3.7分式方程(1)导学案

合集下载

《分式方程》(第1课时)教案doc初中数学

《分式方程》(第1课时)教案doc初中数学

《分式方程》(第1课时)教案doc 初中数学[教学目标]1.明白分式方程的意义,会解可化为一元一次方程的分式方程.2,了解分式方程产生增根的缘故,会判定所求得的根是否是分式方程的增根.3.会列出方程解决简单的实际咨询题,并能依照实际咨询题的意义检验所得结果是否合理.此外,通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程,体验解决咨询题的差不多策略,进展应用意识和解决咨询题的技能.[教学过程(第一课时)]1.情境创设咨询题是数学的心脏,遵循«标准»关于〝方程是刻画现实世界的一种有效的数学模型〞的理念,同以往一样,我们仍旧从咨询题开始,让学生从实际咨询题数量关系的探究中,发觉一类未知数显现在分母中的新方程——分式方程. 除课本提供的3个实例外,教师能够依照学生的实际情形,补充一些与学生生活相关的实际咨询题,激发学生学习分式方程的爱好.2.探究活动探究活动(一):能够采纳不同的方式,探寻各个实际咨询题中的数量关系.例如:关于情境(一),能够用表格揭示服装加工中的工作总量与工作时刻、个人工作效率之间的数量关系:依照咨询题中的相等关系,得x x 20124=+ 关于情境(二),能够用数位填空的方式表示两位数的构成:原两位数 改变后的两位数因此,可得方程47410104=++⨯x x 关于情境(三),能够用线段示意图表示行程咨询题:由于自行车早动身40min ,但与汽车同时到达,多行驶了40min ,因此可得方程:604031515=-x x 探究活动(二):探究分式方程的解法.仍以咨询题为先导,发动学生研究如何解分式方程?20124xx =+ 学生可能会显现多种思路,例如:其一,分式方程与含有分数系数的一元一次方程〝形似〞,容易想到通过类比提出猜想:解分式方程也应该先去分母(卡通人语).猜想是否正确?实践之,检验之.要强调检验的必要性,通过检验能初步讲明猜想的正确性.然后告诉学生,解分式方程的一样方法是先去分母,把不熟悉的方程转化为熟悉的方程来解决.其二,移项进行减法运算,化简,得0)1(204=+-x x x 由分式的值为0的概念,得4x —20=0,从而得解x=5.正确否?可代人检验. 其三,利用分式的差不多性质,使方程两边的分式的分子为它们的最小公倍数,如xx 612055120=+,由分式相等的概念,得5x+5=6x ,从而得x=5. 应注意的是,假如学生提出后两种解决咨询题的思路,教师那么要在给予充分确信后,引导学生连续探讨,得出解分式方程的一样方法;假如没有学生提出,那么不必刻意追求,幸免干扰本课主题——分式方程的一样解法.3.例题教学例1给出了解分式方程的一样过程及完整的书写格式,假设有必要,教师可增补例题,让学生学会求解并规范表述.。

分式方程导学案

分式方程导学案

解分式方程学案一、学习目标1.使学生理解分式方程的定义.2.使学生掌握分式方程的一般解法.并理解验根的重要性。

二.学习重难点1.学习重点(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.学习难点:去分母及检验分式方程的根。

三、知识准备:1、找最简公分母2、解一元一次方程的一般步骤。

四、学习过程:1、找出下列各组分式的最简公分母:(1)11+x 与11-x (2)21+a 与412-a (3)xx +21与661+x2、概念:分式方程:分母中含有 的方程叫分式方程。

3、练习:判断下列各式哪个是分式方程.4.解方程:1x 5-=210x 25- 解:方程两边同乘最简公分母(ξ-5)(x +5),得解得:检验:将x=5代入原方程,分母ξ-5= 和2x 25-= ,相应的分式 (有或无)意义。

因此,x=5不是原方程的解,即此分式方程无解。

6.强化训练:解下列分式方程:(1)23=x3x-(2)x31=x1(x1)(x+2)---(3)224=x1x1--7、课后测评:(1)57=x x2-(2)11x=3x22x----(4)2123442+-=-++-xxxxx分式方程的应用学案一、学习目标会列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理.二、学习重难点1.重点:如何结合实际分析问题,找出等量关系,列出分式方程 2.难点:分析过程,得到等量关系三、学习过程:1. 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为ϖ千米/时,填空轮船顺流航行的速度为 千米/时,逆流航行的速度为 千米/时,顺流航行100千米所用的时间为 小时,逆流航行60千米所用的时间为 小时。

由两次航行所用时间相等,可列方程解此分式方程:检验:答 :2、 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天,求甲、乙两队单独完成各需多少数是乙队单独完成所需天数的23天?(2)、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.。

新人教版八年级数学上册《分式方程》导学案

新人教版八年级数学上册《分式方程》导学案

《分式方程》导学案学习目标:1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.学习重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想学习难点:检验分式方程解的原因学习过程:一、自主学习:1.概念:分式方程:分母中含有 的方程叫分式方程。

2.练习:判断下列各式哪个是分式方程.(1)5x y += (2)2253x y z +-= (3)1x (4)05y x =+ 3. 看课本例题回答问题:轮船顺流航行的速度为 千米/时;逆流航行的速度为 千米/时,顺流航行 100千米所用的时间为 小时,逆流航行 60 千米所用的时间为 小时。

由两次航行所用时间相等,可列方程100602020v v =+- 二、合作探究1、观察课本生解题过程,思考:方程100602020v v=+-和()()100206020v v -=+中 V 的取值范围相同吗?所以对上题中的解 v=5 必须检验。

检验:将 v=5 代入原方程中,左边= 4,右边=4 ,左边 =右边,因此 v=5 是原方程的解。

注意:分式方程必须检验2、解方程:2110525x x =--小结:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此检验时常将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解,是原分式方程的增根三、学以致用1、解方程:(1)1223x x =+ (2)21133x x x x =+++(3)22411x x =-- (4)22510x x x x -=+-(5)572x x =- (6)11322xx x -=---四、能力提升:1、若关于 x 的分式方程1011m xx x --=--有增根, 则m 的取值是?点拨:把分式方程进行转化,然后找到有可能的增根,代入。

分式方程导学案1.doc

分式方程导学案1.doc

文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持.分式方程学案学习目标: 1、结合实际问题理解分式方程的意义,学会区分整式方程与分式方程;2、初步学会解可化为一元一次方程的分式方程;3、通过把分式方程转化为解整式方程的过程,体验化归的思想;一、自学指导 1:1、什么是分式方程?------------------------------------------------------------2 辨一辨:下列方程中,哪些是关于x 的分式方程,哪些不是?( 1)2x x 1 6 ;(2)x 1 1 2 0 ;3 x;(3)x 53 x 2 x 17 ;(4)4 a二自学指导 2想一想:如何来解分式方程呢?例 1 解方程:480 600 45x 2x解:方程的两边都乘以2X, 得960-600=90X解这个方程 , 得X=4检验:将 x=4 代人原方程得左边 =45=右边∴x=4 是原方程的解想一想:对照上面方程的解法,你能理解分式方程为什么要把解进行检验吗?解:方程的两边都乘以 x-2 ,得1-x= -1-2(x-2)解这个方程 , 得X=2--------------------------------------------------------------------------------------------------------你认为 x=2 是方程的根吗?将解方程过程补充完整想一想:除了代入原方程进行检验,你还有其他的检验方式吗?---------------------------例 4 解方程:x 13x 11)( x2)( x 解:方程两边同乘以(x-1 )(x+2),得X(x+2)-(x-1)(x+2)=3 解这个方程,得X=1检验:当 X=1时, (x-1)(x+2)=0所以原方程无解2、解分式方程的一般步骤是什么?体现了什么数学思想? 步骤:1.----------------------------------------------2--------------------------------3-------------------------------------------------- 4.----------------------------------------数学思想: ---------------------------三自学指导 36 x 5找一找:小明同学对方程 x 1x(x1) 的解答如下:解 : 方程两边同乘最简公分母 x(x+1), 得6x=x+5解这个方程 , 得x=1所以原方程的解是 x=1小丽认为小明的解答有误,你认为小明错在_________。

分式方程的解法导学案

分式方程的解法导学案
念,会判断哪些是分式方程。
2、会解分式方程;记住分式方程要验根,并掌握分式方程的验根方法。
【重点】解分式方程的基本思路和解法。
【难点】理解解分式方程时可能无解的原因。
学习过程:
一、巩固检查:
1.解方程
回顾:解一元一次方程的一般步骤为①________②________③________
一般()
年级部签字:
分母中含有,等号左右两边的式子是____。
得出:分母中含有___________的方程叫做分式方程。
练习:下列方程中,哪些是分式方程?哪些是整式方程?
, , ,
, , x+y+ =5
问题:上面这个方程如何解呢?能想办法把上面方程转化为我们会解的方程吗?
检验:
归纳出:解分式方程的步骤:。
例2.解方程: =
分析:设江水的流速为v千米/时,
填空:(1)轮船顺流航行速度为_____________,逆流航行速度为________________
(2)顺流航行90千米所用时间为__________小时
(3)逆流航行60千米所用时间为__________小时
(4)根据题意可列方程:
观察方程特点,与以前学的整式方程有何不同?
导学设计流程:
教学目标:
知识与技能:
1.理解分式方程的意义。
2.了解解分式方程的基本思路和解法。
3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法。
过程与方法
1.能将实际问题中的相等关系用分式方程表示,体会分式方程的模型作用。
2.经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。

青岛版八年级3.7分式的应用导学案

青岛版八年级3.7分式的应用导学案

景芝中学3.7分式方程应用导学案学习目标:第组姓名1、学生能正确分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2、通过列分式方程解应用题,渗透方程的思想方法。

一、课前预习(一)列一元一次方程解应用题的步骤有哪些?1、 2、3、 4、5、(二)探究新知(1)、列方程解应用题的关键是什么?(2)、找一找例5和例6中的等量关系分别是什么?二、课中实施题型一:路程问题阅读课本p106例5、(1)、认真看课本例题,分析题目中的“分别从甲地去乙地”、“同时到达”、“速度的比是4:3”等关键词的含义,找出题目中的等量关系,尝试列方程解答,并与课本解答对照。

(2)、思考:从例5的条件出发,还可以探究哪些未知量?巩固练习一:课本p108 练习题第1、2题题型二:销售问题例6、认真阅读例6,思考并完成p81页的问题(1)----(6),列方程解答。

思考:根据例6提供的信息,你能编制出另外一个用分式方程解决的问题吗?与同学交流。

巩固练习二:某市从今年1月1日起调整居民的用水价格,每立方米水费上涨。

小丽家去年12月份的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月份的用水量比去年12月份的用水量多5m3,求该市今年居民用水的价格?思考并交流:列分式方程解应用题的步骤是什么?与列一元一次方程解用题的步骤有何区别?(三)、学以致用1、小明和同学一起去书店买书,他们先用15元买了一种一种科普书,又用15元买了一种文学书。

科普书的价格比文学书高出一半,因此他们所买的科普书比所买的文学书少1本。

这种科普书和这种文学书的价格各是多少?2、甲乙两个车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度。

(四)、达标测评1、甲、乙两地相距360千米,张老师和王老师分别乘坐早7时发出的普通客车和8时15分发出的豪华客车从甲地去乙地,恰好同时节到达。

课题 分式方程导学案

课题 分式方程导学案

课题 分式方程(1)导学案学习目标1.理解分式方程的意义.2.掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程增根产生的原因. 重点难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及转化思想.2.教学难点:解分式方程增根产生的原因。

学习过程【自主探究】自学课本149页的内容。

1.找出分式方程的概念,并在关键词下做记号2.判断下列各式哪些是分式方程:521)5(05)4(1)3(3252)2(51=+=+-=+=+x x x y x z y x y x )(2.分式方程的特征是什么?【合作探究】探究1 解分式方程的的基本思想和一般步骤。

阅读课本课本149—150页,完成下列问题:1. 解分式方程的基本思路是什么?如何才能将分式方程转化为整式方程?2.解分式方程的一般步骤:3. 解分式方程如何检验?为什么要检验?探究2 分式方程的解法1.师生合作:解方程:13321++=+x x x x2.小组合作: 解下列方程: (1)12=2x x+3; (2)224=x 1x 1--(3)2251=0x +x x x -- (4)11x =3x 22x----【自我检测】1.下列式子中,属于分式方程的是 ,属于整式方程的是 (填序号).2.解方程 (1)01152=+-+x x (2) x x x 38741836---=-(3)01432222=---++x x x x x (4) 4322511-=+-+x x2.X 为何值时,代数式29133x x x +-+-的值等于2?【自我反思】本节课我的收获:【板书设计】1分式方程的概念2解分式方程13321++=+x x x x 步骤22124112321112131453-+==--+=x x x x x x x (); ();(); ()>.。

人教版八年级数学上册《分式》导学案:分式方程(第一课时)

人教版八年级数学上册《分式》导学案:分式方程(第一课时)

人教版八年级数学上册《分式》导学案分式方程(第一课时)【学习目标】1.理解分式方程的概念,并能判断一个方程是不是分式方程;2.能将实际问题中的等量关系用分式方程表示.【知识梳理】1.方程的定义:含有 的等式叫做方程.2.解一元一次方程的一般步骤:3.分式方程的定义:【典型例题】知识点一 分式方程的定义1.方程:1255341112362235552122=-=+-=-=--=-x x y x x x x x x π)()()()()(其中分式方程的个数是( )A.1B.2C.3D.42.下列方程是分式方程的有 (填序号).()()().124;0141313;1252;242212为常数)、(为常数)、()(b a abx x x x b a b x a x x x x =-=-+--++=-=+-小结;(1)分式方程的主要特征:①含有分母;②分母中含有未知数;③是方程.⑵分式方程与整式方程的区别在于分母中是否含有未知数.知识点二 列分式方程3.部分学生自行组织春游,预计费用为120元,后来又有2名学生参加,费用不变,这样每人可少交3元.若设原来的人数是x ,则可列方程为 .4.为切实加强我市学校新冠疫情防控工作,筑牢校园疫情防控屏障,保障广大师生员工生命健康安全,某校师生员工共2000人需要开展全员核酸检测工作,由于组织有序,实际上每小时检测人数比原计划增加100人,结果提前1小时完成检测任务.若设原计划每小时检测x 人,则据题意可列方程为( )A .+100=B .﹣100= C .+1=D .﹣1=小结:列方程的关键是找出等量关系。

【巩固训练】1.在方程①1111x y=+-;②210x+=;③1x ya b+=(a,b为常数);④21xx=;⑤23356x x-+-=;⑥137xxa-=-+(a是常数);⑦2=πx中是分式方程的有(只填序号)2.某镇修建一条“村村通”公路,若甲乙两个工程队单独完成,甲工程队比乙工程队少用10天,若甲乙两对合作,12天可以完成,设甲单独完成这项工程需要x天,则根据题意,可列方程为_________________.3.某地对一段长达4800m的河堤进行加固.在加固600m后,采用新的加固模式,每天的加固长度是原来的2倍.用9天完成了全部加固任务.如果设原来每天加固河堤x米,请列出关于x的分式方程.等量关系式:列出方程:4.小亮从图书馆借了一本书,共280页,借期是两周.当他读完书的一半时,发现以后平均每天读书的页数必须增加1倍才能在借期内读完.如果设小亮读前半本书时平均每天读x页,请列出关于x的分式方程.等量关系式:列出方程:5.某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米.(请列出符合题意的分式方程)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.7分式方程(1)导学案
学习目标:1、理解分式方程的概念。

2、掌握分式方程去分母的方法、体会转换思想方法。

3、会解分式方程。

学习重点:分式方程的解法。

学习难点:把分式方程转换为整式方程。

导学流程: 一、知识回顾 (1)
5
153
2-=+x x 是什么方程?
(2)怎样解这个方程?
(3)怎样检验求出的x 的值是不是方程的解?
二、探究新知 (一)探究一
问题一:王师傅承担了310个工件的焊接任务,加工了100个工件后开始采用焊接新工艺,功效提高到原来的1.5倍,共用八天完成了任务,如果不采用新工艺,王师傅还有多少天才能完成任务?
分析:如果设采用新工艺前王师傅每天焊接x 个工件,那么加工100个工件需要______天,采用新工艺后王师傅每天加工_____个工件,加工剩余的工件用了_____天,根据题中的等量关系,可得出方程_________________。

问题二:甲乙两班的同学参加植树,乙班每小时比甲班多植3棵树,甲班植60棵树时,乙班植了66棵树,甲乙两班每小时各植多少棵?
若设甲班每小时植树x 棵,那么根据题中的等量关系可列出方程 _________________________。

思考:(1)这两个方程是一元一次方程吗? (2)这两个方程有什么共同点? 与你的同伴交流你的探究结果。

总结:___________________________________________的方程式是分式方程。

对应训练一
下列方程中,哪些是分式方程? (1)21-=x (2)
22
=-x x
(3)
1
2
14
1
12
-=
+-
-x x x (4)
05
43
2=---x x
(二)类比方程5
1
532-=+x x 的解法
(1)你认为上面问题1中的分式方程x
100+
8
5.1210=x
,应先怎样做呢?
(2)试试看,你能否求出未知数的值
(3)怎样检验你求出的未知数的值是否是分式方程的解? 思考后与小组内的同伴讨论。

(三)自学P77-78例1、例2
自学要求:1、掌握解分式方程
2、自学后归纳总结:解分式方程的基本思路是将分式方程化为________方程。

具体做法是“____________________”即方程两边同乘以_______________。

对应训练二
解下列分式方程 (1)
1
53
3+=
-x x (2)
2
3
23
--=
-x x x
当堂训练:
1、下列分式哪些是分式方程? (1)x+y=5 (2)3
425
2-=+y x (3)
05
=+x y (4)
5
21=+x x
(5)
5
21++
x x x
2、解下列分式方程 见课本P 78 2、3
3、一个分数的分子比分母小2,当分子分母都加上3时,这个分数等于32

求这个分数(只列出方程)
四、反思交流:比一比谁的收获大。

五、当堂检测:
1、关于x 的方程(1)63
12
=--
x x
(2)
30
500900-=
x x
(3)x
x 2
313
=
+ (4)
x
a 12= (5)
4
400320=-
x
x
(6)x
a x -=5
3中,分时方程有_____________
(填序号)。

2、解分式方程
(1)2
11
=
+x x (2)
2
212
3=-+
--x
x x
3、在正数范围内定义一种运算*,其规则为a*b=b
a
11+
,则当x*(x+1)时,
x=__________.
六、拓展提升:
已知:x=3是方程
2
112
5-=
+-+x x m 的解,求m 的值。

相关文档
最新文档