2016年概率与统计高考真题汇编7道(完美归纳)
概率统计专题(大题)(理科)(2016高考真题分专题复习)

2016概率统计专题(大题)(理)1.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=-.2. A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)3.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.4.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.。
2016年历年高考数学真题分类汇编K单元 概率

数 学K 单元 概率K1 随事件的概率 18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a (单位:元),继续购买该险种的(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.18.解:(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10+0.05=0.15. 又P (AB )=P (B ),故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311,因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为EX =0.85a ×0.05=1.23a . 因此续保人本年度的平均保费与基本保费的比值为1.23.K2 古典概型 7.K2、K4[2016·江苏卷] 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.7.56[解析] 本题为古典概型,基本事件共有36个,点数之和大于等于10的有(4,6),(5,5),(5,6),(6,6),(6,5),(6,4),共计6个基本事件,故点数之和小于10的有30个基本事件,所求概率为56.14.F1,K2[2016·上海卷] 如图1-2所示,在平面直角坐标系xOy 中,O 为正八边形A 1A 2…A 8的中心,A 1(1,0).任取不同的两点A i ,A j ,点P 满足OP →+OA i →+OA j →=0,则点P 落在第一象限的概率是________.图1-214.528 [解析] 共有C 28=28(个)基本事件,其中使点P 落在第一象限的基本事件共有C 23+2=5(个),故所求概率为528.K3 几何概型 4.K3[2016·全国卷Ⅰ] 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.344.B [解析] 由题意可知满足条件的时间段为7:50~8:00,8:20~8:30,共20分钟,故所求概率为2040=12.14.K3[2016·山东卷] 在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.14.34 [解析] 若直线与圆相交,则|5k |1+k 2<3,解得-34<k <34.由几何概型公式得P =34-(-34)1-(-1)=34.K4 互斥事件有一个发生的概率 7.K2、K4[2016·江苏卷] 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.7.56[解析] 本题为古典概型,基本事件共有36个,点数之和大于等于10的有(4,6),(5,5),(5,6),(6,6),(6,5),(6,4),共计6个基本事件,故点数之和小于10的有30个基本事件,所求概率为56.K5 相互对立事件同时发生的概率 16.I1,K5[2016·北京卷] A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数.(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)16.解:(1)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人数估计为100×820=40. (2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知,P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.K6 离散型随机变量及其分布列 12.K6[2016·四川卷] 同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.12.32 [解析] 由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率P =1-12×12=34.∵2次独立重复试验成功次数X 满足二项分布X ~B ⎝⎛⎭⎫2,34,∴E (X )=2×34=32. 10.K3[2016·全国卷Ⅱ] 从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2n mC.4m nD.2m n10.C [解析] 由题意可知(x i ,y i )(i =1,2,…,n )在如图所示的正方形中,两数平方和小于1的点在如图所示的阴影中.由几何概型概率计算公式知π41=m n ,∴π=4mn .18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a (单位:元),继续购买该险种的设该险种一续保人一年内出险次数与相应概率如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.18.解:(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10+0.05=0.15. 又P (AB )=P (B ),故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311,因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为EX =0.85a ×0.30+a ×0.15+1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=1.23a . 因此续保人本年度的平均保费与基本保费的比值为1.23. 19.K6,K7[2016·山东卷] 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .19.解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +BCD +ACD +ABD +ABC.由事件的独立性与互斥性,得P (E )=P (ABCD )+P (BCD )+P (ACD )+P (ABD )+P (ABC)=P (A )P (B )P (C )P (D )+P ()P (B )P (C )P (D )+P (A )P ()P (C )P (D )+P (A )P (B )P ()P (D )+P (A )P (B )P (C )P ()=34×23×34×23+2×14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512,P (X =6)=34×23×34×23=36144=14.故随机变量X 的分布列为所以数学期望EX =0×1144+1×572+2×25144+3×112+4×512+6×14=236. 16.K6[2016·天津卷] 某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.16.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13, 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.K7 条件概率与事件的独立性19.K6,K7[2016·山东卷] 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .19.解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +BCD +ACD +ABD +ABC.由事件的独立性与互斥性,得P (E )=P (ABCD )+P (BCD )+P (ACD )+P (ABD )+P (ABC)=P (A )P (B )P (C )P (D )+P ()P (B )P (C )P (D )+P (A )P ()P (C )P (D )+P (A )P (B )P ()P (D )+P (A )P (B )P (C )P ()=34×23×34×23+2×14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512,P (X =6)=34×23×34×23=36144=14.故随机变量X 的分布列为所以数学期望EX =0×1144+1×572+2×25144+3×112+4×512+6×14=236.K8 离散型随机变量的数字特征与正态分布18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a (单位:元),继续购买该险种的(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.18.解:(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10+0.05=0.15. 又P (AB )=P (B ),故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311,因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.K9 单元综合19.K9[2016·全国卷Ⅰ] 某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:图1-5以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?19.解:(1)由柱状图并以频率代替概率可得,1台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E (Y )=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080. 可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19.[2016·浙江卷]04 “计数原理与概率”模块(1)已知(1+2x )4(1-x 2)3=a 0+a 1x +a 2x 2+…+a 10x 10,求a 2的值.(2)设袋中共有8个球,其中3个白球、5个红球,从袋中随机取出3个球,求至少有1个白球的概率.解:(1)因为(1+2x )4二项展开式的通项为C r 4(2x )r,r =0,1,2,3,4.(1-x 2)3二项展开式的通项为C r 3(-x 2)r,r =0,1,2,3.所以a 2=C 24·22·C 03+C 04·C 13·(-1)=21. (2)从袋中取出3个球,总的取法有C 38=56(种); 其中都是红球的取法有C 35=10(种).因此,从袋中取出3个球至少有1个白球的概率是 1-C 35C 38=2328.4.[2016·揭阳模拟] 利用计算机在区间(0,1)上产生随机数a ,则不等式ln(3a -1)<0成立的概率是( )A.13B.23C.12D.144.A [解析] 由ln (3a -1)<0得13<a<23,则用计算机在区间(0,1)上产生的随机数a 使不等式ln (3a -1)<0成立的概率是13.3.[2016·天水月考] 根据历年气象资料统计,某地四月份刮东风的概率是830,既刮东风又下雨的概率是730,则该地四月份在刮东风的条件下下雨的概率是 ( )A. 830B. 730C.78D.8153.C [解析] 记“某地四月份刮东风”为事件A ,“某地四月份下雨”为事件B ,则P(A)=830,P(AB)=730,所以P( |B A)=P (AB )P (A )=78. 1.[2016·贵州普通高等学校模拟] 在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两个科目考试成绩的统计图如图K501所示,其中“科目一”成绩为D 的考生恰有4人.(1)分别求该考场的考生中“科目一”和“科目二”成绩为A 的考生人数;(2)已知在该考场的考生中,恰有2人的两科成绩均为A ,从至少一科成绩为A 的考生中随机抽取2人进行访谈,设这2人中两科成绩均为A 的人数为随机变量X ,求X 的分布列和数学期望.图K5011.解:(1)该考场中“科目一”的成绩为D 的考生人数所占频率为1-0.2-0.375-0.25-0.075=0.1,所以该考场人数为4÷0.1=40.于是“科目一”的成绩为A 的考生人数为40×0.075=3,“科目二”的成绩为A 的考生人数为40×(1-0.375-0.375-0.15-0.025)=40×0.075=3.(2)因为“科目一”和“科目二”成绩为A 的考生人数均为3,又恰有2人的两科成绩等级均为A ,所以还有2人只有一个科目得分为A ,即至少有一科成绩为A 的考生共有4人.随机变量X 的可能取值为0,1,2.P ()X =0=C 22C 24=16,P ()X =1=C 12·C 12C 24=46=23, P ()X =2=C 22C 24=16,所以X 的分布列为X 的数学期望E ()X =0×16+1×23+2×16=1.4.[2016·安庆二模] 近年来,全国很多地区出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.一般来说,老年人(年满60周岁,包括60周岁)从情感上不太支持禁放烟花爆竹,而中青年人(18周岁至60周岁)则相对理性一些.某市环保部门就是否赞成禁放烟花爆竹对400位老年人和中青年人进行了随机问卷调查,调查结果如下表:(1). (2)从上述不赞成禁放烟花爆竹的市民中按年龄结构用分层抽样法取出13人,再从这13人中随机地挑选2人了解他们春节期间在烟花爆竹上的消费情况.假设老年人花费500元左右,中青年人花费1000元左右.用Χ表示它们在烟花爆竹上消费的总费用,求Χ的分布列和数学期望.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),4.解:(1)因为k =400×(60×120-140×80)140×260×200×200≈4.396>3.841,所以有95%以上的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关. (2)因为140∶120=7∶6,所以13人中有老年人7人,中青年人6人. X 可能的取值为2000,1500,1000,P(X =2000)=C 26C 213=526,P(X =1500)=C 17C 16C 213=713,P(X =1000)=C 27C 213=726,所以X 的分布列为526+1500×713+1000×726=19 00013≈1462.所以E(X)=2000×。
2016_2018学年高考数学试题分项版解析专题7概率与统计理含解析

专题 27 概率与统计考纲解读明方向考点内容解读要求 高考示例常考题型预测热度①理解古典概型及其概率计算公式;2017 山东 ,8;2016 天津 ,16;选择题1. 古典概型②会计算一些随机事件所含的基本事掌握★★★2015 广东 ,4; 解答题件数及事件发生的概率2014 陕西 ,62017 课标全国①了解随机数的意义 , 能运用模拟方Ⅰ,2;2. 几何概型法估计概率 ;了解2016 课标全国选择题★☆☆②了解几何概型的意义Ⅰ,4;2015 湖北 ,7分析解读 1. 掌握在古典概型条件下 , 能应用任何事件的概率公式解决实际问题 .2. 通过实例 , 理解几何概型及其概率计算公式 , 并会运用公式求解一些简单的有关概率的问题. 本节在高考中单独命题时 ,通常以选 择题、填空题形式出现 , 分值约为 5 分, 属中低档题 . 随机事件 , 古典概型与随机变量的分布列 , 期望与方差等综合在一起考查时一般以解答题形式出现, 分值约为12 分, 属中档题 .考点内容解读要求高考示例预测热常考题型度①理解随机抽样的必要性和重要性;2017 江苏 ,3;2015 湖北 ,2;选择题1. 随机抽样②会用简单随机抽样方法从总体中抽取样本; 理解★★☆2014 湖南 ,2;填空题了解分层抽样和系统抽样方法2013 课标全国Ⅰ ,3①了解分布的意义和作用 , 会列频率分布表 ,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点;2017 课标全国②理解样本数据标准差的意义和作用 , 会计算Ⅲ,3;数据标准差 ;2016 山东 ,3;选择题2. 用样本估③能从样本数据中提取基本的数字特征 ( 如平2016 四川 ,16;填空题 ★★★计总体均数、标准差 ), 并给出合理的解释 ;掌握2015 广东 ,17;解答题④会用样本的频率分布估计总体分布 , 会用样2015 江苏 ,2;本的基本数字特征估计总体的基本数字特征 ,2014 山东 ,7理解用样本估计总体的思想;⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题分析解读 1. 掌握简单随机抽样、系统抽样、分层抽样等常用抽样方法 , 体会三种抽样方法的区别与联系及具体的操作步骤 .2. 会用样本的频率分布估计总体的分布 , 会用样本的数字特征估计总体的数字特征.3. 样 本数字特征及频率分布直方图为高考热点 . 有关统计内容及方法主要以选择题、填空题的形式呈现, 分值约为 5 分 , 属容易题 ; 抽样方法和各种统计图表与概率的有关内容相结合也会出现在解答题中, 分值约为 12 分,属中档题 .考点内容解读要求 高考示例预测热常考题型度(1) ①会作两个有关联变量的数据的散点图 , 会利用散点图认识变量间的相关关系 ;②了解最小二乘法的思想, 能根据给出的线性2017 山东 ,5;2016 课标全国回归方程系数公式建立线性回归方程.Ⅲ,18;变量的相关, 并能应用这选择题 (2) 了解下列一些常见的统计方法 了解2015 课标Ⅰ ,19; 性、★★☆些方法解决一些实际问题 .2015 福建 ,4; 解答题统计案例①独立性检验 : 了解独立性检验 ( 只要求 2×2列2014 课标Ⅱ ,19;联表 ) 的基本思想、方法及其简单应用;2014 重庆 ,3②回归分析 : 了解回归分析的基本思想、方法及其简单应用分析解读1. 理解用回归分析处理变量相关关系的数学方法 , 理解最小二乘法 .2. 了解独立性检验的基本思想 , 认识统计方法在决策中的作用 .3. 了解回归的基本思想方法及其简单应用.4. 回归分析与独立性检验在 今后的高考中分值可能会提高 . 本节在高考中主要以选择题、解答题的形式呈现, 分值约为 5 分或 12 分, 小题为容易题 , 解答题属中档题 .2018 年高考全景展示1.【 2018 年理新课标I 卷】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB , AC .△ ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II, III的概率分别记为p 1,p 2, p 3,则A. p 1=p 2B. p 1=p 3C. p 2=p 3D. p 1=p 2+p 3【答案】 A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出详解:设p 1, p 2, p 3 的关系,从而求得结果,则有.,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果. 2.【 2018 年理新课标 I 卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】 A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项 .点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果 .3.【 2018 年理数全国卷II 】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如.在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A. B. C. D.【答案】 C点睛:古典概型中基本事件数的探求方法:(1) 列举法 . (2)树状图法:适合于较为复杂的问题中的基本事件的探求 . 对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.4.【 2018 年江苏卷】某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好选中 2 名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率 .详解:从 5 名学生中抽取 2 名学生,共有10 种方法,其中恰好选中 2 名女生的方法有 3 种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法 .(2) 树状图法:适合于较为复杂的问题中的基本事件的探求. 对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3) 列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4) 排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【 2018 年江苏卷】已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么这 5 位裁判打出的分数的平均数为________.【答案】 90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知, 5 位裁判打出的分数分别为,故平均数为.点睛:的平均数为.6.【 2018 年全国卷Ⅲ理】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40 名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:( 1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;( 2)求 40 名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式( 3)根据( 2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,【答案】(1)第二种生产方式的效率更高 . 理由见解析( 2) 80( 3)能【解析】分析:( 1)计算两种生产方式的平均时间即可。
概率与统计-2016至2018新课标二高考理科数学汇编+Word版含解析

十、概率与统计1.(2016 新课标2理数10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n【答案】C2.(2017 新课标2理数13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =____________.【答案】1.96【解析】:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.【考点】 二项分布的期望与方差3. (2018 新课标2理数8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C. 4.(2016 新课标2理数18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(III)求续保人本年度的平均保费与基本保费的比值.解:(I)解法1:设“一续保人本年度的保费高于基本保费”为事件为A则P(A)=1-P(A)=1-(0.3+0.15)=0.55所以该续保人本年度的保费高于基本保费的概率为0.55解法2:由题知:续保人本年度的保费高于基本保费的概率为0.200.200.100.050.55P=+++=(II)由统计表可知:其保费比基本保费高出60%的概率:0.100.050.15P=+=所以在一续保人本年度的保费高于基本保费的条件下; 续保人本年度的保费高于基本保费的概率为:0.1530.5511 P==(III)该续保人的本年平均保费为:0.850.300.15 1.250.20 1.50.20 1.750.10+20.05 1.23a a a a a a a????创=所以该续保人本年度的平均保费与基本保费的比值为:1.231.23aa=5.(2017 新课标2理数18)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:0.01).附:,22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .6. (2018 新课标2理数18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠..【考点】独立事件概率公式、独立性检验原理、频率分布直方图估计中位数。
最新全国卷高考(2016-2018)汇编 概率与统计文科 含解析

概率与统计 试题分类汇编(文科)分析解读 从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A. 0.3 B. 0.4 C. 0.6 D. 0.7 【答案】B2.【2018年全国卷II 文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.B.C.D.【答案】D点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.3.【2017课标1,文4】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B【解析】【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.4. 【2017课标II,文11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【名师点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.5.【2017课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.6. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A试题分析:由题意,甲组数据为56,62,65,70x +,74,乙组数据为59,61,67,60y +,78.要使两组数据数相等,有6560y =+,所以5y =,又平均数相同,则566265(70)74596167657855x +++++++++=,解得3x =.故选A. 【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.7.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.8. [2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C.下面叙述不正确的是()(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .9.【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) (A )13 (B )12 (C )23 (D )56【答案】A 【解析】试题分析:将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选C. 考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 10.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( ) (A )65 (B )52 (C )61 (D )31【答案】A 【解析】11. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.12.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则log a b 为整数的概率= . 【答案】16【解析】试题分析:从2,3,8,9中任取两个数记为,a b ,作为作为对数的底数与真数,共有2412A =个不同的基本事件,其中为整数的只有23log 8,log 9两个基本事件,所以其概率21126P ==. 考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,因此所有对数的个数就相当于4个数中任取两个的全排列,个数为44A ,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.13. 某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______. 【答案】16考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.14.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.15.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90点睛:的平均数为.16.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样17.【2018年新课标I卷文】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析.(2) 0.48.(3).详解:(1)点睛:该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.18.【2018年全国卷Ⅲ文】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.【答案】(1)第二种生产方式的效率更高.理由见解析(2)超过不超过(3)有【解析】分析:(1)计算两种生产方式的平均时间即可。
高考数学概率与统计专项练习(解答题含答案)

《概率与统计》专项练习(解答题)1.(2016全国Ⅰ卷,文19,12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解:(Ⅰ)当x ≤19时,y =3800当x >19时,y =3800+500(x -19)=500x -5700∴y 与x 的函数解析式为y ={3800, x ≤19500x −5700,x >19(x ∈N )(Ⅱ)需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7∴n 的最小值为19(Ⅲ)①若同时购买19个易损零件则这100台机器中,有70台的费用为3800,20台的费用为4300,10台的费用为4800∴平均数为1100(3800×70+4300×20+4800×10)=4000②若同时购买20个易损零件则这100台机器中,有90台的费用为4000,10台的费用为4500 ∴平均数为1100(4000×90+4500×100)=4050 ∵4000<4050∴同时应购买19个易损零件2.(2016全国Ⅱ卷,文18,12分)某险种的基本保费为a (单位:元),继续购买该险种的投频数10162024(Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(Ⅲ)求续保人本年度的平均保费估计值. 解:(Ⅰ)若事件A 发生,则一年内出险次数小于2则一年内险次数小于2的频率为P (A )=60+50200=0.55∴P (A )的估计值为0.55(Ⅱ)若事件B 发生,则一年内出险次数大于1且小于4一年内出险次数大于1且小于4的频率为P (B )=30+30200=0.3∴P (B )的估计值为0.3(Ⅲ)续保人本年度的平均保费为1200(0.85a ×60+a ×50+1.25a ×30+1.5a ×30+1.75a ×20+2a ×10)=1.1925a3.(2016全国Ⅲ卷,文18,12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑,∑=-712)(i iy y=0.55,√7≈2.646.参考公式:相关系数r =∑∑∑===----ni ni i ini i iy y t ty y t t11221)()())((.回归方程x ̂=x ̂+x ̂t 中斜率和截距的最小二乘估计公式分别为:x ̂=∑∑==---ni ini i it ty y t t121)())((,x ̂=x ̅̅̅-x ̂x ̅̅̅解:(Ⅰ)由折线图中数据得x ̅̅̅=17(1+2+3+4+5+6+7)=4………………1分由附注中参考数据得∑=--71))((i i iy y t t=∑=71i i i y t -∑=71i i y t =40.17-4×9.32=2.89………………………………………………………………………2分∑=-712)(i i t t=27262424232221)4()4()4()4()4()4()4(-+-+-+-+-+-+-t t t t t t t =28………………………………………………………………3分∑=-712)(i i y y =0.55………………………………………………4分r =∑∑∑===----ni ni iini i iy yt ty y t t11221)()())((=∑∑==-⨯-ni ini iy yt t1212)()(89.2=55.02889.2⨯≈0.99………………………………………………………………………5分 ∵y 与t 的相关关系r 近似为0.99,说明y 与t 的线性相关程度相当高 ∴可以用线性回归模型拟合y 与t 的关系…………………………6分(Ⅱ)x ̅̅̅=771∑=i iy=9.327≈1.331………………………………………………7分x ̂=∑∑==---ni ini i it ty y t t121)())((=2.8928≈0.103…………………………………8分x ̂=x ̅̅̅-x ̂x ̅̅̅≈1.331-0.103×4≈0.92…………………………………9分∴y 关于t 的回归方程为x ̂=0.92+0.103t …………………………10分 2016年对应的t =9…………………………………………………11分 把t =9代入回归方程得x ̂=0.92+0.103×9=1.82∴预测2016年我国生活垃圾无害化处理量将约1.82亿吨………12分4.(2015全国Ⅰ卷,文19,12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =√x x ,x =18∑x =1w i .(Ⅰ)根据散点图判断,y =a +bx 与y =c +d √x 哪一个适宜作为年销售量y 关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为x^=∑x =1x(x x -x )(x x -x )∑x =1x(x x -x )2,x^=x -x ^x . 解:(Ⅰ)y =c +d √x 适宜作为y 关于x 的回归方程类型………………………………………………………………………………………2分 (Ⅱ)令w =√x ,先建立y 关于w 的回归方程由于d ^=∑i=18(w i -w)(y i -y)∑i=18(w i -w)2=108.81.6=68…………………3分c ^=y -d ^w =563-68×6.8=100.6…………………4分∴y 关于w 的回归方程为y ^=100.6+68w …………………5分 ∴y 关于x 的回归方程为y ^=100.6+68√x …………………6分 (Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时y 的预报值y ^=100.6+68√49=576.6…………………7分 z 的预报值z ^=576.6×0.2-49=66.32…………………9分(ⅱ)根据(Ⅱ)的结果知z 的预报值z ^=0.2(100.6+68√x )-x =-x +13.6√x +20.12……10分 ∴当√x =13.62=6.8,即x =46.24时,z ^取得最大值…………………11分∴年宣传费为46.24千元时,年利润的预报值最大…………………12分5.(2015全国Ⅱ卷,文18,12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6 (Ⅰ)作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.解:(Ⅰ)…………4分B地区的平均值高于A地区的平均值…………5分B地区比较集中,而A地区比较分散…………6分(Ⅱ)A地区不满意的概率大…………7分记C A表示事件:“A地区用户的满意度等级为不满意”C B表示事件:“B地区用户的满意度等级为不满意”…………9分由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6…………10分P(C B)=(0.005+0.02)×10=0.25…………11分∴A地区不满意的概率大…………12分6.(2014全国Ⅰ卷,文18,12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8 (Ⅰ)作出这些数据的频率分布直方图;(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(Ⅰ)…………4分(Ⅱ)平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100[6×(80-100)2+26×(90-100)2+38×(100-100)2方差为S2=1100+22×(110-100)2+8×(120-100)2]=104∴平均数为100,方差为104…………8分(Ⅲ)质量指标值不低于95的比例为0.38+0.22+0.08=0.68…………10分∵0.68<0.8…………11分∴不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定…………12分7.(2014全国Ⅱ卷,文19,12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价. 解:(Ⅰ)甲的评分由小到大排序,排在第25,26位的是75,75∴样本中位数为75+752=75∴甲的中位数是75乙的评分由小到大排序,排在第25,26位的是66,68 ∴样本中位数为66+682=67∴乙的中位数是67(Ⅱ)甲的评分高于90的概率为550=0.1乙的评分高于90的概率为850=0.16∴甲、乙的评分高于90的概率分别为0.1,0.16 (Ⅲ)甲的中位数高于对乙的中位数甲的标准差要小于对乙的标准差甲的评价较高、评价较为一致,对乙的评价较低、评价差异较大8.(2013全国Ⅰ卷,文18,12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解:(Ⅰ)设A 的平均数为x ,B 的平均数为yx =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.)=1.6∴x >y∴A 药的疗效更好 (Ⅱ)茎叶图如下:从茎叶图可以看出A的结果有710的叶集中在茎2,3上B的结果有710的叶集中在茎0,1上∴A药的疗效更好9.(2013全国Ⅱ卷,文19,12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57 000元的概率.解:(Ⅰ)当X∈[100,130)时,T=500X-300(130-X)=800X-39000当X∈[130,150]时,T=500×130=65000∴T={800X-39000,100≤X<130 65000,130≤X≤150(Ⅱ)由(Ⅰ)知利润T不少于57000元,当且仅当120≤X≤150由直方图知需求量X∈[120,150]的频率为0.7∴下一个销售季度内的利润T不少于57000元的概率的估计值为0.710.(2012全国卷,文18,12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14 15 16 17 18 19 20频数10 20 16 16 15 13 10(ⅰ)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ⅱ)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.解:(Ⅰ)当日需求量n≥17时,利润y=85当日需求量n<17时,利润y=10n-85所以y 关于n 的函数解析式为y ={10n -85,n <1785,n ≥17(n ∈N )(Ⅱ)(ⅰ)解法一:由表格可得有10天的日利润为5×14-5×3=55元 有20天的日利润为5×15-5×2=65元 有16天的日利润为5×16-5×1=75元有16+15+13+10=54天的日利润为85元∴这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4 (ⅰ)解法二:由(Ⅰ)y ={10n -85,n <1785,n ≥17(n ∈N )得当n =14时,10天的日利润为10n -85=10×14-85=55元 当n =15时,20天的日利润为10n -85=10×15-85=65元 当n =16时,16天的日利润为10n -85=10×16-85=75元 当n ≥17时,54天的日利润为85元∴这100天的日利润的平均数为1100(55×10+65×20+75×16+85×54)=76.4 (ⅱ)利润不低于75元,当且仅当日需求量不少于16枝∴当天的利润不少于75元的概率为P =0.16+0.16+0.15+0.13+0.1=0.711.(2011全国卷,文19,12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]频数 8 20 42 22 8B 配方的频数分布表指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110]频数 4 12 42 32 10 (Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为y ={-2,t <942,94≤t <1024,t ≥102,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.解:(Ⅰ)A 配方的优质品的频率为22+8100=0.3∴A 配方的优质品率为0.3B 配方的优质品的频率为32+10100=0.42 ∴B 配方的优质品率为0.42(Ⅱ)用B 配方的利润大于0,当且仅当t ≥94∵t ≥94的频率为0.96∴B 配方的利润大于0的概率为0.96×[4×(-2)+54×2+42×4]=2.68(元) B配方的利润为1100。
全国卷文科数学概率统计汇总

概率统计高考题1.[2016.全国卷3.T5] 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.158 B. 81 C. 151 D. 301 2.[2016.全国卷2.T8] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B. 58 C.38 D.3103.[2015.全国卷1.T4] 如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( ) A.103 B.15 C.110 D.1204.[2015.全国卷2.T3]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,A C .2006 5.[2013.2的概率是( )A.12 B.13 C.14 D.166.[2012.全国卷.T3]在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A. -1B.0C. 12D. 17.[2011.全国卷.T6]有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年A.13B. 12C.23D.348.[2014.全国卷1.T13] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为9.[2014.全国卷2.T13]甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为10.[2013.全国卷2.T13]从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是11.[2010.全国卷.T14]设函数()y f x =为区间(]0,1上的图像是连续不断的一条曲线,且恒有()01f x ≤≤,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积,先产生两组i 每组N 个,区间(]0,1上的均匀随机数1, 2.....n x x x 和1, 2.....n y y y ,由此得到V 个点()(),1,2....x y i N -。
2016年高考数学(新课标版) 专题18 概率与统计大题(理) 含解析

【名师精讲指南篇】【高考真题再现】1.【2013 新课标全国】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【解析】(1)利用相互独立事件模型计算概率;(2)在(1)的基础上,利用对立事件算出X为400、500、800时的概率,进而列出分布列,求出期望.2.【2014高考全国1】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I)求这500件产品质量指标值的样本平均值x和样本方差2s(同一组的数据用该组区间的中点值作代表);(II )由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .12.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.3.【2014新课标Ⅱ理)】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t yy b t t ==--=-∑∑,ˆˆay bt =-.(II )由(I )知,ˆ0.50b=>,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号9t =代入(I )中的回归方程,得ˆ0.59 2.3 6.8y=⨯+=千元,故预测该地区2015年农村居民家庭人均纯收入为6.8千元 4.【2015全国Ⅱ理18】某公司为了解用户对其产品的满意度,从,A B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.则可得1122B A B A C C C C C =.所以1122()()B A B A P C P C C C C =1122()()B A B A P C C P C C =+1122()()()()B A B A P C P C P C P C =+.由题意及所给数据可得1A C ,2A C ,1B C ,2B C 发生的频率分别为1620,420,1020,820. 故可得1()A P C 16=20,2()=A P C 420,1()=B P C 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=.即C 的概率为0.48. 5.【2015全国Ⅰ理19】某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量()1,2,,8i y i =⋅⋅⋅数据作了初步处理,得到下面的散点图及一些统计量的值.年宣传费/千元表中i w =,18i i w w ==∑,(1)根据散点图判断,y a bx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系式0.2z y x =-,根据(2)的结果回答下列问题:①年宣传费49x =时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据()11,u v ()22,u v ,⋅⋅⋅,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆniii ni i u u v v u u β==--=-∑∑,ˆˆv u αβ=-.【热点深度剖析】1.纵观2013年和2014年2015年的高考题对本热点的考查,可以发现概率和统计、统计案例相结合是高考命题的热点,在2012年高考中,结合实际问题将函数和概率问题巧妙结合在一起,新颖别致,但是题目难度不大,这也体现了“新题不难”的命题特点,主要考查生活中的概率统计知识和方法.求离散型随机变量的分布列和数学期望的方法,以及生活中最大利润的判断;2013年考查相互独立事件的概率计算、离散型随机变量的分布列、期望,考查学生的逻辑推理能力以及基本运算能力;2014年主要考查了频率分布直方图,正态分布的3 原则,二项分布的期望及回归分析.2015年分别考查了回归分析、茎叶图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考数学理试题分类汇编
统计与概率
1、(2016年北京高考) A 、B 、C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时); A 班 6 6.5 7 7.5 8
B 班 6 7 8 9 10 11 12
C 班
3 4.5 6 7.5 9 10.5 12 13.5
(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (3)再从A 、B 、C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1μ ,表格中数据的平均数记为0μ ,试判断0μ和1μ的大小,(结论不要求证明)
2、(2016年山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是
4
3
,乙每轮猜对的概率是
3
2
;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:
(Ⅰ) “星队”至少猜对3个成语的概率;
(Ⅱ) “星队”两轮得分之和X 的分布列和数学期望EX .
3、(2016年四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨)、一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中a的值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(III)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.
4、(2016年天津高考)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为
1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.
(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.
5、(2016年全国I 高考)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一
易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;
(II )若要求()0.5P X n ≤≥,确定n 的最小值;
(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?
6、(2016年全国II 高考)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数 0 1 2 3 4 ≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下: 一年内出险次数 0 1 2 3 4 ≥5
概率
0.30
0.15
0.20
0.20
0.10
0. 05
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.
7、(2016年全国III 高考)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿
吨)的折线图
(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。
参考数据:
7
1
9.32i
i y
==∑,7
1
40.17i i i t y ==∑7
2
1
()
0.55i
i y y =-=∑,7≈2.646.
参考公式:相关系数()()
n
i
i
t t y y r --=
∑ 回归方程y a bt =+)
)) 中斜率和截距的最小二乘估计公式分别为:
1
2
1
()()
()
n
i i i n
i i t t y y b t t ==--=-∑∑),
=.a y bt -)))。