《轴对称图形》测试题

合集下载

人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。

轴对称图形综合测试题

轴对称图形综合测试题

(A ) (B ) (C ) (D )《轴对称图形》综合测试题(一)(满分100分 时间45分钟)一、精心选一选(每题4分,满分32分)1.下列图形是轴对称图形的是( )2.下列说法错误的是 ( )(A )关于某条直线对称的两个三角形一定全等 (B )轴对称图形至少有一条对称轴(C )全等三角形一定能关于某条直线对称 (D )角是关于它的平分线对称的图形3.等腰三角形的对称轴的条数为( )(A )1 (B )2或1 (C )3 (D )1或34.如果一个三角形两边的垂直平分线的交点在第三条边上,那么这个三角形是( )(A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )不能确定5.如果等腰三角形的一个外角为135o ,那么它的底角为( )(A )45o (B )72o (C ) (D )45o 或6.等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为( )(A )3或5 (B )3或7 (C )3 (D )57.如果一个三角形有两条边相等,且有一内角为60o ,那么这个三角形一定为( )(A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )钝角三角形8.如图1,在△ABC 中,AB=AC ,∠A =360,AB 的垂直平分线DE 交 AC 于点D ,交AB 于点E .下列结论:①BD 平分∠ABC ;②AD=BD=BC ;③△BCD 的周长等于AB+BC ;④D 是AC 的中点.其中正确的是( )(A )①②③ (B )②③④(C )①②④ (D )①③④二、细心填一填(每题4分,满分32分)9.如图2,OE是∠AOB的平分线,AC⊥OB于点C,BD⊥OA于点D,则关于直线OE对称的三角形有对.10.请写出两个具有轴对称性的汉字.11.两个图形关于某条直线对称,如果它们的对应线段(或延长线)相交,那么交点一定在.12.已知△ABC与△A1B1C1关于直线l对称,且AB=6,BC=3,CA=4,那么B1C1= .13.等腰三角形的一个角是60o,其中一边的长为a,这个三角形的周长为.14.若等腰三角形的顶角与底角度数的是4倍,则顶角是o,底角是o.15.若等腰梯形三边的长分别为3、4、11,则这个等腰梯形的周长为 .16.为美化小区环境,某小区有一块面积为160m2的等腰三角形草地,测得其一边长为20m,现要给这块三角形草地围上白色的低矮栅栏,则栅栏的长度为m.三、耐心做一做(满分36分)17.(12分)某居民小区响应政府的号召,积极推进“城乡清洁工程”,拟在一块矩形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆和正方形的个数的和要求3个以上,多不限),并且使整个矩形场地成轴对称图形.请画出你的设计方案.18.(12分)如图3所示,已知AB=AC,AD19.(12分)如图4,在梯形ABCD中,AD//BC至F,使BF=CD.(1)求∠ABC的度数.(2)试说明:△CAF为等腰三角形.能力提升图4 C图8(满分30分 时间30分钟)一、精心选一选(每题4分,满分8分)1.若A 、B 是同一平面内的两点,则以AB 为一边可以作出( )个等腰直角三角形(A )3 (B )4 (C )5 (D )62.如图5,△ABC 中,∠B=∠C ,D 在BC 上,∠BAD=50o ,AD=AE ,则∠EDC 的度数为( )(A )15o (B )25o (C )30o (D )50o二、细心填一填(每题4分,满分8分)3.如图6,等腰梯形ABCD 中,AD ∥BC ,∠B=60o ,AD =4,BC=7,,则梯形ABCD 的周长是 .4.如图7,△ABC 中,AC=BC=2,∠ACB=90o ,D 是BC 则EC+ED 的最小值是____________. 三、耐心做一做(满分14分)5.如图8,ABCD 是等腰梯形纸片,AB ∥CD ,AD=BC .翻折纸片ABCD ,使点A 与点C 重合,折痕为EF .已知CE ⊥AB .试说明:EF ∥BD .新题推荐(满分20分 时间15分钟)在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE . (1)如图9-1,当点D 在线段BC 上,如果∠BAC=90o ,则∠BCE= 度.(2)设∠BAC=α,∠BCE=β. AB DC E图5图7D A 图6①如图9-2,当点D 在线段BC 上移动,则α、β之间有怎样的数量关系请说明理由; ②当点D 在直线BC 上移动,则α、β之间有怎样的数量关系请直接写出你的结论.参考答案:基础巩固一、1.A 2.C 3.D 4.C 5.D 6.C 7.A 8.A 二、9.4 10.甲、由、中、田、日等 11.对称轴上 12.3 13.3a 14.120, 30 15.29 16. 20+40+40+三、17.答案具有开放性,只要合理即可,如图所示:18.因为AB=AC ,AD 平分∠BAC ,所以AD 垂直平分BC ,所以BE=EC ,DB=CD ,所以∠EBC=∠ECB ,∠DBC=∠DCB ,所以∠EBC -∠DBC=∠ECB -∠DCB ,即∠DBE=∠ECD .19.(1)因为AD//BC ,所以∠DAC =∠ACB .因为AD =DC ,所以∠DCA =∠DAC .所以∠DCA =∠ACB=21∠DCB .因为DC= AB ,所以∠DCB=∠ABC ,所以∠ACB=21∠ABC .在△ACB 中,因为AC ⊥AB ,所以∠CAB=90o .所以∠ACB+∠ABC=90o ,所以21∠ABC+∠ABC=90o ,所以∠ABC=60o . (2)连接DB .因为在梯形ABCD 中,AB=DC ,所以AC=DB .在四边形DBFA 中,DA//BF ,DA=DC=BF ,所以四边形DBFA 是平行四边形,所以DB=AF ,所以AC=AF ,即△CAF 为等腰三角形.能力提升一、1.D 2.B二、3.17 4三、5.将等腰梯形ABCD 的对角线BD 沿DC 方向平移到CH ,连结AC ,如图所示,则BD=CH .因为AD=BC ,所以AC=BD=CH ,所以∠CAH=A E C DB 图9-1 EA CD B 图9-2∠CHA=∠DBA.因为CE⊥AB,∠CAE=∠ACE,所以∠CAH=∠ACE=∠CHA=∠DBA=45o.因为∠AEF=∠CEF,CE⊥AB,所以∠AEF=∠CEF=45o,所以∠DBA=∠AEF=45o.所以EF∥BD.新题推荐(1)90o.(2)①α+β=180o.理由:因为∠BAC=∠DAE,所以∠BAC-∠DAC =∠DAE-∠DAC.即∠BAD=∠CAE.又AB=AC,AD=AE,所以△ABD≌△ACE.所以∠B=∠ACE.所以∠B+∠ACB =∠ACE+∠ACB,所以∠B+∠ACB =β.因为α+∠B+∠ACB =180o,所以α+β=180o.②当点D在射线BC上时,α+β=180o.当点D在射线BC的反向延长线上时,α=β.。

2020第二章《轴对称图形》单元测试(含答案)

2020第二章《轴对称图形》单元测试(含答案)

第二章《轴对称图形》单元测试(满分100分,时间90分钟)一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为 ( )A.42°B.69°C.69°或84°D.42°或69°2.到三角形三条边的距离都相等的点是这个三角形的 ( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6 B.7 C.8D.98.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)11.已知等腰三角形的一个内角为70°,则它的顶角为度.12.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.13.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.14.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.16.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB 和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°【答案】D2.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【答案】D3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【答案】C.4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形【答案】C.5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且P A=PB,下列确定P 点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【答案】B7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【答案】C8.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤【答案】D二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).【答案】①,③10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)【答案】1:3011.已知等腰三角形的一个内角为70°,则它的顶角为度.【答案】40或7012.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.【答案】1613.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.【答案】6014.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.【答案】15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.【答案】816.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.【答案】∠AEF=115°三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF【答案】证明:如图,连接MF、ME,∵MF、ME分别为Rt△FBC是和Rt△EBC斜边上的中线,∴MF=ME=BC,在△MEF中,MF=ME,点N是EF的中点,∴MN⊥EF.18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.【答案】如图,作点A关于GH的对称点A′,连接AB′,交EF于点O,将白球A打到台边GH的点O处,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.【答案】(1)依题意,如下图所示:(2)∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴L△PMN=PM+PN+MN=P1M+MN+P2N=P1P2=5cm.故答案为:5cm20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?【答案】:(1)如图1,连接AB,AB与l的交点P就是所求分支点M分支点开在此处,总线路最短;(2)如图2,作B点关于直线l的对称点B2,连接AB2交直线l于点M,此处即为分支点.21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.【答案】解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?【答案】解:(1)如图,直线CD为过点P的一条垂线且垂足为P,则△OCD是等腰三角形.∵OP为∠AOB的角平分线∴∠AOP=∠BOP∵∠CPO=∠DPO=90°,OP=OP∴△COP≌△DOP(ASA)∴OC=OD∴△OCD是等腰三角形.(2)如图,过点O作∠AOB的角平分线OD,过点P作PD⊥OD于点D,延长交OA,OB于点M,N,则△OMN为等腰三角形.∵OD为∠AOB的角平分线∴∠AOD=∠BOD∵∠MPO=∠NPO=90°,OD=OD∴△MOD≌△NOD(ASA)∴OM=ON∴△OMN是等腰三角形.(3)应该可画3个.①过P作∠AOB中平分线的垂线,交OA,OB于M,N,则△OMN是等腰三角形.②过P作OA垂线,交OA,OB于E,F,在EA上作EG=OE,连FG,过P作FG平行线,交OA,OB于M,N,则△OMN是等腰三角形.③过P作OB垂线,交OA,OB于E,F,在FB上作FG=OF,连EG,过P作EG平行线,交OA,OB于M,N,则△OMN是等腰三角形.所以有三个这样的等腰三角形.- 11 -。

《第13章轴对称》测试卷(含答案)

《第13章轴对称》测试卷(含答案)

《第13章轴对称》测试卷一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF 垂直平分AD.其中正确的有()A.1个 B.2个 C.3个 D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个 B.3个 C.4个 D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC 上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC=°;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM=,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解(本题有4小题,共30分)21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?《第13章轴对称图形》测试题参考答案一、细心选一选1.A;2.C;3.B;4.D;5.D;6.B;7.C;8.C;二、耐心填一填9.如中、日、土、甲等;10.65°或50°;11.10:51;12.40cm;13.15;53cm;14.3;15.5;直角三角形斜边上的中线等于斜边的一半;16.5;17.45°或135°;18.8;三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.解:如图.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ABD和△ACD中,∴△ABD≌△ACD,∴BD=CD,∴∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC.猜想:EF 与BE、CF之间的关系是EF=BE+CF.理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.。

《轴对称》测试题A卷

《轴对称》测试题A卷

第一章 轴对称 全章测试一、选择题1、下列说法正确的是( ).A 轴对称涉及两个图形,轴对称图形涉及一个图形B 如果两条线段互相垂直平分,那么这两条线段互为对称轴C 所有直角三角形都不是轴对称图形D 有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2) B .(-1,2) C .(1,-2) D .(2,-1)3、下列图形中对称轴最多的是( ) .A .等腰三角形 B .正方形 C .圆 D .线段4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对5、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米. A .16 B .18 C .26 D .286、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个 B .2个 C .3个 D .4个二、填空题1、设A 、B 两点关于直线MN 对称,则______垂直平分________.2、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= .3、等腰三角形一个底角是30°,则它的顶角是__________度.4、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm .5、等腰三角形的一内角等于50°,则其它两个内角各为 .6、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .7、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .E DCBAFED CBAP 2P 1N MO PBAα35°115°l ODC BAADEFB CBA8、如图所示,两个三角形关于某条直线对称,则 = . 三、解答题1、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.2、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.3、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.4、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .D C BA。

轴对称测试题及答案初二

轴对称测试题及答案初二

轴对称测试题及答案初二一、选择题1. 下列图形中,不是轴对称图形的是:A. 等边三角形B. 正方形C. 圆D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为:A. 对称轴B. 对称线C. 中心线D. 平行线3. 对于轴对称图形,下列说法正确的是:A. 只有一个对称轴B. 可以有多个对称轴C. 没有对称轴D. 以上都不对二、填空题1. 轴对称图形的对称轴是图形上所有点到对称中心的_________。

2. 如果一个图形沿着对称轴对折,两侧的图形完全重合,那么这个图形是_________图形。

三、判断题1. 所有的等腰三角形都是轴对称图形。

()2. 轴对称图形的对称轴可以是曲线。

()四、简答题1. 请简述什么是轴对称图形,并给出一个生活中的例子。

2. 轴对称图形有哪些性质?五、解答题1. 如图所示,△ABC是轴对称图形,对称轴为直线l,求证:AB=AC。

答案:一、选择题1. D2. B3. B二、填空题1. 垂直平分线2. 轴对称三、判断题1. 正确2. 错误四、简答题1. 轴对称图形是指一个图形关于某条直线对称,这条直线被称为对称轴。

例如,蝴蝶的翅膀就是轴对称图形。

2. 轴对称图形的性质包括:对称轴两侧的图形完全重合,对称轴是图形上所有点到对称中心的垂直平分线。

五、解答题1. 证明:由于△ABC是轴对称图形,对称轴为直线l,根据轴对称图形的性质,我们知道对称轴l是线段AB和AC的垂直平分线。

因此,AB和AC到对称轴l的距离相等,即AB=AC。

结束语:通过本测试题的练习,希望同学们能够更好地理解轴对称图形的概念和性质,提高解题能力。

轴对称是几何学中的一个重要概念,它不仅在数学中有广泛的应用,也在自然界和艺术设计中随处可见。

希望大家能够在生活中发现更多的轴对称之美。

轴对称的测试题

轴对称的测试题

轴对称的测试题
一、选择题
1. 下列图形中,哪一个是轴对称图形?
A. 圆形
B. 三角形
C. 正方形
D. 五边形
2. 轴对称图形关于对称轴的特点是:
A. 对称轴两侧的图形完全重合
B. 对称轴两侧的图形部分重合
C. 对称轴两侧的图形完全不重合
D. 对称轴两侧的图形部分重叠
3. 如果一个图形关于某条直线对称,那么这条直线被称为:
A. 对称线
B. 垂直线
C. 平行线
D. 对角线
二、填空题
4. 轴对称图形的对称轴是图形中所有对称点连线的________。

5. 一个图形关于对称轴旋转180度后,与原图形________。

三、判断题
6. 所有的圆形都是轴对称图形。

()
7. 一个图形的对称轴可以有无数条。

()
四、简答题
8. 解释什么是轴对称图形,并给出一个例子。

五、作图题
9. 根据题目给出的图形,画出它的对称轴,并说明为什么这是它的对
称轴。

六、应用题
10. 如果一个矩形的长是10厘米,宽是5厘米,求出它的对称轴数量,并画出这个矩形关于其中一条对称轴的对称图形。

七、论述题
11. 论述轴对称在艺术设计中的应用,并给出至少两个实际例子。

八、探索题
12. 探索并描述如何通过折叠纸张来确定一个轴对称图形的对称轴。

九、综合题
13. 给定一个复杂的几何图形,分析它是否是轴对称图形,并说明理由。

如果是,请找出所有可能的对称轴。

十、创新题
14. 设计一个自己的轴对称图形,并解释为什么它是轴对称的,同时
给出至少一种可能的应用场景。

轴对称测试题及答案

轴对称测试题及答案

轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。

答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。

答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。

答案:对称中心4. 轴对称图形的对称轴可以有______条。

答案:无数5. 一个图形关于某面对称,那么这个面被称为______。

答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A
l
B
A
l B
A
l
B
A
l D C
B
A
E D C
B
A
《轴对称图形》测试题
时间:90分钟 分值:120分 一、选择题(每题3分,共30分) 1.下列图案中,是轴对称图形的有( )
2.下列图形中,点A 与点B 关于直线l 对称的是 ( )
(A ) (B ) (C ) (D ) 3.有下列长度的三条线段,能组成等腰三角形的是 ( )
(A )1cm ,1cm ,2cm (B )1cm ,1cm ,3cm (C )2cm ,2cm ,4cm (D )3cm ,3cm ,4cm
4.如图,在△ABC 中,AD=BD=BC ,若∠C=25°,则∠ADB 的度数是( )
(A )50º (B )60º (C )80º (D )90º 5.下列结论错误的是 ( ) A 、等边三角形的每条高线都是角平分线和中线
B 、两个对称图形对应点连线的交点一定在它们的对称轴上
C 、点A ,B 可以看作以直线AB 为轴的轴对称图形
D 、若A 、A ′是以BC 为轴对称点,则AA ′垂直平分BC
6.在等边三角形ABC 中,边长为2,CD 平分∠ACB ,交AB 于点
D , D
E ∥BC ,则△ADE 的周长为( )
(A )2 (B )2.5 (C )3 (D )4
7、下列推理错误的是( )
A .因为∠A =∠
B =∠
C ,所以△ABC 是等边三角形
B .因为AB =A
C ,且∠B =∠C ,所以△ABC 是等边三角形
F
A
B
C
E
D
(A )
(B )
(C )
(D )
D
C
B
A
D
C
B
A D C B
A
C D
B A
C .因为∠A =60°,∠B =60°,所以△ABC 是等边三角形
D .因为AB =AC ,∠B =60°,所以△ABC 是等边三角形 8、如图,在△ABC 中,AB =AC ,∠A =36°,BD 、C
E 分别
为∠ABC 与∠ACB 的角平分线,且相交于F ,则图中等腰三角形有( )
A .6个
B .7个
C .8个
D .9个
9.如图,在已知△ABC 中,AB=AC ,BD=DC ,则下列结论中错误..的是( )
A 、BAC
B ∠=∠ B 、12∠=∠
C 、A
D BC ⊥ D 、
B C ∠=∠
10.等腰三角形的一个底角是顶角的2倍,则顶角为( )
A 、60°
B 、30°
C 、72°
D 、36°
二、填空题(每题3分,共30分)
1、线段的垂直平分线上的点到_________________ _____ 相等。

2、等腰三角形的底边上的高、____ ____、 __互相重合(简
称为“__ ”)。

3、等腰三角形一边长是7cm ,另一边长15cm ,则等腰三角形的周长是_______cm 。

4、如图,△ABC 中,AD 垂直平分BC ,AB =5,那么AC =_________。

(第4题图) (第5题图) (第6题图) (第7题图)
5.如图,△ABC 中,∠C =90°,若BC=5,BD=2,则点D 到边AB 的距离为 。

6.如图,梯形ABCD 中,若DC ∥AB ,AD =BC ,∠A =60°,BD ⊥AD ,那么∠DBC = °,
B
C
D
A 第9题
1 2
P
Q
N
M C B
A
O
∠C = °。

7.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A = 。

8、已知等腰三角形的一边长等于3,一边等于6,则它的周长等于 。

9、在等腰三角形中,一内角为40
10将它分成两个等腰三角形, 在图中画出剪的痕迹。

三、画一画(要求:只需画出要求的图形,不写作法;每题6分,共12分) 1.已知:如下左图△ABC 。


(1)画出△111C B A ,使△111C B A 和△ABC 关于直线MN 成轴对称; (2)画出△222C B A ,使△222C B A 和△ABC 关于直线PQ 成轴对称;
2.如下右图:已知∠AOB 和C 、D 两点,求作一点P ,使PC ═PD ,且P 到∠AOB 两边
的距离相等。

四、解答题(1-3题每题8分,4题10分,5题12分,共30分)
1、如图,在△ABC 中,AB=AC ,∠BAC=100°,AD ⊥BC,垂足为D,求∠B ,∠C ,∠BAD ,
∠CAD 的度数.
A
C
D
B
2、如图,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D.BE=6,
求△BCE的周长.
3、如图2,在直角△ABC中,∠ABC的平分线BE交AC于E点,过E点作BC的垂线交BC于D点。

已知AC=10cm,△CDE的周长为16cm,求CD的长。

4、如图,AB=AC=CD,AB ∥CD,AD 与BC 相交于O 点,问:BC 与AD 是否垂直?为什么?
5、在△ABC 中,AB=AC ,∠A=120°,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F 。

说明:BM=MN=NC 。

C
A D
B
O。

相关文档
最新文档