定系统的自然频率ωn:\[ \omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{800}{2}}\text{ rad/s} \]然后,计算阻尼比ζ:\[ \zeta = \frac{c}{2\sqrt{mk}} = \frac{0.5}{2\sqrt{2 \cdot 800}} \]由于ζ < 1,系统将进行衰减振动。

可以使用以下公式计算位移时间历程:\[ x(t) = A e^{-\zeta \omega_n t} \cos(\omega_d t + \phi) \] 其中,\( \omega_d = \sqrt{\omega_n^2 - \zeta^2 \omega_n^2} \) 是阻尼频率,A是振幅,\( \phi \)是相位角。

初始条件给出x(0)=0.1m,v(0)=0,可以解出A和\( \phi \)。

最终位移时间历程的表达式为:\[ x(t) = 0.1 e^{-\zeta \omega_n t} \cos(\omega_d t) \]习题二:单自由度系统的受迫振动问题:考虑上述单自由度系统,现在施加一个简谐力F(t)=F_0sin(ωt),其中F_0=100N,ω=10 ra d/s。

求系统的稳态响应。

答案:稳态响应可以通过傅里叶级数或直接应用受迫振动的公式来求解。

对于简谐力,系统的稳态响应为:\[ x_{ss}(t) = \frac{F_0}{k - m\omega^2} \sin(\omega t + \phi) \]其中,\( \phi \) 是相位差,可以通过以下公式计算:\[ \phi = \arctan\left(\frac{2\zeta\omega}{\omega_n^2 -\omega^2}\right) \]习题三:多自由度系统的模态分析问题:考虑一个二自由度系统,其质量矩阵M和刚度矩阵K如下:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & -k_c \\ -k_c & k_2\end{bmatrix} \]其中,\( m_1 = 2kg \),\( m_2 = 1kg \),\( k_1 = 800N/m \),\( k_2 = 1600N/m \),\( k_c = 200N/m \)。

结构动力学习题答案

解:以 m1 − k 体系静平衡位置作为原点 则 m1 , m2 共同作用的静平衡位置 u st = 碰撞之前 m2 的速度 v2 = m2 2 gh 碰撞之后:动量守恒
3.4
m2 g k
( m1 + m2 ) u (0) = m2 2 gh
即 u (0) =
i
i
m2 2 gh m1 + m2
动力方程: ( m1 + m2 )( u − ust )′′ + K ( u − ust ) = 0
5 .0 1 = u st 2ξ
(1)
当 w wn = 1 时,发生共振有: Rd 1 =
当 w wn = 1 10 时, Rd 1 =
0 .5 = u st
(1 − 0.1 ) + (2ξ × 0.1)
2 2
1
(2)
2
由式(1),(2)可以解得 ξ = 4.95%
3.6 解:
TR =
[1 − (w w ) ] + [2ξ w w ]
ii
ii
ii
ii
ii
δ Wp = −m2 g sin θ i Lδθ
虚 功原理: δ Ws
+ δ WI + δ W D +δ W p = 0 得:
⎡ m1 + m2 ⎢ mL ⎣ 2
2.6 解:
ii ⎫ ⎧i⎫ m2 L ⎤ ⎧ 0 ⎫ ⎪ u ⎪ ⎡C 0 ⎤ ⎪ u ⎪ ⎡ k 0 ⎤ ⎧ u ⎫ ⎧ +⎢ ⎨ i ⎬+ ⎢ ⎨ ⎬=⎨ ⎬ ⎥ ⎥ 2 ⎥ ⎨ ii ⎬ m2 L ⎦ ⎪ ⎪ ⎣ 0 0 ⎦ ⎪ ⎪ ⎣ 0 0 ⎦ ⎩θ ⎭ ⎩−m2 g sin θ i L ⎭ ⎩θ ⎭ ⎩θ ⎭

《结构力学习题集》(下)-结构的动力计算习题及答案

第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。

2、仅在恢复力作用下的振动称为自由振动。

3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。

4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。

5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。

6、图示组合结构,不计杆件的质量,其动力自由度为5个。

7、忽略直杆的轴向变形,图示结构的动力自由度为4个。

8、由于阻尼的存在,任何振动都不会长期继续下去。

9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题:10、图示梁自重不计,求自振频率ω。

l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。

l /2l /212、求图示体系的自振频率ω。

l l0.5l 0.513、求图示体系的自振频率ω。

EI = 常数。

ll 0.514、求图示结构的自振频率ω。

l l15、求图示体系的自振频率ω。

EI =常数,杆长均为l 。

16、求图示体系的自振频率ω。

杆长均为l 。

17、求图示结构的自振频率和振型。

l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。

B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。

EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。

求自振周期T 。

EIEIWEI 221、求图示体系的自振频率ω。

各杆EI = 常数。

a aa22、图示两种支承情况的梁,不计梁的自重。

求图a 与图b 的自振频率之比。

l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。

求水平自振周期T 。

结构动力计算课后习题答案

结构动力计算课后习题答案结构动力计算课后习题答案在学习结构动力学这门课程时,我们经常会遇到各种各样的习题。

这些习题旨在帮助我们巩固所学的知识,并提供实践的机会。

在这篇文章中,我将为大家提供一些结构动力计算课后习题的答案,希望能对大家的学习有所帮助。

1. 计算一个简支梁的固有频率。

答案:简支梁的固有频率可以通过以下公式计算:f = (1/2π) * √(k/m)其中,f为固有频率,k为刚度,m为质量。

在简支梁的情况下,刚度k等于弹性模量E乘以截面面积A除以长度L。

质量m等于密度ρ乘以截面面积A除以长度L。

2. 计算一个悬臂梁的固有频率。

答案:悬臂梁的固有频率可以通过以下公式计算:f = (1/2π) * √(3k/m)在悬臂梁的情况下,刚度k等于弹性模量E乘以截面面积A的三次方除以长度L的四次方。

质量m等于密度ρ乘以截面面积A除以长度L。

3. 计算一个简支梁的振动模态。

答案:简支梁的振动模态可以通过以下公式计算:f_n = (n^2 * v) / (2L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。

n为振动模态的序号,从1开始。

4. 计算一个悬臂梁的振动模态。

答案:悬臂梁的振动模态可以通过以下公式计算:f_n = (2n-1) * (v/4L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。

n为振动模态的序号,从1开始。

5. 计算一个简支梁的最大挠度。

答案:简支梁的最大挠度可以通过以下公式计算:δ_max = (5qL^4) / (384EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。

6. 计算一个悬臂梁的最大挠度。

答案:悬臂梁的最大挠度可以通过以下公式计算:δ_max = (qL^4) / (8EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。

以上是一些常见的结构动力计算课后习题的答案。

通过解答这些习题,我们可以更好地理解结构动力学的概念和原理,提高我们的计算能力和问题解决能力。

结构动力计算课后习题答案

结构动力计算课后习题答案结构动力计算是土木工程和机械工程领域中的一个重要分支,它涉及到结构在动力作用下的响应分析。

这门课程的课后习题通常要求学生运用所学的理论,解决实际工程问题。

以下是一些可能的习题答案示例,请注意,这些答案是基于假设的习题内容,实际的习题答案应根据具体的题目来确定。

习题1:单自由度系统的动力响应假设有一个单自由度系统,其质量为m,阻尼系数为c,刚度系数为k。

系统受到一个简谐激励F(t) = F0 * sin(ωt),其中F0是激励力的幅值,ω是激励频率。

求系统的稳态响应。

答案:对于单自由度系统,其运动方程可以表示为:\[ m\ddot{x}(t) + c\dot{x}(t) + kx(t) = F_0 \sin(\omega t) \]稳态响应可以通过求解上述方程的特解来获得。

特解的形式为:\[ x(t) = X \sin(\omega t + \phi) \]其中,振幅X和相位角φ可以通过以下公式计算:\[ X = \frac{F_0}{\sqrt{(\omega^2 m - \omega^2)^2 +(c\omega)^2}} \]\[ \phi = \arctan\left(\frac{c\omega}{\omega^2 m -\omega^2}\right) \]习题2:多自由度系统的模态分析考虑一个两自由度系统,其质量矩阵、刚度矩阵和阻尼矩阵分别为:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & k_c \\ k_c & k_2\end{bmatrix}, \quad C = \begin{bmatrix} c_1 & 0 \\ 0 & c_2\end{bmatrix} \]求系统的自然频率和模态形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 结构的动力计算习题解答习题10.1 是非判断题(1) 引起单自由度体系自由振动的初速度值越大,则体系的自振频率越大。

( ) (2) 如果单自由度体系的阻尼增大,将会使体系的自振周期变短。

( ) (3) 在土木工程结构中,阻尼对自振周期的影响很小。

( )(4) 由于各个质点之间存在几何约束,质点体系的动力自由度数总是小于其质点个数。

( )(5) 多自由度的自振频率与引起自由振动的初始条件无关。

( ) (6) n 个自由度体系有n 个自振周期,其中第一周期是最长的。

( )(7) 如果考虑阻尼,多自由度体系在简谐荷载作用下的质点振幅就不能用列幅值方程的方法求解。

( )【解】(1) 错误。

体系的自振频率与初速度无关,由结构本身的特性所决定。

(2) 错误。

由阻尼结构的自振频率2r 1ωωξ=-可知,阻尼增大使自振频率减小,自振周期变长。

(3) 正确。

(4) 错误。

由动力自由度的概念知,动力自由度数与计算假定有关,而与集中质量数目和超静定次数无关。

(5) 正确。

(6) 正确。

(7) 正确。

习题10.2 填空题(1) 单自由度体系运动方程为2P 2()/y y y F t m ξωω++=,其中未考虑重力,这是因为__________。

(2) 单自由度体系自由振动的振幅取决于__________。

(3) 若要改变单自由度体系的自振周期, 应从改变体系的__________或__________着手。

(4) 若由式()211βθω=-求得的动力系数为负值,则表示__________。

(5) 习题10.2(5)图所示体系发生共振时,干扰力与__________平衡。

c k WF sin θ tP 12-2(5)习题 图习题10.2(5)图(6) 求习题10.2(6)图所示质点系的自振频率时(EI =常数),其质量矩阵[M ]=__________。

mm2m12-2(6)习题 图mF sin θ tP 12-2(7)习题 图习题10.2(6)图 习题10.2(7)图(7) 习题10.2(7)图所示体系不考虑阻尼,EI =常数。

已知=0.6(为自振频率),其动力系数β=__________。

m =2m 21m =m y (t )21y (t )12-2(8)习题 图习题10.2(8)图(8) 已知习题10.2(8)图所示体系的第一主振型为{}(1)12Y ⎛⎫= ⎪⎝⎭,利用主振型的正交性可求得第二主振型{}(2)=Y __________。

(9) 习题10.2(9)图所示对称体系的第一主振型{}(1)=Y __________,第二主振型{}(2)=Y __________。

m mEI a a a a12-2(9)习题 图习题10.2(9)图【解】(1) 以重力mg 作用时的静平衡位置为y 坐标的起点。

(2) 初位移、初速度及体系的自振频率。

(3) 质量,刚度。

(4) 质点动位移的方向与简谐荷载方向相反。

(5) 阻尼力。

(6) 0000003m m m ⎛⎫ ⎪ ⎪ ⎪⎝⎭。

(7) 1.5625。

根据公式221=1-βθω计算。

(8) 1-0.25⎛⎫ ⎪⎝⎭。

(9) 1-1⎛⎫ ⎪⎝⎭,11⎛⎫⎪⎝⎭。

利用对称性。

习题10.3确定习题10.3图所示质点体系的动力自由度。

除注明者外,各受弯杆EI=常数,各链杆EA=常数。

0=∞(a)(b)(c)(d)12-3习题 图(a) (b) (c) (d)习题10.3图【解】(a) 2;(b) 3;(c) 2;(d) 4,在两个质量上分别附加2个支杆。

习题10.4不考虑阻尼,列出习题10.4图所示体系的运动方程。

F P(1) (2) (3)习题10.4图【解】(1)用刚度法。

设自由振动的任一时刻t,刚性杆绕B点的转角为α,此时体系受力情况如习题解10.4(1)图所示。

ll2习题解10.4(1)图由0BM=∑列动平衡方程得1-220ml l m l l k l lααα⋅-⋅⋅-⋅=化简得22150ml k lαα+=(2) 用刚度法。

设质点m的位移y向右为正。

先求体系的刚度系数k11,如习题解10.4(2).(a)图所示。

126EI/ll3F P-my(a)1M图及刚度系数(b) 受力图然后取质点连同横梁为隔离体,其受力图如习题解10.4(2).(b)图所示。

由0x F =∑,得11P cos 0k y my F t θ+-=即 P 312cos EImy y F t l θ+= (3) 用柔度法。

绘1M 图和P M 图,分别如习题解10.4(3).(a)、(b)图所示。

由图乘法公式,得32111P212211233236l l l l l l l l EI EI EI EI δδ⎡⎤⎡⎤=⨯⨯⨯==-⨯⨯⨯=-⎢⎥⎢⎥⎣⎦⎣⎦, 列位移方程()111P ()y my M t δδ=-+,整理得:331()24EI y y M t ml ml+=-(a) 1M 图(b) P M 图习题解10.4(3)图习题10.5 求习题10.5图所示单自由度体系的自振频率。

除注明者外,EI =常数。

k 1为弹性支座的刚度系数。

=EI 13/4(1)(2)l 3(3)(4)(5)(6)【解】(1) 绘1M 图,如习题解10.5(1)图所示。

则由图乘法公式,得311548l EI δ=则ω=l 12-5(a)习题解 图习题解10.5(1)图(2) 在质点处施加竖向单位力,体系的位移图和1M 图分别如习题解10.5(2).(a)、(b)图所示。

k 1(a) 位移图(b) 1M 图习题解10.5(2)图由习题解10.5(2).(a)图得1110.51=23k EIδ⨯=由1M 图得1224=3M ds EIEIδ=∑⎰ 故111253EI δδδ=+=,则ω= (3) 使质点沿运动方向发生单位位移,求刚度系数,如习题解10.5(3).(a)、(b)图所示。

3(a) 刚度系数(b) 1M 图习题解10.5(3)图13EIk l =,()2333482/2EI EI k l l =⨯= 则 1112349EIk k k l=+=,ω=(4) 求刚度系数,画1M 图,如习题解10.5(4)图所示。

11133372EI EIk k l l=⨯+=,ω==习题解10.5(4)图 1M 图(5) 求柔度系数,绘1M 图,如习题解10.5(5)图所示。

习题解10.5(5)图 1M 图3112122233l l l l EIEIδ⎡⎤=⨯⨯⨯=⎢⎥⎣⎦,ω(6) 求柔度系数,绘单位力作用下的P M 图和基本体系1M 图,如习题解10.5(6).(a)、(b)图所示。

/5l /5(a) P M 图(b) 1M 图习题解10.5(6)图由两图图乘公式,可知311815l EIδ=,则ω=习题10.6 求习题10.6(a)图所示体系的自振频率。

除杆件AB 外,其余杆件为刚性杆。

mmEI 0=∞EI 0=∞l/2l lEI 0=∞EIAB2A2AAl 6EIA/2m ω2Am ω22Al6EIA/3A BC DEm m(a)(b)习题10.6图【解】绘体系的位移幅值图及相应的受力图如习题解10.6(b)图所示。

体系为两个质点的单自由度体系,可通过列幅值方程求。

沿柱AB 的顶部切取BCDE 为隔离体,由0D M ∑=得2236202l EIAm A m A l l lωω⨯+⨯-⨯=得3125EIml ω=习题10.7 求习题10.7图所示体系的自振周期。

mlEI 0=∞EI EIllmEIEI4m 4m 4m 4m EA EA EA EI EI m 6m (a)(b)12-7习题 图(1)(2)4m4m4m4mEAEAEAEI EI m 3m(3) 习题10.7图【解】(1) 求刚度系数,绘体系发生单位水平位移时的1M 图,如习题解10.7(1)图所示。

则1133312315EI EI EIk l l l=+=,31122215m ml T k EI πω==lEI /3l 6EI/习题解10.7(1)图 1M 图(2) 求柔度系数,绘单位力作用下的P M 图和基本体系1M 图,如习题解10.7(2)图所示。

(a) P M 图(b) 1M 图习题解10.7(2)图由图乘法公式,可知311112117()232412l l l l l l l l EIEI δ⎡⎤=⨯⨯⨯+⨯⨯-=⎢⎥⎣⎦则222T πω===(3) 绘体系在竖向单位力作用下的1M 图及N1F 图,如习题解10.7(3)图所示。

12-7(c)习题解 图习题解10.7(3)图 1M 图和N1F 图则 221111643581138393M N ds l EI EA EI EA EIδ=+=+=∑∑⎰22T ==习题10.8 某单质点单自由度体系由初位移y 0=2cm 产生自由振动,经过八个周期后测得振幅为0.2cm ,试求阻尼比及在质点上作用简谐荷载发生共振时的动力系数。

【解】阻尼比 0112lnln 0.0462280.2n y ny ξππ⎛⎫=== ⎪⨯⎝⎭共振时 1110.9220.046βξ===⨯ 习题10.9 求习题10.9(a)图所示梁纯强迫振动时的最大动力弯矩图和质点的振幅。

已知:质点的重量172P 24.5kN 10kN 52.3s 3.210N m W F EI θ-====⨯⋅,,,。

不计梁的重量和阻尼。

sin θ t(a)P(b) 1M 图(c) d.max M 图习题10.9图【解】在质点处施加竖向单位力,绘1M 图,如习题10.9(b)图所示。

由1M 图求得111121284222222323EIEIδ⎡⎤=⨯⨯⨯⨯+⨯⨯⨯⨯=⎢⎥⎣⎦ 则140s ω-=== 2222111.4152.31140βθω===---梁纯强迫振动时的最大动力弯矩图如习题10.9(c)图所示。

质点最大动位移为33max 11P 781.4110103.52510m 3.210y F βδ-==⨯⨯⨯=⨯⨯ 习题10.10 求习题10.10(a)图所示刚架稳态振动时的最大动力弯矩图和质点的振幅。

已知:42P 2.5kN 2.810k N m F EI θ===⨯⋅,,。

不考虑阻尼。

F P(a)(b) 1M 图(c) d.max M 图习题10.10图【解】在质点处施加水平单位力,绘1M 图,如习题10.10(b)图所示。

由1M 图求得111121220055535523233EIEI δ⎡⎤=⨯⨯⨯⨯+⨯⨯⨯⨯=⎢⎥⎣⎦221134113βθω===---P 1142003 2.50.0179m 3 2.810A F βδ==⨯⨯=⨯⨯则刚架稳态振动时动力幅值为P =7.5kN F β,其最大动力弯矩图如习题10.10(c)图所示。

相关文档
最新文档