物理学史整理
高中物理学史归纳整理版2023

高中物理学史归纳整理版2023以下是高中物理学史的归纳整理版2023:一、古代物理学的产生古希腊哲学家亚里士多德(Aristotle)提出了许多关于自然界的理论,如物体运动的原因和自然界的秩序。
中国古代的墨子记载了光的直线传播和影子的形成。
二、近代物理学的开端文艺复兴时期,达芬奇(Leonardo da Vinci)对光、水和空气的运动进行了研究。
伽利略(Galileo Galilei)通过实验观测和数学推理,提出了自由落体定律和惯性原理。
三、经典物理学的建立牛顿(Isaac Newton)提出了三大运动定律和万有引力定律,建立了经典力学的基础。
麦克斯韦(James Clerk Maxwell)总结了电磁场的理论,预言了电磁波的存在。
四、相对论的提出爱因斯坦(Albert Einstein)提出了相对论,解释了时间和空间的关系,以及质量和能量的关系。
五、量子力学的诞生普朗克(Max Planck)提出了量子化的概念,解释了黑体辐射的规律。
爱因斯坦解释了光电效应,进一步推动了量子力学的发展。
波尔(Niels Bohr)提出了原子模型,解释了原子结构和光谱的规律。
六、现代物理学的发展德布罗意(Louis de Broglie)提出了物质波的概念,开启了波粒二象性的研究。
海森堡(Werner Heisenberg)、薛定谔(Erwin Schrödinger)等人发展了量子力学的理论体系。
狄拉克(Paul Dirac)预言了正电子的存在,与泡利(Wolfgang Pauli)一起提出了不相容原理。
奥本海默(J. Robert Oppenheimer)领导的研究团队实现了人类第一次核反应堆的成功运行。
贝尔实验室的巴丁(John Bardeen)、布拉顿(William Shockley)和肖克利(Walter Brattain)发明了晶体管。
霍金(Stephen Hawking)研究了黑洞辐射和宇宙起源的问题,提出了黑洞辐射理论。
中学物理学史知识点归纳总结

中学物理学史知识点归纳总结中学物理学史知识点归纳总结物理学是自然科学的一门重要学科,它研究自然界的物质、能量和它们之间的相互作用规律。
物理学经历了几千年的发展和演变,中学物理学旨在向学生介绍物理学的基本概念、定律和原理。
以下是中学物理学史的主要知识点总结:1. 古代物理学:古代文明国家在探索自然界时发展了一些物理学的基本概念。
其中,古希腊学者提出了了解物质构成的原子论,人们开始了解火、水、土和气体等自然元素。
2. 牛顿力学:17世纪,英国科学家艾萨克·牛顿发表了《自然哲学的数学原理》一书,其中阐述了万有引力定律、牛顿三定律和运动定律。
这些定律和原理成为了后来力学研究的基础。
3. 热学和热力学:18世纪,卡尔文·卡门迪尔和约瑟夫·布莱克等科学家对热量的本质和传导进行了研究,奠定了热学和热力学的基础。
约翰·道尔顿提出了原子理论,解释了物质内部的运动和热现象。
4. 电磁学:19世纪初,科学家开始研究电和磁现象,并将它们联系在一起。
奥斯特、法拉第和法拉第-安培定律等的发现推动了电磁学的发展。
詹姆斯·克拉克·麦克斯韦提出了麦克斯韦方程组,描述了电和磁场的关系。
他的工作成为了电磁学理论的基础。
5. 玻尔原子模型:20世纪初,丹麦物理学家尼尔斯·玻尔提出了玻尔模型,描述了原子结构和量子理论。
他的工作奠定了原子物理学的基础,也为后来的量子力学研究做出了贡献。
6. 相对论:20世纪初,爱因斯坦提出了狭义相对论和广义相对论。
狭义相对论解释了相对速度、时间和质量的变化,广义相对论则描述了引力和物质对时空的影响。
爱因斯坦的相对论理论在现代物理学中占据了重要地位。
7. 量子力学:20世纪20年代,量子力学的理论开始发展。
量子力学描述了微观世界的行为,解释了原子和粒子的能量、位置和态的概率性。
波尔、斯卡罗、海森堡和朗道等科学家为量子力学的基本理论做出了贡献。
高中物理学史最全归纳总结

高中物理学史最全归纳总结
高中物理学史的归纳总结如下:
1. 古代物理学(公元前6世纪-17世纪):
- 古希腊时期的自然哲学家:毕达哥拉斯、阿尔克曼、希波克拉底斯、亚里士多德等人,提出了一些基础的物理理论和观点。
- 宇宙观的进展:托勒密的地心说和哥白尼的日心说。
- 科学方法的发展:伽利略的实验和观察方法。
2. 经典物理学时期(17世纪-19世纪):
- 牛顿力学:牛顿的三大力学定律和万有引力定律的提出,奠定了经典力学的基础。
- 光学的发展:牛顿的光的粒子理论和哈雷的波动理论。
- 热力学的兴起:卡诺的热机理论和卢瑟福德的热力学定律。
3. 电磁学时期(19世纪末-20世纪):
- 麦克斯韦方程组:麦克斯韦的电磁理论,统一了电磁现象的理论描述。
- 电子的发现:汤姆孙的阴极射线实验证明了电子的存在。
- 直流电学理论的建立:欧姆定律、基尔霍夫电路定律等。
4. 现代物理学时期(20世纪):
- 相对论理论:爱因斯坦的狭义相对论和广义相对论,颠覆了牛顿力学的观念。
- 量子力学的建立:普朗克的量子假设、波尔的原子理论、薛定谔的波动力学等。
- 核物理学的发展:居里夫妇的放射现象研究、爱因斯坦的质能方程、量子力学的核模型等。
总结:高中物理学史经历了古代物理学、经典物理学、电磁学和现代物理学四个阶段,涵盖了力学、热学、光学、电磁学和量子力学等多个领域的重要理论。
这些理论的发
展不仅推动了科学的进步,也深刻影响了社会和技术的发展。
高中物理学史归纳整理版

高中物理学史归纳整理版1、伽利略在理想实验中推翻了亚里士多德的观点,证明了力不是维持运动的原因,并且重物体和轻物体下落速度相同。
2、开普勒提出了三定律,其中包括行星运动轨迹的椭圆形状。
3、牛顿提出了三条运动定律和万有引力定律,这些定律成为经典力学的基础。
4、卡文迪许通过扭秤装置测量出引力常量,为后来的物理研究提供了重要数据。
5、爱因斯坦提出了狭义相对论和光子说,解释了光电效应规律并提出了质能方程E=mC2,为核能利用奠定了理论基础。
6、库仑通过扭秤实验发现了电荷之间的相互作用规律,被称为库仑定律。
7、焦耳和楞次分别独立发现了电流通过导体时产生热效应的规律,这被称为焦耳-楞次定律。
8、奥斯特发现电流可以使周围的磁针偏转,称为电流的磁效应。
9、安培研究了电流在磁场中受力的规律。
10、洛仑兹提出了运动电荷产生磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
11、法拉第发现了由磁场产生电流的条件和规律,提出可用电场描述电场。
12、楞次确定了感应电流方向的定律。
13、亨利发现了自感现象。
14、麦克斯韦预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
15、赫兹通过实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速,证实了电磁理论的存在。
16、普朗克提出了“能量量子假说”,解释了物体热辐射(黑体辐射)规律,电磁波的发射和吸收不是连续的,而是一份一份的。
17、玻尔提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。
18、德布罗意预言了实物粒子的波动性。
19、汤姆生利用阴极射线管发现了电子,提出了原子的葡萄干布丁模型。
20、卢瑟福进行了α粒子散射实验,并提出了原子的核式结构模型,估计原子核直径数量级为10-15 m。
21、卢瑟福用α粒子轰击氮核,实现了原子核的人工转变,并发现了质子。
22、查德威克在α粒子轰击铍核时发现中子,人们认识到原子核的组成。
2.伽利略发现了匀变速运动的规律,即位移正比于时间的平方。
物理史全套总结归纳图表

物理史全套总结归纳图表(正文)在人类文明发展的过程中,物理学起到了不可忽视的作用。
物理学作为自然科学的一门重要学科,研究自然界事物运动规律和相互关系的规律性。
本文将对物理学的历史进行全套总结归纳,并通过图表的形式进行展示。
一、古代物理学古代物理学是物理学发展的起点,以古希腊为中心,包括古埃及、古中国、古印度等地。
这一时期,人们开始观察和研究物质的性质和运动。
古希腊的哲学家和科学家们是古代物理学的代表人物。
他们提出了一些重要的物理学理论,如亚里士多德的自然哲学和毕达哥拉斯学派的数学物理学等。
以下是古代物理学的相关内容的总结归纳图表:(图表内容)二、近代物理学近代物理学是物理学的重要里程碑,它标志着物理学的现代化进程。
近代物理学主要起源于17世纪的欧洲,以伽利略、牛顿等人为代表。
近代物理学的发展离不开实验和理论的相互推动。
通过实验的观察和测量,物理学家们揭示了一系列重要的物理现象和规律,如万有引力定律、运动定律等。
以下是近代物理学的相关内容的总结归纳图表:(图表内容)三、现代物理学现代物理学是20世纪以来物理学的发展阶段,是对经典物理学的重大突破和拓展。
在这一阶段,量子力学、相对论等重要理论的诞生和发展对整个物理学产生了深远的影响。
现代物理学的发展使人们对微观世界和宏观世界的认识达到了前所未有的高度,开启了新的物理学研究领域。
以下是现代物理学的相关内容的总结归纳图表:(图表内容)四、未来物理学的展望物理学作为科学的基石,将继续在未来发挥重要作用。
随着科技和社会的不断发展,物理学研究也将不断前进。
未来物理学研究的重点可能会更加注重宇宙的起源和演化、高能物理、量子计算等领域,以及与其他学科的交叉研究。
五、总结通过对物理学史的全套总结归纳及相关内容的图表展示,我们可以更加清晰地了解物理学的发展历程和重要成果。
从古代到近代再到现代,物理学不断取得突破,推动了人类对自然界的认识。
而未来物理学的发展将继续为我们揭示更多的奥秘,推动社会进步。
高中物理学史总结

高中物理学史总结一、古代物理学的发展古代物理学是物理学学科的起源,它的发展可以追溯到古代文明时期。
古代物理学主要是通过观察和实验,总结出一些物质和运动的基本规律。
其中最有代表性的莫过于古希腊的物理学家亚里士多德和克拉克。
亚里士多德提出了四种元素理论,即地、水、火、气四种物质在宇宙中的存在形式。
克拉克则成功地用实验方法验证了亚里士多德的理论,并提出了物体的自由下落规律。
二、近代物理学的起源近代物理学的起源可以追溯到17世纪的科学革命时期。
在这个时期,一系列突破性的发现和理论提出,为物理学的进一步发展奠定了基础。
其中最重要的是牛顿的三大定律和万有引力定律。
牛顿的三大定律为物体的运动提供了完整的描述,而万有引力定律则解释了物体之间相互作用的原理。
此外,伽利略的运动学研究也为近代物理学的发展做出了巨大贡献。
他通过实验和数学推导,提出了匀速运动和自由落体运动的规律,并强调了用数学方法描述物理现象的重要性。
三、电磁学的兴起19世纪电磁学的兴起标志着物理学的一个重要里程碑。
安培、法拉第、麦克斯韦等科学家的研究成果,为电磁学的发展提供了坚实的理论基础。
安培的电流定律和法拉第的电磁感应定律为电磁学打开了新的研究领域。
同时,麦克斯韦的电磁场理论和麦克斯韦方程组的形成奠定了电磁学的基础。
电磁学的兴起不仅为科学技术的发展带来了巨大的推动力,也为光学的发展提供了重要的参考。
麦克斯韦的电磁辐射理论奠定了电磁波和光的关系,并通过实验证实了光是电磁波的一种表现形式。
四、相对论与量子力学的革新20世纪初,相对论和量子力学的提出彻底改变了人们对物理世界的认识。
爱因斯坦的狭义相对论和广义相对论揭示了时间、空间和质量之间的关系以及引力的本质。
相对论对于高速运动和强引力场下的物理现象提供了统一的解释,对于物理学的发展具有深远的影响。
量子力学的提出则深刻地改变了人们对微观世界的认识。
通过研究原子和分子尺度下的物理现象,科学家们发现了量子现象的存在,如波粒二象性、不确定性原理等。
高考高中物理学史归纳总结

高考高中物理学史归纳总结物理学是自然科学的一部分,从古至今几千年的演进中,其发展逐渐形成各个学派和学说。
高考高中物理学史的归纳总结,将帮助我们了解物理学的发展历程,并对高中物理知识有更全面的认识和理解。
本文将按照年代顺序,介绍高考高中物理学史并进行归纳总结。
第一阶段:古代物理学术的发展古代物理学主要涉及天体运动和力的研究。
代表性的学派有古希腊的亚里士多德学派和古代中国的阴阳五行学说。
亚里士多德学派:亚里士多德是古希腊的一位伟大哲学家,他的物理学理论主要基于观察和推测,主张地球是宇宙的中心,天体运动是由天体的固有本性推动的。
阴阳五行学说:阴阳五行学说是古代中国对宇宙万物形成和演化的解释。
其中,五行学说强调木、火、土、金、水五种元素相互关系的相生相克规律,对自然界的变化和人类活动进行了解释。
第二阶段:近代经典力学的奠基近代经典物理学主要以牛顿力学为代表,对物体的运动、力的作用和力学定律进行了系统的研究,为后续的物理学发展奠定了基础。
牛顿力学:牛顿创立了经典力学的三大定律,分别是惯性定律、动量定律和作用反作用定律。
这些定律有效地描述了物体的运动规律,并对质点和刚体的运动进行了研究。
第三阶段:电磁学和能量守恒定律的发现电磁学的发展标志着物理学的进一步扩展,能量守恒定律的提出则为物理学建立了一个更完整的理论框架。
麦克斯韦方程组:麦克斯韦方程组的提出将电磁学和光学相统一,为后续电磁波的研究奠定了基础。
这一突破性的成果对通信技术和电磁波谱的应用具有重大影响。
能量守恒定律:能量守恒定律是指在孤立系统中,能量的总量保持不变。
这一定律的提出对于分析物体运动和相互作用过程中的能量转化和传递具有重要意义。
第四阶段:量子力学和相对论的浪潮20世纪初,量子力学和相对论的出现彻底颠覆了经典物理学的基本观念,引发了重要的科学革命。
量子力学:量子力学是描述微观粒子行为的理论体系。
它提出了波粒二象性的概念,建立了波函数和薛定谔方程等重要理论。
物理学史基本知识点总结

物理学史基本知识点总结物理学作为自然科学的重要组成部分,不仅为人类社会的进步和发展做出了重要贡献,同时也是人类认识自然世界的基础。
在物理学的发展历史中,涌现出了许多杰出的科学家和理论,为人类开拓了新的认知空间。
本文将对物理学史的基本知识点进行总结和梳理,以便进一步了解和认识物理学的发展脉络。
一、古代物理学的发展古代物理学是人类认识自然世界的起点,其发展始于古代文明的孕育期。
古埃及、美索不达米亚、印度、中国等国家的古代学者们对自然现象进行了广泛的观察和总结,他们提出了一些原始的物理学观点和理论。
例如,古希腊的毕达哥拉斯学派提出了各种形式的宇宙观,认为万物都是由数学规律统一的。
古代印度的自然哲学家提出了五大元素理论,认为宇宙由地、水、火、风和空间构成。
古代中国的自然哲学家也对自然现象进行了深入的思考,提出了一些关于天文、地理、气象等方面的观点和理论。
二、古典物理学的兴起古典物理学的兴起与文艺复兴时期开始,这一时期的自然科学家们开始进行了广泛的实验和观察,逐渐形成了一些重要的理论和定律。
伽利略是古典物理学的开拓者之一,他进行了大量的实验和观察工作,提出了物体的自由落体定律以及摆的周期定律。
伽利略的理论和实验为力学的发展奠定了基础,同时也为牛顿的力学定律的提出提供了重要的铺垫。
伽利略时期同时期的牛顿,也是古典物理学的重要代表人物。
牛顿提出了一些重要的力学定律,包括牛顿第一定律(惯性定律)、牛顿第二定律(动力定律)、牛顿第三定律(作用与反作用定律)等。
这些定律为后来的物理学研究提供了基本的理论依据。
三、电磁学的崛起19世纪是电磁学的发展时期,许多杰出的科学家通过实验和理论分析,建立了电磁学的基本理论框架。
法拉第对电磁感应现象进行了深入的研究,提出了法拉第电磁感应定律,并开创了现代电磁学的研究。
1888年,麦克斯韦提出了麦克斯韦方程组,统一了电磁场的基本定律,从而奠定了电磁学的基础理论。
四、相对论与量子力学的兴起20世纪初,爱因斯坦提出了狭义相对论和广义相对论,彻底颠覆了牛顿力学的世界观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修一
46——47页
亚里士多德认为质量越大的物理下落越快
平均速度,瞬时速度,加速度都是伽利略建立的物理概念
伽利略首先采用了以实验检验猜想和假设的科学方法
伽利略时代用滴水计时法,所以研究自由落体运动时,利用斜面“冲淡”重力,使时间容易测量
伽利略利用斜面实验合理外推出了自由落体的规律
伽利略思想方法的核心是把实验和逻辑推理(包括数学推演)结合起来
52——53页
四种基本相互作用
万有引力
电磁相互作用(电荷间,磁体间的相互作用,常见的弹力,摩擦力等的实质是电磁相互作用)
强相互作用弱相互作用(作用范围小,只存在于原子核内部)
68——69页
牛顿第一定律的形成
(1)伽利略的研究和科学想象:
同一小车从同一斜面上的同一位置由静止开始滑下,(这是为了保证每次小车到达水平面时有相同的速度)。
第一次在水平面上铺上毛巾,小车在毛巾上滑行很短的距离就停下了;第二次在水平面铺上较光滑的棉布,小车在棉布上滑行的距离较远;第三次是光滑的木板,小车滑行的距离最远.
伽利略认为,是平面对小车的阻力使小车停下,平面越光滑小车滑行就越远.表明阻力越小,小车滑行就越远.伽利略科学地想象:要是能找到一块十分光滑的平面,阻力为零,小车的滑行速度将不会减慢.
(2)笛卡尔的补充
笛卡尔等人又在伽利略研究的基础上进行了更深入的研究,他认为:如果运动物体,不受任何力的作用,不仅速度大小不变,而且运动方向也不会变,将沿原来的方向匀速运动下去.
(3)牛顿的伟大贡献
英国的伟大科学家牛顿,总结了伽利略等人的研究成果;从而概括出一条重要的物理定律:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态.这就是牛顿第一定律.
牛顿第一定律是利用逻辑思维推理出来的,不是实验定律,牛顿第二定律是实验定律
78页
国际基本单位
长度——米——m
质量——kg
时间——s
电流——A
温度——K
物质的量——mol
光强——坎德拉——cd
91页
麦克斯韦建立了完整的电磁场理论,并预言了电磁波,赫兹用实验证明了电磁波的存在
必修二
29页
德国天文学家开普勒研究丹麦天文学家第谷的行星观测数据,得出了开普勒行星运动定律
(1)所有行星绕太阳运动的轨道都是椭圆,太阳在椭圆的一个焦点上
(2)对任意一个行星来说,它与太阳的连线在相等时间内扫过的面积相等
(3)所有行星轨道的半长轴的三次方与它公转周期的二次方的比值都相等
开普勒定律也适用于其他系统,不只是太阳系
托勒密——地心说,哥白尼——日心说
34页
牛顿——万有引力定律《自然哲学的数学原理》
卡文迪许——测出万有引力常量
39页
亚当斯和勒维耶利用万有引力定律计算出了新的行星,并算出运行轨道,后来,加勒在预言的位置发现了这颗行星,取名海王星——笔尖下发现的行星
用类似的方式,哈雷准确预言了一颗彗星的轨道和回归时间,命名为哈雷彗星
41页
第一宇宙速度——7.9km/s(发射的最小速度,卫星最大环绕速度)第二宇宙速度——11.2Km/s 脱离地球
第三宇宙速度——16.7KM/s 脱离太阳
万有引力,牛顿定律只适用于宏观,低俗运动物体,不适用于微观高速运动
3-1
P2
富兰克林命名正负电荷
密立根利用油滴实验测出元电荷
P6
库伦利用库伦扭秤得出库仑定律
P10
法拉第提出电荷周围存在电场
法拉第发明了电场线描述电场的方式
法拉第提出了场的概念,场是一种客观存在的物质
P26
避雷针——尖端放电
静电屏蔽——静电平衡时,导体内部场强为0
P81
奥斯特——电流的磁效应
P87
安培——分子电流假说
3-2
P3
法拉第——电磁感应
P19
麦克斯韦——感生电场
3-5
P27
黑体——能够完全吸收入射的各种波长的电磁波而不发生反射的物体
黑体辐射电磁波的强度按波长的分布只与黑体的温度有关(对一般材
料来说,还与材料的种类及表面状况有关)
黑体辐射的实验规律
a.随着温度的升高,各种波长的辐射强度都增加.
b.随着温度的升高,辐射强度的极大值向波长较短的方向移动.
能量子
(1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.
(2)能量子的大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量. h=6.63×10-34 J·s.
P30
托马斯.杨——光的干涉
菲涅尔——光的衍射
马吕斯——光的偏振
都说明光具有波动性
赫兹最早发现光电效应
P.勒纳德,J.J.汤姆孙相继用实验验证了光电效应
P33
爱因斯坦——光电效应方程
密立根验证了光电效应方程
P35
康普顿,研究石墨对X射线的散射时,发现了康普顿效应——说明光具有动量,证明了光具有粒子性
P37
德布罗意——实物粒子具有波动性,与之相关的波称为德布罗意波,也叫物质波
P38
劳厄利用光栅衍射,证明了伦琴射线的波动性
戴维孙和G.P.汤姆孙——电子束衍射实验——电子衍射图样
P41
波恩——光波是一中概率波
P44
海森伯——不确定性关系的提出者
P47
1858年,普吕克尔发现了实验中玻璃壁上的荧光,1876年,戈德斯坦把其命名为阴极射线
JJ汤姆孙证明了阴极射线是带负电的离子流,并求出了比荷(汤姆孙发现了电子)
P51
汤姆孙——原子的“枣糕模型”
勒纳德发现较高速度的电子很容易穿透原子,说明原子不是一个实心球体
卢瑟福——α粒子轰击金箔实验——原子核式结构模型
P57
波尔原子假说——原子能量量子化
P65
贝克勒尔发现天然放射现象,说明原子核具有复杂的结构。
(1)卢瑟福发现质子的核反应方程为:147N+42He→178O+11H.
(2)查德威克发现中子的核反应方程为:
9
+42He→126C+10n.
4Be
(3)居里夫妇发现放射性同位素和正电子的核反应方程为:
27
+42He→3015P+10n.
13Al
30
→3014Si+0+1e.
15P
伦琴——发现X射线,即伦琴射线
重要物理思想、方法
(1)理想模型法:为了便于进行物理研究或物理教学而建立的一种抽象的理想客体或理想物理过程,突出了事物的主要因素、忽略了事物的次要因素.理想模型可分为对象模型(如质点、点电荷、理想变压器等)、条件模型(如光滑表面、轻杆、轻绳、匀强电场、匀强磁场等)
和过程模型(在空气中自由下落的物体、抛体运动、匀速直线运动、匀速圆周运动、恒定电流等).
(2)极限思维法:就是人们把所研究的问题外推到极端情况(或理想状态),通过推理而得出结论的过程,在用极限思维法处理物理问题时,通常是将参量的一般变化,推到极限值,即无限大、零值、临界值和特定值的条件下进行分析和讨论.如公式v =Δt Δx 中,当Δt →0时,v 是瞬时速度.
(3)理想实验法:也叫做实验推理法,就是在物理实验的基础上,加上合理的科学的推理得出结论的方法就叫做理想实验法,这也是一种常用的科学方法.如伽利略斜面实验、推导出牛顿第一定律等.
(4)微元法:微元法是指在处理问题时,从对事物的极小部分(微元)分析入手,达到解决事物整体目的的方法.它在解决物理学问题时很常用,思想就是“化整为零”,先分析“微元”,再通过“微元”分析整体.
(5)比值定义法:就是用两个基本物理量的“比”来定义一个新的物理量的方法,特点是:A =C B ,但A 与B 、C 均无关.如a =Δt Δv 、E =q F 、C =U Q 、I =t q 、R =I U 、B =IL F 、ρ=V m
等.
(6)放大法:在物理现象或待测物理量十分微小的情况下,把物理现象或待测物理量按照一定规律放大后再进行观察和测量,这种方法称为放大法,常见的方式有机械放大、电放大、光放大.
(7)控制变量法:决定某一个现象的产生和变化的因素很多,为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,研究其他两个变量之间的关系,这种方法就是控制变量法.比如探究加速度与力、质量的关系,就用了控制变量法.
(8)等效替代法:在研究物理问题时,有时为了使问题简化,常用一个物理量来代替其他所有物理量,但不会改变物理效果.如用合力替代各个分力,用总电阻替代各部分电阻等.
(9)类比法:也叫“比较类推法”,是指由一类事物所具有的某种属性,可以推测与其类似的事物也应具有这种属性的推理方法.其结论必须由实验来检验,类比对象间共有的属性越多,则类比结论的可靠性越大.如研究电场力做功时,与重力做功进行类比;认识电流时,用水流进行类比;识电压时,用水压进行类比.。