高中数学必修4弧度制

合集下载

高中数学新人教B版必修4 弧度制和弧度制与角度制的换算

高中数学新人教B版必修4   弧度制和弧度制与角度制的换算

1.1.2弧度制和弧度制与角度制的换算(1)1弧度的角是如何定义的?(2)如何求角α的弧度数?(3)如何进行弧度与角度的换算?(4)以弧度为单位的扇形弧长、面积公式是什么?[新知初探]1.度量角的两种制度(1)角度制:①定义:用度作单位来度量角的制度.②1度的角:把圆周360等分,则其中1份所对的圆心角是1度.(2)弧度制:①定义:以弧度为单位来度量角的制度.②1弧度的角:长度等于半径长的圆弧所对的圆心角.③弧度数的计算公式:在半径为r的圆中,若弧长为l的弧所对的圆心角为α rad,则α=lr.[点睛]用弧度为单位表示角的大小时,“弧度”两个字可以省略不写,如2 rad的单位“rad”可省略不写,只写2.2.角度与弧度的互化(1)180°=π rad.(2)常用的角度数与弧度数的互化:[点睛](1)在应用扇形面积公式S=12αr2时,要注意α的单位是“弧度”.(2)在运用公式时,根据已知条件,选择合适的公式代入.(3)在弧度制下的扇形面积公式S =12lr ,与三角形面积公式S =12ah (其中h 是三角形底边a 上的高)的形式较相似,可类比记忆.(4)由α,r ,l ,S 中任意的两个量可以求出另外的两个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)1弧度=1°.( )(2)每个弧度制的角,都有唯一的角度制的角与之对应.( ) (3)用弧度制度量角,与圆的半径长短有关.( ) 答案:(1)× (2)√ (3)×2.5弧度的角的终边所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:D3.半径为1,圆心角为2π3的扇形的弧长是( )A.4π3 B .π C.2π3 D.π3答案:C4.(1)2π3=________;(2)-210°=________.答案:(1)120° (2)-7π6[典例] 把下列角度化成弧度或弧度化成角度: (1)72°;(2)-300°;(3)2;(4)-2π9. [解] (1)72°=72×π180=2π5. (2)-300°=-300×π180=-5π3. (3)2=2×⎝⎛⎭⎫180π°=⎝⎛⎭⎫360π°.(4)-2π9=-⎝⎛⎭⎫2π9×180π°=-40°.角度与弧度的互化技巧在进行角度与弧度的换算时,抓住关系式π rad =180°是关键,由它可以得到:度数×π180=弧度数,弧度数×180°π=度数.[活学活用]将下列角度与弧度进行互化: (1)5116π;(2)-7π12;(3)10°;(4)-855°.解:(1)5116π=5116×180°=15 330°.(2)-7π12=-712×180°=-105°. (3)10°=10×π180=π18. (4)-855°=-855×π180=-19π4.用弧度制表示终边相同的角[典例] 已知角α=-2 018°.(1)将α改写成φ+2k π(k ∈Z,0≤φ<2π)的形式,并指出α是第几象限角; (2)在区间[-2π,4π)上找出与α终边相同的角.[解] (1)因为α=-2 018°=-6×360°+142°,且142°=142×π180=71π90, 所以α=-12π+71π90,故α是第二象限角. (2)与α终边相同的角可表示为θ=2k π+71π90,k ∈Z , 又-2π≤θ<4π,所以k =-1,0,1, 将k 的值分别代入θ=2k π+71π90,k ∈Z , 得θ=-109π90,71π90,251π90.用弧度制表示终边相同的角2k π+α(k ∈Z)时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.[活学活用]1.将-1 125°表示成2k π+α,0≤α<2π,k ∈Z 的形式为________. 解析:因为-1 125°=-4×360°+315°, 315°=315×π180=7π4, 所以-1 125°=-8π+7π4. 答案:-8π+7π42.用弧度表示终边落在阴影部分内(不包括边界)的角的集合.解:如题图,330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6,而75°=75×π180=5π12, ∴终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧θ⎪⎪⎭⎬⎫2k π-π6<θ<2k π+5π12,k ∈Z .1.已知扇形的圆心角所对的弦长为2,圆心角为2π3.求:(1)这个圆心角所对的弧长; (2)这个扇形的面积.解:(1)因为扇形的圆心角所对的弦长为2,圆心角为2π3,所以半径r =1sin π3=233, 所以这个圆心角所对的弧长l =233×2π3=43π9. (2)由(1)得扇形的面积S =12×233×43π9=4π9.题点二:利用公式求半径和弧度数2.扇形OAB 的面积是4 cm 2,它的周长是8 cm ,求扇形的半径和圆心角. 解:设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l cm ,半径为r cm , 依题意有⎩⎪⎨⎪⎧l +2r =8, ①12l ·r =4, ②由①②,得r =2,∴l =8-2r =4,θ=lr =2.故所求扇形的半径为2、圆心角为2 rad. 题点三:利用公式求扇形面积的最值3.已知扇形的周长是30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解:设扇形的圆心角为α(0<α<2π),半径为r ,面积为S ,弧长为l ,则l +2r =30,故l =30-2r ,从而S =12lr =12(30-2r )r =-r 2+15r =-⎝⎛⎭⎫r -1522+2254⎝⎛⎭⎫15π+1<r <15, 所以,当r =152 cm 时,α=2,扇形面积最大,最大面积为2254cm 2.弧度制下涉及扇形问题的攻略(1)明确弧度制下扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,r 是扇形的半径,α是扇形的圆心角).(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.[提醒] 运用弧度制下的弧长公式及扇形面积公式的前提是α为弧度.层级一 学业水平达标1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用弧度制度量角时,角的大小与圆的半径有关解析:选D 由角度制和弧度制的定义,知A 、B 、C 说法正确.用弧度制度量角时,角的大小与所对圆弧长与半径的比有关,而与圆的半径无关,故D 说法错误.2.扇形的周长是16,圆心角是2弧度,则扇形的面积是( ) A .16π B .32π C .16D .32解析:选C 弧长l =2r,4r =16,r =4,得l =8, 即S =12lr =16.3.角α的终边落在区间⎝⎛⎭⎫-3π,-5π2内,则角α所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C -3π的终边在x 轴的非正半轴上,-5π2的终边在y 轴的非正半轴上,故角α为第三象限角.4.时钟的分针在1点到3点20分这段时间里转过的弧度为( ) A.143π B .-143π C.718π D .-718π 解析:选B 显然分针在1点到3点20分这段时间里,顺时针转过了73周,转过的弧度为-73×2π=-143π.5.下列表示中不正确的是( )A .终边在x 轴上的角的集合是{α|α=k π,k ∈Z}B .终边在y 轴上的角的集合是⎩⎨⎧⎭⎬⎫α|α=π2+k π,k ∈ZC .终边在坐标轴上的角的集合是⎩⎨⎧⎭⎬⎫α|α=k ·π2,k ∈Z D .终边在直线y =x 上的角的集合是⎩⎨⎧⎭⎬⎫α|α=π4+2k π,k ∈Z解析:选D 终边在直线y =x 上的角的集合应是⎩⎨⎧⎭⎬⎫α|α=π4+k π,k ∈Z .6.-135°化为弧度为________,11π3化为角度为________. 解析:-135°=-135×π180=-34π,113π=113×180°=660°. 答案:-34π 660°7.扇形的半径是6,圆心角是60°,则该扇形的面积为________. 解析:60°=π3,扇形的面积公式为S 扇形=12αr 2=12×π3×(6)2=π.答案:π8.设集合M =⎩⎨⎧⎭⎬⎫α|α=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2, ∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π9.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解:设扇形的半径为R ,弧长为l ,则2R +l =4. 根据扇形面积公式S =12lR ,得1=12l ·R .联立⎩⎪⎨⎪⎧2R +l =4,12l ·R =1,解得R =1,l =2,∴α=l R =21=2.10.把下列各角化成2k π+α(0≤α<2π,k ∈Z)的形式,并指出是第几象限角. (1)-1 500°;(2)236π;(3)-4.解:(1)∵-1 500°=-1 800°+300°=-10π+5π3, ∴-1 500°与5π3终边相同,是第四象限角.(2)∵236π=2π+116π,∴236π与116π终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),∴-4与2π-4终边相同,是第二象限角.层级二 应试能力达标1.下列转化结果错误的是( ) A .60°化成弧度是π3B .-103π化成度是-600° C .-150°化成弧度是-76πD.π12化成度是15° 解析:选C 对于A,60°=60×π180=π3;对于B ,-103π=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°.故C 错误.2.集合⎩⎨⎧⎭⎬⎫α|k π+π4≤α≤k π+π2,k ∈Z 中角的终边所在的范围(阴影部分)是( )解析:选C 当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.3.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z)D .α-β=π2+2k π(k ∈Z)解析:选D ∵α=x +π4+2k 1π(k 1∈Z),β=x -π4+2k 2π(k 2∈Z),∴α-β=π2+2(k 1-k 2)·π(k 1∈Z ,k 2∈Z).∵k 1∈Z ,k 2∈Z ,∴k 1-k 2∈Z. ∴α-β=π2+2k π(k ∈Z).4.已知某机械采用齿轮传动,由主动轮M 带着从动轮N 转动(如图所示),设主动轮M 的直径为150 mm ,从动轮N 的直径为300 mm ,若主动轮M 顺时针旋转π2,则从动轮N 逆时针旋转( )A.π8B.π4C.π2D .π解析:选B 设从动轮N 逆时针旋转θ rad ,由题意,知主动轮M 与从动轮N 转动的弧长相等,所以1502×π2=3002×θ,解得θ=π4,选B.5.若角α的终边与85π角的终边相同,则在[0,2π]上,终边与α4角的终边相同的角是____________.解析:由题意,得α=8π5+2k π(k ∈Z),∴α4=2π5+k π2(k ∈Z).令k =0,1,2,3,得α4=2π5,9π10,7π5,19π10.答案:2π5,9π10,7π5,19π106.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的________.解析:设原来圆的半径为r ,弧长为l ,圆心角为α,则l =αr .设将圆的半径变为原来的3倍后圆心角为α1,则α1=l 3r =αr 3r =α3,故α1α=13.答案:137.已知α=1 690°.(1)把α写成2k π+β(k ∈Z ,β∈[0,2π))的形式; (2)求θ,使θ与α终边相同,且θ∈(-4π,4π). 解:(1)1 690°=4×360°+250°=4×2π+2518π. (2)∵θ与α终边相同,∴θ=2k π+2518π(k ∈Z). 又θ∈(-4π,4π),∴-4π<2k π+2518π<4π(k ∈Z).解得-9736<k <4736(k ∈Z),∴k =-2,-1,0,1.∴θ的值是-4718π,-1118π,2518π,6118π.8.如图,已知在半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小; (2)求α所对的弧的长度l 及阴影部分的面积S . 解:(1)由于圆O 的半径为10,弦AB 的长为10, 所以△AOB 为等边三角形,∠AOB =π3,所以α=π3.(2)因为α=π3,所以l =α·r =10π3.S 扇=12lr =12×10π3×10=50π3,又S △AOB =12×10×53=253,所以S =S 扇-S △AOB =50π3-253=50⎝⎛⎭⎫π3-32.。

人教版数学必修4第一章1.1.2弧度制课件

人教版数学必修4第一章1.1.2弧度制课件
3.无论是以“弧度”还是以“度”为单位, 角的大小都是一个与半径大小无关的定值.
(二)弧度制的绝对值公式
完成下列表格,你能得出哪些结论?
弧AB的长 OB旋转的方向 AOB 的弧度数 AOB 的度数
r
逆时针方向
2 r 逆时针方向
r
逆时针方向
1
2r
顺时针方向
-2
顺时针方向
未旋转
0
逆时针方向
180
逆时针方向
运用新知
根据度与弧度的换算关系,下表中各特殊角对应 的弧度数分别是多少?
注意:用弧度制表示角时,“弧度”二字或 “rad”通常略去不写,而只写该角所对应的弧 度数.如α=2表示α是2rad的角.
随堂练习: 1.根据条件完成下列度和弧度的转化;
(1)把 - 35 化成弧度;
(2)把 - 弧度化成度; 2.把下列角化成 0 到 2 的角加上 2 k 的形式;
4.在半径为r的圆中,n°的圆心角所对的圆弧长 如何计算?
l 2r n nr
360 180
5. 圆心角的大小是否与圆半径的大小有关?
探究新知
(一)弧度制的概念
讨论:角除了以度为单位,还有分和秒,他们 是六十进制的,计算不方便,角的度量是否也 能用不同的单位制?(类比长度的度量单位)
新知1:弧度制的定义
3.正角的弧度数是一个正数,负角的弧度数是一 个负数,零角的弧度数是0.
4.如果半径为R的圆的圆心角 所对弧的长为l,
那么,角的弧度数的绝对值是 l.
r
5.角度制与弧度制换算 :180°=π rad
运用新知
例1按照下列要求,把67°30′化成弧度:
(1)精确值;
(2)精确到0.001的近似值.

必修4-1.1-任意角和弧度制PPT课件

必修4-1.1-任意角和弧度制PPT课件
的顶点重合于坐标原点,角的始边重合于x轴的
正半轴。
➢角的终边落在第几象限,就说这个角是第几 象限的角(包含第一、 二、三、 四象限角)
➢角的终边落在哪坐标轴上,就说这个角是 哪坐标轴上角(包含x,y正负半轴上的角)
.
7
2.象限角和坐标轴上角
终边
终边
y
x
o
始边
终边
终边 是第一象限角
是 第 二 象 限 角 是 第 三 象 限 角 是 第 四 象 限 角
1.{β| β=k∙1800 ,k∈Z} {β| β=kπ ,k∈Z}
2.{β| β=k∙900 ,k∈Z}
{β| β=k∙
2
,k∈Z}
3.{β| k ∙ <β<2kπ
3600 +
<β<k∙ 3600+900 ,k∈Z}
,k∈Z}
={β| β=900+(2K+1)1800 ,K∈Z} ={β| β=900+1800 的奇数倍}
.
11
所以 终边落在y轴上的角的集合为
S=S1∪S2 ={β| β=900+1800 的偶数倍} ∪{β| β=900+1800 的奇数倍} ={β| β=900+1800 的整数倍} ={β| β=900+K∙1800 ,K∈Z}
现状生活中:体操、跳水、滑冰、 转体720度的高难度动作,直体后空 翻转体900度及以上的旋转 时钟的时针、分针转动和调准时间 时顺时针、逆时针拨转角度 主从动轮转动角 车的轮子的转动角 风车,风扇叶片等转动
.
4
思考:这些旋转形成的角该如何表示和区分?
引入新的角定义:
定义2:平面内一条射线绕着端点从一个位 置旋转到另一个位置所成的图形.射线OA、 OB分别是角的始边和终边,端点O为角的 顶点。

数学:1.1.2《弧度制》课件(苏教版必修4)

数学:1.1.2《弧度制》课件(苏教版必修4)

1、注册资本并不需要一次缴清 我国目前实行注册资本认缴制,认缴制的意思就是:注册资本不用在一开始就全部缴纳完成,而是只要在承诺的时限内(一般为10-20年)缴完 即可,这极大的降低了公司注册时的资金压力。
猜卷子,轻狂书生被批评为文锋还不如小童生老道,大受打击,化悲痛为酒量,自己喝,并且满席的逼人喝。满席的被他带动起来,都致力于 进行“自己喝与劝人喝”的行为,端着酒榼,大言不惭道:“怕什么?这又不是烈酒,是淡酒!童子都饮得!”于是小童生和宝音都躲不过去。 明柯好歹良心发现,替宝音挡一挡狼爪:“这小子酒量不行。”宝音深受启发,正准备装醉,“卟嗵”,那边已倒下一个。刘晨寂来酒不拒, 饮下三杯,轰然倒地,醉死如一截木头,任谁推都不动,好如一截木头。而蝶宵华饮过三杯,宽了外衣,剩个碧蓝精绣薄绸子的中衣,中衣领 口扣子还解开一颗,肉香四溢,媚眼流盼,气场全开。来给宝音灌酒的无聊人士,先被刘晨寂的倒下,吸引了注意力,之后就流着哈喇子跟其 他人一样聚到蝶宵华脚边了,像被肉摊上香气吸引来的苍蝇,任摊主左挥右驱,百赶不去。——摊主就是那自封护花有责,不胜群蝇之扰的七 王爷。宝音居此宴会,芒刺在股,坐立不安。男人就喜欢这种调调?见识了!反正以后她打死都不要来了。小童生免过被灌酒的劫难,又来同 宝音攀谈,宝音也理解他:毕竟席上看来,只有宝音一人跟他年龄相近嘛!雄性动物的本能,年长的都爱欺负弱小的,小童生估计平时被欺负 惨了,遇见宝音,如茫茫大海中攀住一根浮木。可宝音小身体里装着个老灵魂,纵然心怀宽广母爱泛滥,也不见得此时此地愿与他交谈——她 还怕多说多错呢!第八十三章 自毁入宫路(2)小童生殷勤的喋喋不休,拷问至祖籍家人。她微笑敬他一杯酒,自己只抿了一口,轰然倒地, 百问不答,效刘晨寂状。闭上了眼睛,宝音看不到刘晨寂此时的危险,否则,未必敢学他。轻狂书生从蝶宵华身边被挤了出来,转头忽见刘晨 寂俯在桌上,肌肤如玉、布衣国色,顿生歹念,踉跄过去,待趁醉把手搭在他肩上,吃顿豆腐,忽觉天旋地转,似乎是酒力涌上来,禄山之爪 再也搭不下去,跑出去吐了,吐至一半,忽忆及一事,心头凛然:城东某富翁,听说也是此道馋痨,贪吃不顾形像的人,某日召刘大夫视疾, 见色起意,病榻边就要毛手毛脚,忽的病势大危,昏迷了三天三夜,几乎没能抢救得转来,人都说他自作孽。除此人之外,还有某无赖儿,想 用计谋,逼刘大夫就范,谋划到一半,家遭祝融,流落街头,这也是自作孽。再加上他今儿喝到吐„„想对刘大夫不轨的人,似乎很容易自作 孽,不可活呢?宝音在屋里,装醉都装得腰酸背痛,不断腹诽此宴之不可理喻,不知什么时候才能结束。还有,如果是她安排的宴会啊,看到 有客人醉倒,立刻就安排扶下去,软褥上卧着,奉碗醒酒汤了!何至于就让客人趴到现在?想啥就来啥,还真有个粗喉咙道:“把醉了的兄弟 都抱到那边躺着吧!老

高中人教a版数学必修4:第2课时 弧度制 word版含解析

高中人教a版数学必修4:第2课时 弧度制 word版含解析

第2课时 弧度制1.2.理解弧度制的定义,能够对弧度和角度进行正确的换算.1.我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,即用弧度制度量时,这样的圆心角等于1 rad.2.弧长计算公式:l =|α|·r (α是圆心角的弧度数);扇形面积公式S =12l ·r 或S =12|α|·r 2(α是弧度数且0<α<2π).3一、选择题 1.-315°化为弧度是( )A .-43πB .-5π3C .-7π4D .-76π答案:C解析:-315°×π180=-7π42.在半径为2 cm 的圆中,有一条弧长为π3cm ,它所对的圆心角为( )A.π6B.π3C.π2D.2π3 答案:A解析:设圆心角为θ,则θ=π32=π6.3.与角-π6终边相同的角是( )A.5π6B.π3C.11π6D.2π3 答案:C解析:与角-π6终边相同的角的集合为αα=-π6+2k π,k ∈Z ,当k =1时,α=-π6+2π=11π6,故选C. 4.下列叙述中正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 答案:D解析:由弧度的定义,知D 正确.5.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 为( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π}∪{α|0≤α≤π} 答案:D解析:求出集合A 在[-4,4]附近区域内的x 的数值,k =0时,0≤x ≤π;k =1时,4<2π≤x ≤3π;在k =-1时,-2π≤x ≤-π,而-2π<-4,-π>-4,从而求出A ∩B .6.下列终边相同的一组角是( )A .k π+π2与k ·90°,(k ∈Z )B .(2k +1)π与(4k ±1)π,(k ∈Z )C .k π+π6与2k π±π6,(k ∈Z )D.k π3与k π+π3,(k ∈Z ) 答案:B解析:(2k +1)π与(4k ±1)π,k ∈Z ,都表示π的奇数倍. 二、填空题7.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是________rad. 答案:2解析:根据弧度制的定义,知所求圆心角的大小为42=2 rad.8.设集合M =⎩⎨⎧⎭⎬⎫αα=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.答案:⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π解析:由-π<k π2-π3<π,得-43<k <83.∵k ∈Z ,∴k =-1,0,1,2,∴M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.9.时钟从6时50分走到10时40分,这时分针旋转了________弧度.答案:-23π3解析:时钟共走了3小时50分钟,分针旋转了-⎝⎛⎭⎫3×2π+56·2π=-23π3三、解答题10.一条铁路在转弯处成圆弧形,圆弧的半径为2 km ,一列火车以30 km/h 的速度通过,求火车经过10 s 后转过的弧度数.解:∵圆弧半径R =2 km =2 000 m ,火车速度v =30 km/h =253m/s ,∴经过10 s 后火车转过的弧长l=253×10=2503(m),∴火车经过10 s 后转过的弧度数|α|=l R =25032 000=124.11.已知角α=2010°.(1)将α改写成θ+2k π(k ∈Z,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角.解:(1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,角α与角7π6的终边相同,故α是第三象限角.(2)与α终边相同的角可以写为r =7π6+2k π(k ∈Z ).又-5π≤r <0,∴k =-3,-2,-1.∴与α终边相同的角为-296π,-176π,-56π.(3)令0≤r =76π+2k π<5π,∴k =0,1,∴与α终边相同的角为76π,196π.能力提升12.如下图所示,在某机械装置中,小正六边形沿着大正六边形的边顺时针方向滚动,小正六边形的边长是大正六边形边长的一半.如果小正六边形沿着大正六边形的边滚动一周后返回出发时的位置,在这个过程中,射线OA 围绕点O 旋转了θ角,其中O 为小正六边形的中心,则θ等于( )A .-4πB .-6πC .-8πD .-10π 答案:B解析:小正六边形沿着大正六边形滚动一条边并且到下一条边上时,射线OA 旋转了π3+2π3=π,则小正六边形沿着大正六边形的边滚动一周后返回出发时的位置时,共旋转了π×6=6π.又射线OA 按顺时针方向旋转,则θ=-6π,故选B.13.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m π+π6,m ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =n π2-π3,n ∈Z , P =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π2+π6,k ∈Z ,试确定M 、N 、P 之间满足的关系.解:解法一:集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z ; N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =2m π2-π3或x =2m +12π-π3,m ∈Z=⎩⎨⎧ x ⎪⎪⎭⎬⎫x =m π-π3或x =m π+π6,m ∈Z ; P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =2m 2π+π6或x =2m -12π+π6,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6或x =m π-π3,m ∈Z . 所以M N =P .解法二:M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =m π+π6,m ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =6m +16π,m ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3·(2m )+16π,m ∈Z ;N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =n π2-π3,n ∈Z =⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z ;P =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k π2+π6,k ∈Z =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =3k +16π,k ∈Z=⎩⎨⎧x ⎪⎪⎭⎬⎫x =3n -26π,n ∈Z =N .所以M ⊆N =P .。

高二数学必修4知识点:任意角和弧度制

高二数学必修4知识点:任意角和弧度制

高二数学必修 4 知识点:随意角和弧度制在中国古代把数学叫算术,又称算学,最后才改为数学。

小编准备了高二数学必修 4 知识点,希望你喜爱。

1.随意角(1)角的分类:①按旋转方向不一样分为正角、负角、零角.②按终边地点不一样分为象限角和轴线角.(2)终边同样的角:终边与角同样的角可写成+k360(kZ).(3)弧度制:① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角 .②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=, l 是以角作为圆心角时所对圆弧的长,r 为半径 .③用弧度做单位来胸怀角的制度叫做弧度制.比值与所取的r 的大小没关,仅与角的大小相关.④弧度与角度的换算:360 弧度 ;180 弧度 .⑤弧长公式: l=||r ,扇形面积公式:S 扇形 =lr=||r2.2.随意角的三角函数(1)随意角的三角函数定义:设是一个随意角,角的终边与单位圆交于点P(x, y) ,那么角的正弦、余弦、正切分别是:sin =y ,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数 .(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 .3.三角函数线察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。

随机察看也是不行少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。

我供给的察看对象,注意形象传神,色彩鲜亮,大小适中,指引少儿多角度多层面地进行察看,保证每个少儿看获得,看得清。

看得清才能说得正确。

在察看过程中指导。

我注意帮助少儿学习正确的察看方法,即按次序察看和抓住事物的不一样特点重点察看,察看与说话相联合,在察看中累积词汇,理解词汇,如一次我抓住机遇,指引少儿察看雷雨,雷雨前天空急巨变化,乌云密布,我问少儿乌云是什么样子的,有的孩子说:乌云像海洋的波涛。

高中数学 弧度制课件一 新人教A必修4

高中数学 弧度制课件一 新人教A必修4

1º=
π
180
rad0.01745rad
1rad
=
(
180
π
) º 57.3º =57º 18′
6 .特殊角的度数与弧度数的对应表:
0 4 3 2 32
例值; (2)精确到0.001的近似值。
例2. 将3.14 rad换算成角度(用度数 表示,精确到0.001).
例3.利用弧度制来推导扇形的公式:
(1 )1 2 SR2; (2 )1 2l SR.
其中R是半径,l是弧长,(02)
为圆心角,S是扇形面积。
l OS
R
小结
1.弧度的计算公式: l
r
2.弧度与角度的换算:
1º=
π
180
rad
1rad = ( 180 ) º
π
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30
3.角度是一个量,弧度数表示弧长与 半径的比,是一个实数,这样在角集 合与实数集之间就建立了一个一一 对应关系.

高中数学 1-1-2弧度制和弧度制与角度制的换算课件 新人教B版必修4

高中数学 1-1-2弧度制和弧度制与角度制的换算课件 新人教B版必修4

(2010·新余市高一下学期期末测试)在单位圆中,面积
为1的扇形所对圆心角的弧度数为
()
A.1
B.2
C.3
D.4
[答案] B
[解析] 设扇形的弧长为l,由题意,
得 S=12lR=12l×1=1,∴l=2,
∴扇形所对圆心角的弧度数为Rl =21=2.
[例4] 已知扇形的周长为20cm,当扇形的圆心角为多 大时,它有最大面积?
[分析] 设扇形的半径是 r,弧长是 l,则扇形面积可 表示为 S=12lr,l 与 r 之间还要满足周长为 20,即 l+2r= 20,所以 l=20-2r,这样 S 就能表示成关于 r 的二次函数, 再利用二次函数的性质求最值即可.
[解析] 设扇形的半径是 r,弧长是 l,由已知条件可 知:l+2r=20,即 l=20-2r.由 0<l<2πr,得 0<20-2r<2πr, ∴π1+01<r<10.
[点评] 用弧度表示的与角α终边相同的角的一般形式 为:β=2kπ+α(k∈Z).这些角所组成的集合为{β|β=2kπ+ α,k∈Z}.
用弧度制分别写出第一、二、三、四象限角的集合. [解析] 第一象限角的集合:
S1=α2kπ<α<π2+2kπ,k∈Z

第二象限角的集合:
S2=απ2+2kπ<α<π+2kπ,k∈Z
rad≈0.01745rad,
1rad= (18π0)°≈57.3°=57°18′.
3.在弧度制下,弧长公式为 l=θr,扇形面积公式为
S=
1 2lr .
重点:弧度的概念,角度与弧度的换算,弧长公式. 难点:弧度概念的理解及角度与弧度的换算和弧度制 下弧长与扇形面积公式. 1.关于弧度的理解,主要明确以下几点: (1)和角度制对比,弧度制是以“弧度”为单位来度量 角的单位制,而角度制是以“度”为单位来度量角的单位 制. (2)根据圆心角定义,对于任何一个圆心角α,所对弧 长与半径的比是一个仅与角α的大小有关的常数.因此,弧 长等于半径的弧所对的圆心角的大小并不随半径变化而变 化,而是一个大小确定的角,可以取为度量角的标准.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)已知扇形的周长为 8cm,面积为4cm,2 求扇形的中
心角的弧度数.
例4. 已知一半径为R的扇形,它的周长等于 所在圆的周长,那么扇形的中心角是多少弧 度?合多少度?扇形的面积是多少?
解:周长=2πR=2R+l,所以l=2(π-1)R. 所以扇形的中心角是2(π-1) rad. 合( 360( 1) ) º
练习2
计算: (1) sin ;(2)tan1.5 . 4
解:(1)∵ 45 ∴ sin sin 45 2
4
4
2
(2)∵ 57.30 1.5 85.95 8557 ∴ tan1.5 tan8557 14.12
三、用弧度制表示弧长及扇形面积公式:
练习1:如果α 是第二象限的角,那么2α 、α /2 分别是第几象限的角?
90°+k·360°<α<180°+k·360°
180°+k·720°<2α<360°+k·720°
45°+k·180°<α/2<90°+k·180°
2、若α是第四象限角,则180º-α是( C)
A 第一象限角
B 第二象限角
C 第三象限角
① 弧长公式: l r
由公式: l l r
r
比公式
l nr
180
简单.
弧长等于弧所对的圆心角(的弧度数)
的绝对值与半径的积.
② 扇形面积公式 S 1 lR 2
其中l是扇形弧长,R是圆的半径。
证明:设扇形所对的圆心角为nº(αrad),则
S R2 n 1 R2
1. 圆心角、弧长和半径之间的关系:
AB r

AB r
=定值,
设α =nº,AB 弧长为l,半径OA为r,
则 l n 2 r , l n 2 ,
360 r 360
2.定义:
长度等于半径长的圆弧所对的圆心角叫做1弧 度的角,弧度记作rad。这种以弧度为单位来 度量角的制度叫做弧度制。
D 第四象限角
3、若90º<β<α<135º,则α+β的范围是 _(_1_8_0_º,_2_7_0_º)_,α-β的范围是___(_0_º,_4_5_º)___;
1.1.2 弧度制
在初中几何里,我们学习过角的度量, 1度的角是怎样定义的呢?
周角的 1 为1度的角。 360
这种用1º角作单位来度量角的制度常用的度量角的制度——弧度制。
(第二课时)
复习回顾:
一、弧度的定义: 长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
二、弧度与角度的换算
180°= π 弧度
∴ 1= rad 0.01745rad
180
1
rad

180


57.30
57 18'
例1 1、按照下列要求,把22.5°、67°30′化成弧度: (1)求其精确值; (2)求其精确到0.001的近似值.

扇形面积是 ( 1)R2
解:(1)240º= 4 ,根据l=αR,得
3
l 4R
3
(2)根据S=
1 2
lR=
12αR2,且S=2R2.
所以 α=4.
例2 (1) 已知扇形的圆心角为72°, 半径等于20cm,求扇形的弧长和面积;
(2)已知扇形的周长为10cm,面积为 4cm2,求扇形的圆心角的弧度数.
例3、
(1)若三角形的三个内角之比是2:3:4,求其三个内角 的弧度数.
180
1
rad

180


57.30
57 18'
例1 1、按照下列要求,把22.5°、67°30′化成弧度: (1)求其精确值; (2)求其精确到0.001的近似值.
2、把弧度制角 1 , 3 化为角度制表示。
35
练习:
请写出一些特殊角的弧度数
度 0º 30º 45º 60º 90º 120º 135º 150º 180º 270º 360º
2、把弧度制角 1 , 3 化为角度制表示。
35
练习:
请写出一些特殊角的弧度数
度 0º 30º 45º 60º 90º 120º 135º 150º 180º 270º 360º
弧度数 0 2 3 5
6 4 32 3 4 6
3 2
2
注: 1.用弧度为单位表示角的大小时, “弧度”二字或“rad” 通常省略不写,但用“度”(°)为单位不能省。 2.用弧度为单位表示角时,通常写 成“多少π”的形式, 如无特别要求,不用将π化成小数。
(3)弧度制是十进制,它的表示是用一个实数表 示,而角度制是六十进制;
二、弧度与角度的换算
思考: 1.若弧是一个整圆,其圆心角的弧度数是多少?
2.若弧是一个半圆,其圆心角的弧度数是多少?
360°= 2π 弧度 180°= π 弧度
l=2 π r
(B)
Or
∴ 1= rad 0.01745rad
注:今后在用弧度制表示角的时候,弧度二字 或rad可以略去不写。
3. 弧度制与角度制相比:
(1) 弧度制是以“弧度”为单位的度量角的单位制, 角度制是以“度”为单位来度量角的单位制;1弧 度≠1º; (2)1弧度是弧长等于半径长的圆弧所对的圆心角
的大小,而1度是圆周 1 的所对的圆心角的大小; 360
360 2
又 αR=l,所以
S 1 lR 2
证明2:因为圆心角为1 rad的扇形面积是
R2 1 R2 2 2
l
而弧长为l的扇形的圆心角的大小是 R rad.
所以它的面积是 S 1 lR 2
例1. 在半径为R的圆中,240º的中心角所对的
弧长为
,面积为2R2的扇形的
中心角等于
弧度。
弧度数 0 2 3 5
6 4 32 3 4 6
3 2
2
注: 1.用弧度为单位表示角的大小时, “弧度”二字或“rad” 通常省略不写,但用“度”(°)为单位不能省。 2.用弧度为单位表示角时,通常写 成“多少π”的形式, 如无特别要求,不用将π化成小数。
1.1.2 弧度制
相关文档
最新文档