水力学 动量方程
恒定总流的动量方程

恒定总流的动量方程利用前面介绍的连续性方程和能量方程,已经能够解决许多实际水力学问题,但对于某些较复杂的水流运动问题,尤其是涉及到计算水流与固体边界间的相互作用力问题,如水流作用于闸门的动水总压力,以及水流经过弯管时,对管壁产生的作用力等计算问题,用连续性方程和能量方程则无法求解,而必须建立动量方程来解决这些问题。
动量方程实际上就是物理学中的动量定理在水力学中的具体体现,它反映了水流运动时动量变化与作用力间的相互关系,其特点是可避开计算急变流范围内水头损失这一复杂的问题,使急变流中的水流与边界面之间的相互作用力问题较方便地得以解决。
一、动量方程式的推导及适用条件(一)动量方程式的推导由物理学可知,物体的质量m 与速度υ的乘积称为物体的动量。
动量是矢量,其方向与流速方向相同。
物体在外力作用下,速度会发生改变,同时动量也随之变化。
动量定理可表述为:运动物体单位时间内动量的变化等于物体所受外力的合力。
现将动量定理用于恒定流中,推导恒定流的动量方程。
图3-29在不可压缩的恒定流中,任取一渐变流微小流束段1—2(图3-29)。
设1—1断面和2—2断面的过水断面面积和流速分别为21、dA dA 和1u 、2u ,经过dt 时段后,微小流束由原来的1—2位置运动到了新的位置21'-'处,从而发生了变化。
设其动量的变化为dk ,它应等于流段21'-'与流段1—2内的动量之差。
因为水流为不可压缩的恒定流,所以对于公共部分21-'段来讲,虽存在着质点的流动的替换现象,但它的形状、位置以衣液体的质量、流速等均不随时间发生变化,故动量也不随时间发生改变。
这样,在dt 时段内,21'-'段的水流动量与1—2段的动量之差实际上即为22'-段的动量与11'-段的动量之差。
在dt 时段内,通过11'-段的水体质量为11dtdA u ρ,通过22'-段的水体质量为22dtdA u ρ,对于不可压缩液体,根据连续性方程,可知dQdt dtdA u dtdA u ρρρ==2211,则微小流束段的动量变化为)(12u u dQdt k d -=ρ设总流两个过水断面的面积分别为21A A 与,将上述微小流束的动量变化k d 沿相应的总流过水断面进行积分,即可得到总流在dt 时段内动量的变化量为)()()(121112221212a dA u u dA u u dt u dQdt u dQdt u u dQdt k d A A QQ Q ⎰⎰⎰∑⎰⎰-=-=-=ρρρρ 由于实际液体过水断面上的流速分布均匀,且不易求得,故考虑用断面平均流速υ来代替断面上不均匀分布的流速u ,以便计算总流的动量。
流体的连续性方程和动量方程

流体的连续性方程和动量方程流体力学是研究流体运动和流体力学性质的学科。
在流体力学中,连续性方程和动量方程是两个重要的基本方程。
本文将详细介绍流体的连续性方程和动量方程的定义和应用。
一、流体的连续性方程连续性方程描述了流体的质量守恒原理,表达了流体在空间和时间上的连续性。
连续性方程的数学表达形式为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·(ρv)表示速度矢量的散度。
该方程表示,流体的密度在一个闭合曲面上的变化率等于通过该曲面的质量流量。
连续性方程是基于质量守恒原理推导得出的。
它表明,在稳定流动条件下,流体在通道中的截面积变化时,速度会发生相应的变化,以保持质量的守恒。
根据连续性方程,我们可以推导出管道中的速度分布。
在管道的收缩段,速度增加,截面积减小,密度保持不变,从而保证质量守恒。
这也是为什么水管收缩后出水流速增加的原因。
二、流体的动量方程动量方程描述了流体运动的力学性质,表达了流体在空间和时间上的动量守恒。
动量方程的数学表达形式为:ρ(dv/dt) = -∇p + μ∇^2v + F其中,ρ是流体的密度,t是时间,v是流体的速度矢量,p是压强,μ是流体的粘度,∇p表示压强的梯度,∇^2v表示速度的拉普拉斯算子,F是外力的合力。
动量方程由牛顿第二定律推导而来。
它表示,在流体中,流体质点的动量变化等于合外力对质点的作用力。
动量方程用于描述流体在受力作用下的运动状态,通过求解动量方程,可以得到流体的速度分布。
根据动量方程,我们可以推导出流体中的压力分布。
在水管中,如果水流速度增大,则根据动量方程中的负梯度项,压力会降低。
这是因为速度增大会导致动能的增加,压力会减少以保持动量守恒。
综上所述,流体的连续性方程和动量方程是流体力学中的两个基本方程。
连续性方程描述了质量守恒原理,动量方程描述了动量守恒原理。
通过求解这两个方程,我们可以获得流体在空间和时间上的运动状态和力学性质。
水力学第二章思考题答案

2.1.恒定流:如果在流场中任何空间点上所有的运动要素都不随时间而改变。
非恒定流:如果在流场中任何空间点上有任何一个运动要素是随时间而变化。
均匀流:水流的流线为相互平行的直线。
非均匀流:水流的流线不是相互平行的直线。
渐变流:水流的流线虽然不是相互平行的直线,但几乎近于平行的直线。
急变流:水流的流线之间夹角很大或者流线的曲率半径很小。
按运动要素是否彼此平行的直线分为均匀流和非均匀流,而非均匀流按流线的不平行和弯曲程度又分为渐变流和急变流。
渐变流重要性质为:过水断面上近似服从静压分布:Z+P/y=C2.2.此时的A₁υ₁=A₂υ₂符合连续方程。
两个断面无支流,且上游水位恒定,则下游通过的流量一定,则流量保持平衡,满足该公式。
2.3能量方程:Ζ₁+Ρ₁/ρg+α₁(μ₁)²/2g=Ζ₂+Ρ₂/ρg+α₂(μ₂)²/2g+hw’。
Ζ₁:位置水头;Ρ₁/ρg:压强水头;(μ₁)²/2g:流速水头;Ζ₂:单位位能;Ρ₂/ρg:单位压能;(μ₂)²/2g:单位动能;hw’:水头损失。
能量意义:在总流中任意选取两个过水断面,该两断面上液流所具有的总水头若为H₁和H₂,则:H₁=H₂+hw。
2.4这些说法都不对。
对于理想液体来说,在无支流进去的情况下,其各断面的流量总和是相等的,根据能量方程:Ζ₁+Ρ₁/ρg+α₁(μ₁)²/2g=Ζ₂+Ρ₂/ρg+α₂(μ₂)²/2g+hw’,及连续方程:A₁υ₁=A₂υ₂。
可以看出:只要其流量不改变,能量的总和就不会变。
则水是由流速大地方向流速小的地方流这种说法就是错误的。
总流的动量方程:ΣF=ρQ(Β₂υ₂-Β₁υ₁),也说明了这一点。
2.5总水头线:把各断面H=Ζ+Ρ/ρg+α(μ)²/2g描出的点子连接起来得到的线就是总水头线;测压管水头线:把各断面的(Ζ+Ρ/ρg)值的点子连接起来得到的线就是测压管水头线。
流体力学中的动量方程

流体力学中的动量方程动量方程是流体力学中描述流体运动的基本方程之一。
它描述了流体在运动过程中动量的变化,通过掌握动量方程,可以深入理解和分析流体的运动特性。
一、动量的定义与表达式根据牛顿第二定律,一个物体的动量等于其质量与速度的乘积。
对于流体来说,动量可以用密度、速度和体积来表达。
根据这个定义,流体的动量可以表示为:M = ρ * V其中,M为动量,ρ为流体的密度,V为流体的速度。
二、流体的动量守恒流体的动量守恒是指在一个封闭系统中,动量的总量在时刻保持不变。
这可以通过动量方程来表示。
对于流体的动量守恒方程,有两个基本形式:1.欧拉动量方程欧拉动量方程适用于描述非粘性流体的动量守恒。
其表达式为:∂(ρV)/∂t + ∇(ρV*V) = -∇P + ρg其中,ρ为流体的密度,V为流体的速度,t为时间,P为压力,g 为重力加速度。
2.纳维-斯托克斯动量方程纳维-斯托克斯动量方程适用于描述粘性流体的动量守恒。
其表达式为:∂(ρV)/∂t + ∇(ρV*V) = -∇P + μ∇²V + ρg其中,ρ为流体的密度,V为流体的速度,t为时间,P为压力,μ为流体的动力黏度,g为重力加速度。
三、动量方程的应用动量方程在流体力学的研究中有广泛的应用。
它可以用来解释和预测流体的运动特性,如流体的速度分布、流体中的压力和力的作用等。
1.速度分布根据动量方程,可以推导出流体在不同速度条件下的速度分布规律。
通过研究流体的速度分布,可以了解到流体的流动状态,从而更好地控制和管理流体运动。
2.压力分布动量方程中的压力项描述了流体中压力的变化规律。
通过分析动量方程中的压力项,可以获得流体的压力分布情况。
这对于设计和优化流体系统具有重要意义。
3.流体之间的相互作用在实际应用中,流体通常与其他物体或流体相互作用。
通过动量方程,可以分析流体与其他物体的相互作用力,并进行力学计算和设计。
四、总结动量方程是流体力学中重要的基本方程之一,通过它可以深入研究和理解流体的运动特性。
水力学实验报告(动量方程验证实验)

������ = ρQV(1 − cos ������)
式中:Q 为管嘴的流量;V 为管嘴流速;α为射流射向平板或曲面板后的偏转角度。 α=90°时,F平 = ρQV(F 平为水流对平板的冲击力)。 α=135°时,F = ρQV(1 − cos 135°) = 1.707ρQV = 1.707F 。
6. 关闭抽水机,将水箱中水排空,砝码从杠杆上取下,结束实验。 注意事项 1. 量测流量后,量筒内的水必须倒进接水器,以保证水箱循环水充足。 2. 测流量时,计时与量筒接水一定要同步进行,以减小流量的量测误差。 3. 测流量一般测两次取平均值,以消除误差。
四、 实测的数据(表)
1. 有关常数
喷管直径 d=0.92cm,作用力力臂 L=8cm。
2. 实验中,平衡锤产生的力矩没有加以考虑,为什么? 答:平衡锤在冲击开始前将杠杆平衡,用以平衡更换面板产生的作用力差异,在实验过 程中,可以视为是杠杆的一部分,不影响计算结果。
教
师
评
指导教师
年
月
日
语
稳,对流量法测验产生影响。 此外,由于实验时间长,水轮机工作状况发生改变;修正系数误差忽略等问题均会产生较小 误差。 七、 回答实验指导书中有关问题 1. F 实与 F 理有差异,除实验误差外还有什么原因?
答:理论误差(系统误差)。 实验数据处理时的参数,修正系数等忽略因素都是造成二者差异的非实验因素。
6 710 5.20 136.54
六、 对实验结果的分析与结论 实验测得α = 90°时,F 实=30625.00 N×10-5,F 理=30511.71 N×10-5,误差为 0.37% 实验测得α = 135°时,F 实=59718.75 N×10-5,F 理=54067.45 N×10-5,误差为 10.45% 实验测得α = 180°时,F 实=63700.00 N×10-5,F 理=55991.30 N×10-5,误差为 13.76% 实验测得在α = 90°时,理论值与实际值吻合较好,但在α = 135°和α = 180°时,偏差比较 大。 下面就实验过程进行误差分析。测量中误差产生原因有很多,主要有以下几种: (1) 实验时,杠杆是否水平。 尝试将实验数据中的 10.4cm 改变 0.2cm,算得与原数据计算的误差差别为 2%,故 杠杆读数是一个主要影响因素。 在实验中,主要面临两大问题影响杠杆平衡 ① 冲击引起的平衡困难。在无水流冲击时,平衡杠杆比较简单,但是在水流冲击下, 杠杆的平衡很难把握,且由于杠杆的颤动,引起砝码摆动,更加大了平衡难度, 使得平衡时容易出现微小误差;当使用α = 180°的曲面板时,杠杆颤动非常严重, 几乎难以确定平衡状态。 ② 平衡时的砝码和平衡锤的移位。由于平衡锤和砝码公用同一轨道,在移动砝码时, 极易引起平衡锤的微微移动,经由杠杆作用误差放大;另一方面,由于杠杆的颤 动,在平衡锤固定不牢固的区域,会引起其移动。 (2) 体积法测流量产生的误差。 由于此法测量时,需要测量者丰富的经验和敏捷的反应力,对于初学者易产生较大误 差。另一方面,由于在α = 180°时,曲面板在水流冲击下不断摆动,引起水流的不平
水力学基本方程

水力学基本方程
水力学的基本方程分为质量守恒方程、动量守恒方程和能量守恒方程。
1. 质量守恒方程
质量守恒方程描述了在水流运动过程中,单位时间内通过某一截面的水量与该截面上下游的水量之差之间的关系。
其表示式为:
\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x}(Qv) = 0
其中,Q为单位时间内通过截面的水量,v为水流速度,x为沿水流方向的坐标,\frac{\partial}{\partial x}为对x的偏导数。
2. 动量守恒方程
动量守恒方程揭示了水流运动中的动量转移与保存规律,其表示式为:
\frac{\partial}{\partial t}(Qv) + \frac{\partial}{\partial x}(Qv^2 + \frac{1}{2}gh^2) = f_L Qv
其中,g为重力加速度,h为水深,f_L为流动阻力系数。
3. 能量守恒方程
能量守恒方程描述了水流运动中的能量转移与保存规律,其表示式为:
\frac{\partial}{\partial t}(Qh) + \frac{\partial}{\partial x}(Qhv + \frac{1}{2}gh^2v) = f_L Qvh + Q\dot{E}
其中,\dot{E}为单位时间内对水流作用的外力功率。
动量方程

8.动量方程应用注意事项:
(1) 作好“三步”:
(a)控制体的选取:--总流 一般选取总流边界为控制体边界, 横向边界一般取过水断面;
9.动量方程的应用
•求解固体边界的水流作用力 •求解射流冲击力
•求解水跃
恒定总流动量方程式应用举例
一、弯管内水流对管壁的作用力
弯管中水流为急变流,动水压强分布规律和静水 压强不同,因此不能用静水压力的计算方法来计算弯 管中液体对管壁的作用力。
取如图所示控制体,作用 于控制体上的力包括两端 断面上的 动水压力,还有 管壁对水流的反作用力。
Fp1 -Fp2cos α + R x =ρ Q (v2cosα -v1)
α R x= α -v1) -Fp1+Fp2 cos ρ Q (v 2cos
= -1983 N(方向与图示相反)
y方向的动量方程:
-F p2sin α + R y=ρ Q (v 2 sinα -0)
R y =ρ Q v 2 sinα +Fp2sinα
(b)绘计算简图:正确标示流速和作 用在水体上的力,注意各流速和 力矢量的投影方向及其正负号; (c)动量方程是矢量方程,建立坐标 系; (2)流出动量减去流入动量,未知力 的方向可以假设;
(3)∑F包括作用在控制体上的全部
外力,不能遗漏,也不能多选。当 未知力的方向不能事先确定时,可
以先假设其方向进行求解。如果求
水轮机: -HP= Pg/(γ Q ηg) (出力)
小 结:
水力学三大方程

水力学三大方程指的是连续性方程、动量方程和能量方程。
这三大方程是描述流体力学过程的基本方程,也是水力学研究和应用的基础。
连续性方程
连续性方程也称为质量守恒方程,它表述了流体在运动过程中质量守恒的基本原理。
连续性方程的数学表达式为:
∂ρ/∂t + ∇·(ρu) = 0
其中,ρ表示流体密度,t表示时间,u表示流体的速度,∇表示偏微分算符。
这个方程的物理含义是:任何一段流体管道中的质量流量都相等,即在单位时间内通过截面积相同的两个截面的流体质量相等。
动量方程
动量方程是描述流体运动动力学过程的方程,它表述了流体的动量守恒原理。
动量方程的数学表达式为:
ρ(∂u/∂t + u·∇u) = -∇p + ∇·τ+ ρg
其中,p表示流体的压力,τ表示流体的应力张量,g表示重力加速度。
这个方程的物理含义是:流体的动量随时间和空间的变化而改变,动量的变化量等于受到的力的作用量。
能量方程
能量方程描述了流体运动过程中能量守恒的基本原理。
能量方程的数学表达式为:
ρCv(∂T/∂t + u·∇T) = -p∇·u + ∇·(k∇T) + Q
其中,T表示流体的温度,Cv表示比热容,k表示导热系数,Q表示单位时间单位体积内的热源项。
这个方程的物理含义是:流体在运动过程中受到的压力和内能的变化,以及受到的热量和能量的变化,都会影响流体的温度和温度的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要关死,须留有调节量),慢慢开启进水调节阀(7),由喷嘴喷出射流冲击实验板, 当实验板受到的冲击力与砝码的重量相等时,天平重新处于平衡状态,停止调节阀门。 也可以用微调砝码调天平。此时压力表读数在 1.5 格左右。 6. 拨动分流器,使泄水口朝向量水箱,当量水箱测压管水位达到第二个触点时,自动量测 仪开始记时,达到第三个触点时即完成一次测量,将射流冲击力的测量值(天平砝码与 微调砝码之和)输入自动量测仪。 7. 拨分流器,使泄水口朝向泄水槽,打开量水箱泄水阀,使测压管水位略低于第二个触点, 关闭泄水阀。在天平 B 盘再加入 10g 砝码,拨微调砝码到零位,慢慢开启进水调节阀, 使天平再次平衡,观察压力表读数,若有改变则用调节阀调节使其保持恒定。 8. 重复步骤 6,7,测出 8 组数据,每次均增加 10g 砝码。实验数据由自动量测仪进行处理 并打印出结果。射流冲击力的测量值与计算值的偏差小于 5%为合格,实验结果至少应 有 5 组数据合格。 9. 阅读思考问题,作简要回答。
5. 为什么要设挡水板(8)?挡水板下面为什么还要设排水槽?不设行吗?
6. 为什么在实验中要反复强调保持水流恒定的重要性?
注意事项
1. 泄水阀门一定要关严,喷嘴与实验板中心定位要准确。 2. 开启阀门时一定要慢,不能使水冲到实验板上面。 3. 实验完毕关水泵及进水调节阀。
动量-3
实验设备
实验设备与仪器见图。由存 水箱、水泵、调压阀和稳压箱组 成系统提供一股恒定的水射流 由喷嘴射出冲击平板或曲面板, 射流对实验板的冲击力用天平 量测,射流的流量用自动量测仪 量测。
实验目的和要求
1. 实测射流对平板或曲面板 施加的作用力,并与用理论 公式计算的作用力相比较, 以验证恒定总流的动量方 程。
2. 学习用天平测力和用体积 法测流量的实验技能。
实验步骤
1. 认真阅读实验目的要求、实 验原理和注意事项。
2. 查阅用天平测力和用体积法(手工、自动)量测流量的原理和步骤。 3. 调天平,将微调砝码拨到零位,配重放到 A 盘,使天平处于平衡状态。调节天平位置,
使喷嘴中心与实验板中心在同一轴线上,然后用定位件将天平固定。在天平 B 盘放入砝 码,实验板为平板时放 60g 砝码,曲板时放 100g 砝码。 4. 接好自动量测仪,按自动量测操作步骤(另附)进行操作。 5. 将分流器泄水口拨向泄水槽(11),开大稳压箱调压阀,关闭进水调节阀,将量水箱存 水放空后,关闭量水箱泄水阀。启动水泵,待稳压箱内的气体全部排除后关小调压阀(不
程可求出平板对水流的作用力 R′ .
z 控制面中除了水流和平板的交界面外压强都为零。不考虑水流扩散、板面和空气阻力,
由能量方程可得
v1 = v2 = v . 若射流方向水平,重力沿射流方向无分量,沿射流方
向的动量方程投影式为:
ρQ(0 − α 01v1) = −R′ , 取动量修正系数 α 01 = 1.0 ,则
R′ = ρQv .
z 若射流冲击的是一块凹面板,则沿射流方向的动量方
程投影式为:
ρQ(α 02v2 cosβ − α 01v1) = −R′ , 取动量修正系数 α 01 = α 02 = 1.0 ,v1 = v2 = v 仍满足,所 以
R′ = ρQv(1 − cosβ) .
动量-1
z 本实验装置设计的射流方向是铅垂向上的,重力沿射 流方向有分量,考虑到重力的减速作用,射流冲击到 实验板上的速度小于喷嘴出口流速,为 v1 = v2 = v2 − 2gz , 故将实验板受力公式改为 R = ρQ v2 − 2gz (1 − cos β) , 其中 z 为射流喷射高程(喷嘴出口到实验板的距离)。
分析思考问题
1. 恒定总流动量方程的适用条件是什么?可用来解决什么问题?
2.
动量方程中的
∑
G F
是指所有外力的矢量和,当使用动量方程在某一方向的投影式时,若
质量力(重力)在该方向有分量,应该如何处理?
3. 试分析实验板所受射流冲击力理论值与实验值之间存在差别的原因。
4. 喷嘴与实验板中心位置如果没有对准,会出现什么问题?
流出控制体的动量。利用动量方程我们往往可以求出
所需的作用力,包括边界对流体的作用力或者其反作
用力(流体对边界的作用力)。
z 水流从圆形喷嘴射出,垂直冲击在距离很近的一块平
板上,随即在平板上向四周散开,流速方向转了 900,
取射流转向前的断面 1-1 和水流完全转向以后的断面
2-2(是一个圆筒面,它应截取全部散射的水流)之间的水流区域为控制体,运用动量方
清华大学水利水电工程系水力学实验室
水力学 流体力学
课程教学实验指示书
恒定总流动量方程验证实验
原理简介
z 对恒定总流运用动量守恒原理,可以得到动量方程
ρQ(−α
G 01v1
+
α
G 02v2 )
=
∑
G F
,
它表明总流中上游 1-1 断面和下游 2-2 断面之间控制
体内流体所受外力之矢量和等于单位时间经两断面