信号与系统第四章

合集下载

信号与系统第四章-傅里叶变换的性质

信号与系统第四章-傅里叶变换的性质

② X(ω)是ω的奇函数,因为sinωt是ω的奇函数。
如果f(t)是t的实奇函数,即偶分量fe(t)=0,则
F( jω)=R(ω)+j X(ω)=j X(ω)= 是ω的虚奇函数。
j f (t) sintdt 2 j f (t) sintdt
0
反之,如果F( jω)=j X(ω)是ω的虚奇函数,则F( jω)对应的原函数f(t)一定是t实奇函 数。
② 尺度变换特性的特例——翻转特性
如果a=-1,由尺度变换特性, 有:f(-t) ↔F(-jω) ——翻转特性
天津大学电子信息工程学
刘安
第四 连续系统的频域分析
例7 试求单位直流信号f(t)=1,-∞< t <+∞的频谱
解:不满足绝对可积
f(t)=1=ε(t)+ε(-t)
ε(t)

F1(
jω)=πδ(ω)+
证明:设a>0,
F f (at) f (at) e jtdt
f
j
( ) e a
d
1
a j f ( ) e a d
a
1 a
F
j
a
令at ,则 t ,dt d
a
a
t:-∞~+ ∞, :-∞~+ ∞
天津大学电子信息工程学
Байду номын сангаас
刘安
第四 连续系统的频域分析
类似地,若a<0,
第四 连续系统的频域分析
4、对称性
如果f(t) ↔F( jω),则F( jt) ↔2π f(-ω) (注意变量代换,证明参见p144)
特殊情况:
如果f(t)是t的实偶函数,且f(t) ↔F(ω)(ω的实偶函数), 则F(t) ↔2π f(-ω)=2π f(ω),或者 F1(t) ↔ f(ω)。

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

4.2 傅里叶级数
3 .f(t)为奇谐函数—f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波分量,而不含偶 次谐波分量即 a0=a2=…=b2=b4=…=0
f(t) 0 T/2 T t
4.3 周期信号(Periodic Signal)的频谱
周期信号的频谱 周期矩形脉冲的频谱 从广义上说,信号的某种特征量随信号频率变化的关 系,称为信号的频谱,所画出的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位 随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω 为横轴的平面上得到的两个图,分别称为振幅频谱图和相 位频谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn为实 数,也可直接画Fn 。
“非周期信号都可用正弦信号的加权积分表示”
——傅里叶的第二个主要论点
4.2 傅里叶级数
周期信号展开的无穷级数成为傅里叶级数,分“三角型傅里 叶级数”和“指数型傅里叶级数”,只有当周期信号满足狄 里赫利条件时,才能展开成傅里叶级数。 狄利赫利条件(Dirichlet condition)

t 0 T
2 T bn 2T f (t )sin(nt ) d t T 2
任意函数f(t)都可分解为奇函数和偶函数两部分, 由于f(-t) = -fod(t) + fev(t) ,所以 f (t ) f (t ) f (t ) f (t ) f e v (t ) f od (t ) 2 2
4.2 傅里叶级数
三角形式 指数形式 奇偶函数的傅里叶级数
e jx e jx 由于 cos x 2
A0 f (t ) An cos( n t n ) 2 n 1

(仅供参考)信号与系统第四章习题答案

(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ

sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2

sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =

信号与系统第四章习题参考答案13

信号与系统第四章习题参考答案13

《信号与系统》第四章习题参考答案4-1 解 (1)111()ataL es s a s s a -⎡⎤-=-=⎣⎦++ (2)[]2221221sin 2cos 111s s L t t s s s ++=+++++ (3)()2212tL te s -⎡⎤=⎣⎦+(4)[]21sin(2)4L t s =+,由S 域平移性质,得 ()21s i n (2)14tL e t s -⎡⎤=⎣⎦++ (5)因为1!nn n L t s +⎡⎤=⎣⎦,所以 []2211212s L t s s s++=+= 由S 域平移性质,得 ()()23121ts L t e s -+⎡⎤+=⎣⎦+(6)()2211cos sL at s s a -=-⎡⎤⎣⎦+,由S 域平移性质,得 (){}()2211cos ts L at e s s aβββ-⎡⎤-=-⎣⎦+++ (7)232222L t t s s ⎡⎤+=+⎣⎦ (8)732()327tL t es δ-⎡⎤-=-⎣⎦+ (9)[]22sinh()L t s βββ=-,由S 域平移性质,得()22sinh()atL e t s a βββ-⎡⎤=⎣⎦+-(10)由于()211cos ()cos 222t t Ω=+Ω 所以 222221111c o s ()22424ss L t s s s s ⎛⎫⎡⎤Ω=+∙=+ ⎪⎣⎦+Ω+Ω⎝⎭(11)()()()11111at t L e e a a s a s s a s βββββ--⎡⎤⎛⎫-=-= ⎪⎢⎥--++++⎣⎦⎝⎭ (12)由于()221cos()1ts L e t s ωω-+⎡⎤=⎣⎦++所以 ()()()221cos()1a t a s e L et s ωω--++⎡⎤=⎣⎦++(13)因为(2)(1)(1)(1)(1)(1)t t t te u t e t e e u t ------⎡⎤-=-+-⎣⎦且()(1)(1)2(1)(1)(1)11sst t e e L t eu t L eu t s s ------⎡⎤⎡⎤--=-=⎣⎦⎣⎦++所以 ()(1)(2)2211(2)(1)(1)11s t s s e L teu t e e s s s -----⎡⎤+⎡⎤-=+=⎢⎥⎣⎦+++⎣⎦(14)()(1)tL e f t F s -⎡⎤=+⎣⎦,由尺度变换性质,得(1)ta t L e f aF as a -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎣⎦(15)()t L f aF as a ⎡⎤⎛⎫=⎪⎢⎥⎝⎭⎣⎦,再由s 域平移性质,得 []2()()at t L e f aF a s a aF as a a -⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦(16)31cos(6)cos (3)cos(3)2t t t -=∙13cos(9)cos(3)44t t =+32213cos (3)48149s s L t s s ⎡⎤=+⎣⎦++由s 域微分性质,得()()22322222213181327cos (3)481494819d s s s s L t t ds s s s s ⎡⎤--⎛⎫⎢⎥⎡⎤=-+=+ ⎪⎣⎦⎢⎥++⎝⎭++⎣⎦(17)[]2cos(2)4sL t s =+,连续两次应用s 域微分性质,有 []()2224cos(2)4s L t t s-=+,()3232224cos(2)4s sL t t s-⎡⎤=⎣⎦+(18)111atL es s a -⎡⎤-=-⎣⎦+,由s 域积分性质,得111111(1)at sL e ds t s s a ∞-⎛⎫⎡⎤-=- ⎪⎢⎥+⎣⎦⎝⎭⎰ln()ln ln s s a s s a ⎛⎫=+-=- ⎪+⎝⎭ (19)351135tt L ee s s --⎡⎤-=-⎣⎦++,由s 域积分性质,得 33111115ln 353t t s e e s L ds t s s s --∞⎛⎫⎡⎤-+⎛⎫=-= ⎪ ⎪⎢⎥+++⎝⎭⎣⎦⎝⎭⎰(20)()22sin aL at s a =⎡⎤⎣⎦+,由s 域积分性质,得()1122211sin 1arctan 21s s at s a s L ds d t s a a a s a π∞∞⎡⎤⎛⎫⎛⎫===-⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎛⎫⎣⎦+ ⎪⎝⎭⎰⎰ 4-2 解(1)因为()()sin ()2T f t t u t u t ω⎡⎤⎛⎫=--⎪⎢⎥⎝⎭⎣⎦()sin ()sin 22T T t u t t u t ωω⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以可借助延时定理,得()()sin ()sin 22T T L f t L t u t L t u t ωω⎧⎫⎡⎤⎛⎫⎛⎫=+--⎡⎤⎡⎤⎨⎬ ⎪ ⎪⎢⎥⎣⎦⎣⎦⎝⎭⎝⎭⎣⎦⎩⎭222222221sT T s ee S S S ωωωωωω--⎛⎫=+=+ ⎪+++⎝⎭(2)因为()()()sin sin cos cos sin t t t ωϕωϕωϕ+=+ 所以()222222cos sin cos sin sin s s L t s s s ωϕϕωϕϕωϕωωω++=+=⎡⎤⎣⎦+++ 4-3 解此题可巧妙运用延时性质。

《信号与系统》第四章

《信号与系统》第四章

图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率

,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt

信号与系统(第四版)第四章课后答案

信号与系统(第四版)第四章课后答案

第5-10页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1. (t ) 1, 2.( t) 或1 3. ( t ) s, 4. 指数信号e
1
s
, 0

1 s s0
s0t
(t 2)
f1(t) 1 0 1 f2(t) 1 t
例1:e (t 2) e
-t
2
e
(t 2)
e
2

1 s 1
e
2s
-1 0
第5-17页

1
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.2 拉普拉斯变换性质
1 1e sT
例2: 单边冲激 T(t ) 1 e sT e s 2T 例3: 单边周期信号 fT(t ) (t ) f1(t ) f1(t T ) f1(t 2T ) F1(s )(1 e sT e s 2T )
8 e 2 s
s
f(t ) 1 0 1 y(t ) 2 4 t
二、尺度变换
2s
2
(1 e 2 s 2s e 2 s )
2 e 2 s 2 (1 e 2 s 2s e 2 s ) s
第5-16页

0
2
4
t
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
拉氏逆变换的物理意义
f (t )
2 j 1

j
j
F (s)est ds

最新课件-信号与系统教学第四章傅里叶变换和系统的频域分析 推荐

t2 t1
t2 t1
f
2 (t) d t
n
C
2 j
K
j
]
0
j 1
4.1 信号分解为正交函数
巴塞瓦尔公式
当 n ,有最小均方误差为零, 2 0 ,则
t2 t1
f
2 (t) d t
C
2 j
K
j
j 1
第j个正交分 量的能量
信号的能量 各正交分量的能量和
Parseval公式表明:在区间(t1,t2)上, f(t)所含能量恒等 于f(t)在完备正交函数集中分解的各正交分量能量的总
n
arctan
bn an
bn An sin n ,
上式表明,周期信号可分解为直流和许多余弦分量。
A0/2为直流分量;A1cos(t+1)称为基波或一次谐波, 它的角频率与原周期信号相同;Ancos(nt+n)称为n 次谐波,其频率是基波的n倍。
频率
1/T
4.2 傅里叶级数
设周期信号f(t),其周期为T,角频率=2/T,当满足
狄里赫利(Dirichlet)条件时,它可分解为如下三角级
数—— 称为f(t)的傅里叶级数三角形式
f
(t)
a0 2
an
n1
cos(nt)
bn
n1
sin(nt)
傅里叶系数
由Ci表达式 确定
an
2 T
T
2 T
2
f (t) cos(nt) d t
A C1v x C2 v y
y C2vy
vx , v y 为二维“正交矢量集”
如三维空间矢量B ,可表示为:
B C1v x C2v y C3v z

信号与系统(第四章)-离散傅里叶变换与快速傅里叶变换

解:变量n用k替代
反转,并取主值区间序列
周期延拓
反转后
向右平移1位 向右平移3位
向右平移2位
于是,由
y
(n)
3
x(k
)h((n
k
))
4
G4
(n)
,得
k 0
y(0) 1114 13 02 8
y(1) 1 2 1114 03 7
y(2) 1312 11 04 6
y(3) 14 1312 01 9
➢ 线卷积与圆周卷积
• 线卷积的移位是平移,圆周卷积的移位是周期位 移。
• 线卷积不要求两序列长度一致。若 x(n)与h(n)的长度分别为M和N,则 y(n)=x(n)*h(n)的长度为M+N-1。 圆周卷积要求两序列长度一致,否则短序列须补 零,使两序列等长后,才可进行圆周卷积。
DFT ax1(n) bx2(n) aDFT x1(n) bDFT x2(n)
(4.9)
当序列x1(n)和x2(n)长度不一致时,则可通过将较 短序列补零,使两序列长度一致,此时,式(4.9)成立。
2、圆周位移特性 圆周时移:圆周时移指长度为N的序列x(n),以N 为周期做周期延拓生成xp(n),位移m位后,得序 列xp(n-m),在此基础上取其主值区间上序列。
于是
x(n)
x(t)
t nTs
k
X e jk1nTs k
X e X e
j
2 T1
knTs
k
j 2 nk N
k
(4.3)
k
k
式(4.3)两边同乘
e
j 2 N
nm
,再取合式
N 1
,得
n0

信号系统 第四章总结

第四章:傅立叶变换和系统的频域一、信号分解为正交函数 (一)、完备正交函数 1正交函数:实正交函数:设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个实函数,若∫φ1(t ),t 2t 1φ2(t)dt =0,则称是函数的正交条件。

若∫φ1(t),t 2t 1φ2*dt =∫φ1*(t),t 2t 1φ2dt =0满足实函数的正交条件,则称φ1(t) φ2(t)在(t1,t 2)内正交。

复函数正交::设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个复函数,若,则称是复函数的共轭条件。

则称φ1(t) φ2(t)在(t 1,t 2)内正交。

2、正交函数集若n 个实函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足实函数正交条件∫φi (t ),t 2t 1φj(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是正交实函数。

≈复正交函数集:若n 个复函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足复函数正交条件∫φi (t ),t 2t 1φj*(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是复正交函数集。

3、完备正交函数集:若正交函数集{φi (t )}(i=1,2,3,…….)之外不存在g t (t )与φi (t )正交,则{φi (t )}(i=1,2,3,…….)是完备正交函数集。

4、完备正交函数集举例: a、三角函数集 b 、复指数函数集 c 、沃尔什函数(二)信号正交分解f (t )≈C 1φ1(t )+ C 2φ2(t )+……..+ C n φn (t )=∑C j n j=1φj (t),求系数C j 1、 求误差的均方值最小:2ε= Cj1t 1−t 2∫f (t )−∑C j n j=1φj (t)t 2t 1二、三角傅里叶级数(周期信号在一个周期内展开)1、满足狄利克雷条件f(t)=a02+∑(a n cos nΩt+b n sin nΩt)∞n=1a0 2=1T∫f(t)dt=f(t)π2−π2(f(t)在一个周期内方均值;直流分量)a n=2T∫f(t)cos nΩt dt,n=0,1,2,…T2−T2b n=2T∫f(t)sin nΩt dt,n=0,1,2,…T2−T22、三角傅里叶级数第二种表示方法:3、f(t)=A02+∑(A n cos(nΩt+φn)∞n=1A n=√a n2+b n2(A0=a)φn=tan−1b na nA02直流分量;(A n cos(nΩt+φn)n次谐波分量三角傅里叶级数的特点:A n和a n是nΩ的偶函数;b n和φn是nΩ的奇函数。

信号与系统第4章

35
正方波为奇谐函数
f (t)
1
OT
2T t
1
f
(t
)
4
sin(t)
1 3
sin(3t)
1 5
sin(5t)
36
傅里叶级数的指数形式
f
(t)
A0 2
n1
An
c os (nt
n)
A0 2
n1
An
1 2
e j (nt n )
e j(nt n )
A0 2
1 2
n1
Ane jn e jnt
t1
(t)
i
(t)dt
0,
i 1,2,, n
则称该函数集为完备正交函数集。函数 ψ (t) 应满足条 件
0 t2 2 (t)dt t1
5
正交的三角函数集 (1)
1, cos 2 1 t , cos 2 2 t ,cos 2 m t ,,
T T
T
sin 2 1 t ,sin 2 2 t ,sin 2 n t ,
1 2
n1
Ane jn e jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e j n
jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e jn
jnt
1 2
Ane jn e jnt
n
37
傅里叶级数的指数形式
f
(t)
1 2
Ane
n
e j n
jnt
Fne jnt
n
上式中,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

率分布的物理含义,X ( j ) 通常称为 x(t ) 的频谱。
11
于是,我们得到了对非周期信号的频域描述方法
X ( j ) x(t )e


jt
dt
jt
傅里叶变换 公式
1 x(t ) 2



X ( j )e d
傅里叶反变换 公式
这一对关系被称为连续时间傅里叶变换对。



X ( j )e jt d
1 x(t ) 2



X ( j )e jt d
连续时间傅里叶反变换
此式表明,非周期信号可以分解成无数多个频率
1 连续分布、振幅为 X ( j )d 的复指数信号之和。 2
ak 由于 X ( j ) lim Tak lim ,所以频谱具有随频 T f 0 f 0
jk0t
1 x(t ) 2



X ( j )e jt d
则 X ( j ) 2 ( k0 ) 记
25
于是当把周期信号表示为傅立叶级数时,因为
x(t )
k



ak e jk0t
根据 x(t ) e
jk0t F
X ( j ) 2 ( k0 )
就是 x(t ) 的一个周期。 ~ (3) T 较大时,x(t ) 在更长一时段上与 x(t ) 一致,且随着 T , ~ x(t ) x(t )。 对任意有限时间 t 而言, 8
~
x(t ) 傅里叶级系数对:积分区间取 T / 2 t T / 2
~
x(t )
~
k
12
二. 傅立叶变换的收敛 既然傅里叶变换的引出是从周期信号 的傅里叶级数表示出发,讨论周期趋于无 穷大时的极限得来的,傅里叶变换的收敛 问题就应该和傅里叶级数的收敛相一致。
13
也有相应的两组条件: 1. 平方可积




x(t ) dt 则 X ( j ) 存在。
2
这表明能量有限的信号其傅立叶变换一定存在。
在工程应用中有相当广泛的信号是非周期 信号,对非周期信号应该如何进行分解,什 么是非周期信号的频谱表示,线性时不变系 统对非周期信号的响应如何求得,就是这一 章要解决的问题。
3
从时域看周期信号与非周期信号的关系:如果一 个周期信号的周期趋于无穷大,则周期信号将演变成 一个非周期信号;反过来,如果将任何非周期信号进 行周期性延拓,就一定能形成一个周期信号。 因此,我们把非周期信号看成是周期信号在周期趋 于无穷大时的极限,从而考查连续时间傅立叶级数在 T趋于无穷大时的变化,就应该能够得到对非周期信 号的频域表示方法。
T0 T0 1 sin N k (2 N1 1) N sin( k) ak k 0, N , 2 N , N 2 N1 1 k rN N
5
T1不变 T0 时
2T1 1 T0 2
2T1 1 T0 4
2T1 1 T0 8
4
4.1 非周期信号的表示—连续时间傅立叶变换
Representation of Aperiodic Signals: The Continuous-Time Fourier Transform 一.从傅立叶级数到傅立叶变换 第三章已经看到,对周期性矩形脉冲x(t)
x(t )

1
t
17
/ 4
a

X ( j ) x(t )e jt dt


2. x(t ) e
a t
, a0
at jt
1 x(t ) 2
at jt 0



X ( j )e jt d
X ( j ) e e

0
dt e e
dt
1
x(t )
jk0t a e k

1 T /2 ~ jk0t ak x(t )e dt T / 2 T
~
x(t ) x(t ) ; 在区间 T / 2 t T / 2 内, 1 jk t a x ( t ) e dt 在其余地方 x(t ) 0 ,所以: k T 我们定义 Tak 的包络为 X ( j) ,则
sin t 这两组条件并不等价。例如: 是平方可积 t
和周期信号的情况一样,当 x(t ) 的傅里叶变换存
在时,其傅立叶变换在 x(t ) 的连续处收敛于信号本
身,在间断点处收敛于左右极限的平均值,在间断
点附近会产生Gibbs 现象。
15
X ( j ) x(t )e


jt
dt
jt
0
20
3.3节 P98
X ( j )
不同脉冲宽度对频谱的影响 X ( j )
x(t )
2T1
1
W

0
2 sin T1
W
1
t
T1
T1

T1
X ( j )


0 T1
0
4T1
X ( j )

x(t )
1
2T1
t
0
2T1
2T1

0
可见,信号在时域和频域之间有一种相反的关系 (4.3.5 尺度变换), 即信号在时域脉冲越窄,则其频谱主瓣 越宽,反之亦然。 如果 W ,则 x(t ) 将趋于一个冲激。如例3.
傅里叶变换 公式
1 x(t ) 2



X ( j )e d
傅里叶反变换 公式
16
X ( j ) x(t )e jt dt


三.常用信号的傅里叶变换:
at x ( t ) e u (t ), a 0 1.

1 x(t ) 2



X ( j )e jt d
W 0 W

0
W
t
与矩形脉冲情况对比,可以发现信号在时域和
频域之间存在一种对偶关系。如果一个时域函数隐 含着某些特性的话,那么可以断定频域函数也隐含 着对偶的特性。(4.3.6对偶性)
22
对偶关系可表示如下:
x(t )
1
2T1
X ( j )

t
T1
T1

0 T1
0
X ( j )
(W / )
k 0
就有 X ( j ) 2
k
a ( k )
周期信号傅里叶变换
jk 0t
x(t )
k
ae
k

周期信号傅 里叶级数
26
周期信号傅里叶反变换
X ( j ) 2
k
a ( k )
当 T0 时,周期性矩形脉冲信号就趋向于非
7
非周期信号建立傅里叶表示的基本思想:把非周期信号 当做一个周期信号在周期任意大时的极限来看待, 并且研究 这个周期信号傅里叶级数表示式的极限特性。
x(t )

T 2 T 2
1
x(t )
~
t
T
T
(1) x(t ) 具有有限持续期; ~ x ( t ) (2) 从非周期信号 出发,可以构成一个周期信号 x(t ),使 x(t )
Signals and Systems
第4章 连续时间傅立叶变换
The Continuous time Fourier Transform
1
本章的主要内容:
1. 连续时间傅立叶变换;
2. 傅立叶级数与傅立叶变换之间的关系;
3. 傅立叶变换的性质; 4. 系统的频率响应及系统的频域分析;
2
4.0 引言 Introduction
0
X ( j ) x(t )e jt dt


连续时间傅立叶变换
ห้องสมุดไป่ตู้
~ 1 jk0t a X ( jk ) ,此时 x(t ) ak e 则 k 0 T k
9
1 ak X ( jk0 ) T
~
x(t )
~
k
jk0t a e k
X ( j ) (t )e jt dt 1 记

1 x(t ) 2



X ( j )e jt d
(t )
1

0
这表明 (t ) 中包括了所有的频率成分,且所有频 率分量的幅度、相位都相同。因此,系统的单位冲 激响应 h(t )才能完全描述一个LTI系统的特性, (t ) 才在信号与系统分析中具有如此重要的意义。
2. Dirichlet 条件
a. 绝对可积条件



x(t ) dt
b. 在任何有限区间内, x(t )只有有限个极值点,
且极值有限。
x(t ) 只有有限个不连续点,且 c. 在任何有限区间内,
在每个不连续点都必须有有限值。
14
应该指出:这些条件只是傅里叶变换存在的充分 条件。
的,但是并不绝对可积。
dt
2sin T1
1
x (t )
t
T1
2T1
1 再乘以 T ,即是相应周期信号的 0
将 X ( j ) 中的 代之以 k0
T 2T1 Sa(T1 ) 2T1 Sinc( 1 ) 记
T1
X ( j )

T1

频谱:
2T1 2T1 sin k0T1 ak Sa(k0T1 ) T0 T0 k0T
x(t )
1 1 X ( j ) e at e jt dt 0 a j 记 0 1 X ( j ) X ( j ) arctan( ) 2 2 a a X ( j )
相关文档
最新文档