平面向量简单练习题集
高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】(最新)

高中数学 平面向量 选择填空题精选50道一、选择题(共36题)【基础题】1. 下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功;⑨电流强度;⑩摩擦系数,其中不是向量的有( )A. 4个B. 5个C. 6个D. 7个2. 下列六个命题中正确的是 ( )①两个向量相等,则它们的起点相同,终点相同; ②若丨a 丨=丨b 丨,则a =b ; ③若AB →=DC →,则ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB →=DC →;⑤若m =n ,n =k ,则m =k ; ⑥若a ∥b ,b ∥c ,则a ∥c. A. ①②③ B. ④⑤ C. ④⑤⑥ D. ⑤⑥3. 以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量4. 已知B 是线段AC 的中点,则下列各式正确的是( ) (A )AB →=-BC → (B )AC →=21BC →(C )BA →=BC → (D )BC →=21AC → 5. 下列四式不能化简为AD →的是()(A )(AB →+CD →)+BC → (B )(AD →+MB →)+(BC →+CM →)(C )MB →+AD →-BM →(D )OC →-OA →+CD →6、已知向量等于则MN ON OM 21),1,5(),2,3(--=-=( ) A .)1,8(B .)1,8(-C .)21,4(-D .)21,4(-7、已知向量),2,1(),1,3(-=-=则23--的坐标是()A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-8. 与向量a=(-5,4)平行的向量是( )A.(-5k,4k )B.(-k 5,-k4) C.(-10,2) D.(5k,4k)9. 已知),1,(),3,1(-=-=x 且∥b ,则x 等于( ) A .3B .3-C .31D .31-10.已知→a =()1,21,→b =(),2223-,下列各式正确的是( )(A ) 22⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行11. 在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是()(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形【中等难度】12、下面给出的关系式中正确的个数是()① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 313. 已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( )(A ) →b +→a 21 (B ) →b -→a 21 (C ) →a +→b 21 (D ) →a -→b 2114.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a(B ))(21→→-a b(C ) →a +→b 21 (D ))(21→→+b a15. 设a ,b 为不共线向量, AB →=a +2b , BC →=-4 a -b ,CD →=-5 a -3 b ,则下列关系式中正确的是( )(A )AD →=BC → (B )AD →=2BC → (C )AD →=-BC → (D )AD →=-2BC →16. 设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是()(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数17. 在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足-2PA PM =,则()PA PB PC ⋅+等于( ) A.49 B.43 C.43- D. 49-18. 已知a 、b 均为单位向量,它们的夹角为60°,那么丨a +3b 丨=( )A .7B .10C .13D .419.已知| |=4, |b |=3, 与b 的夹角为60°,则| +b |等于()。
平面向量练习题及答案

平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。
5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。
三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。
7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。
8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。
四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。
10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。
答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。
平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
平面向量经典练习题(含答案)

高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。
2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。
3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。
5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。
6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。
7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。
8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。
9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。
二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。
A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。
A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。
平面向量的练习题及答案

平面向量的练习题及答案平面向量的练习题及答案典例精析题型一向量的有关概念下列命题:①向量AB的长度与BA的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上.其中真命题的序号是.①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.下列各式:①|a|=a?a;② ?c=a? ;③OA-OB=BA;④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+=2;⑤a=,b=,且a与b不共线,则⊥.其中正确的个数为A.1B.C.D.4选D.| a|=a?a正确;?c≠a? ; OA-OB=BA正确;如下图所示,MN=++且MN=++,两式相加可得2MN=AB+DC,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b 为菱形的两条对角线,即得⊥.所以命题①③④⑤正确.题型二与向量线性运算有关的问题如图,ABCD是平行四边形,AC、BD交于点O,点M在线段DO上,且=,点N在线段OC上,且=,设=a, =b,试用a、b 表示,,1313.在?ABCD中,AC,BD交于点O, 111所以==a-b),22=2=2=2.11又=,=,31所以=AD+=b+1115=b=a,266111=+=+4412==a+b). 323所以=-1511=-+)=a.6626向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足OP=1OA+λ,若λ=2时,则PA?的值为 .由已知得-=λ,11即AP=λ,当λ=时,得AP=,2所以2AP=AB+AC,即AP -AB=AC-AP,所以BP=PC,所以PB+PC=PB +BP=0,所以? =?0=0,故填0.题型三向量共线问题设两个非零向量a与b不共线.若=a+b,=2a+8b,=3,求证:A,B,D三点共线;试确定实数k,使ka+b和a+kb共线. 1证明:因为=a+b,=2a+8b,=3,所以BD=BC +CD=2a+8b+3=5=5AB,所以AB, BD共线.又因为它们有公共点B,所以A,B,D三点共线.因为ka+b和a+kb共线,所以存在实数λ,使ka+b=λ,所以a=b.因为a与b是不共线的两个非零向量,所以k-λ=λk-1=0,所以k2-1=0,所以k=±1.向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.已知O是正三角形BAC内部一点,+2+3=0,则△OAC的面积与△OAB的面积之比是如图,在三角形ABC中, OA+2OB+3OC=0,整理可得OA+OC+2=0.1令三角形ABC中AC边的中点为E,BC边的中点为F,则点O 在点F与点E连线的处,即OE=2OF.1hh1设三角形ABC中AB边上的高为h,则S△OAC=S△OAE+S△OEC?OE? 的情形,而向量平行则包括共线的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a与b共线同向时,|a+b|=|a|+|b|;当向量a与b共线反向时,|a+b|=||a|-|b||;当向量a与b不共线时,|a+b|<|a|+|b|.典例精析题型一平面向量基本定理的应用如图?ABCD中,M,N分别是DC,BC中点.已知AM=a,=b,试用a,b表示,AD与AC易知AM=AD+DM 1=+,1AN=AB+BN=AB2AD, 1a,??2即? ??1?b.?2?22所以=b-a),=2a-b).32所以=+=a+b).运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.已知D为△ABC的边BC上的中点,△ABC所在平面内有一点P,满足++=0等于 1B.C.1 D.1A.由于D为BC边上的中点,因此由向量加法的平行四边形法则,易知PB+PC=2PD,因此结合PA+BP+CP=0即得PA=2PD,因此易得P,A,D三点共线且D是PA=1,即选C.题型二向量的坐标运算已知a=,b=,u=a+2b,v=2a-b.若u=3v,求x;若u∥v,求x.因为a=,b=,所以u=+2=+=,v=2-=.u=3v?=3=,所以2x+1=6-3x,解得x=1.u∥v ?=λ2x?1??,-3=0?x=1.对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.nπnπ已知向量an=sinn∈N*),|b|=1.则函数y=|a1+b|2+|a2+b|2+|a3+b|2+ (77)+|a141+b|2的最大值为.π设b=,所以y=|a1+b|2+|a2+b|2+|a3+b|2+…+|a141+b|2=2+b2+2+…+2+b2+2=282+2cos,所以y的最大7777 值为284.题型三平行向量的坐标运算已知△ABC的角A,B,C所对的边分别是a,b,c,设向量m=,n=,p=.若m∥n,求证:△ABC为等腰三角形;π若m⊥p,边长c=2,角CABC的面积.证明:因为m∥n,所以asin A=bsin B.由正弦定理,得a2=b2,即a=b.所以△ABC为等腰三角形.因为m⊥p,所以m·p=0,即a+b=0,所以a+b=ab.由余弦定理,得4=a2+b2-ab=2-3ab,所以2-3ab-4=0.所以ab=4或ab=-1.113所以S△ABC=absin C3.22设m=,n=,则①m∥n?x1y2=x2y1;②m⊥n?x1x2+y1y2=0.已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m =,n=.若m⊥n,且a+b=10,则△ABC周长的最小值为A.10-3C.10-23B.10+5D.10+231由m⊥n得2cos2C-3cos C-2=0,解得cos C=-cos C=2,所以c2=a2+b2-2abcos例题讲解1、下列命题中,正确的是A.若a?b,则a与b的方向相同或相反B.若a?b,b?c,则a?cC.若两个单位向量互相平行,则这两个单位向量相等D.若a=b,b=c,则a=c.122、已知平面内不共线的四点0,A,B,C满足OB?OA?OC,则33|AB|:|BC|?A.3:1B.1:C.2:1D.1:23、已知向量a= ,b= ,若2a–b与b共线,则实数n的值是 A.6B. C.3?23D3?234、向量AB?按向量a?平移后得向量A?B?,则A?B?的坐标为A. B.C. D.、如图,在△ABC中,D是BC的中点,E是DC的中点,F是EC的中点,若AB?a,AC?b,则AF? A.14a?34b B.14a?34b C.18a?78bD.18a?78b6、若函数f?cos2x?1的图象按向量a平移后,得到的图象关于原点对称,则向量a可以是A. B. C.424二、填空题:共3小题7、设a,b是两个不共线的非零向量,若向量ka?2b与8a?kb的方向相反,则k?8、若a?b?c,化简3?2?2?、已知正△ABC的边长为 1 ,则BC?2CA?3AB等于检测题1、已知非零向量a,b满足a=?b,b=?a,则?= A.?1B.?1C.0D.02、设a,b是非零向量,则下列不等式中不恒成立的是A.a?b??B.abC.a?b?a?bD.a?a?b、已知a=,b=,?,则实数k的值是A.53B.2511C.?12D.?174、已知平面向量a?,b?,则向量a?b. A.平行于第一、三象限的角平分线B.平行于y轴 C.平行于第二、四象限的角平分线D.平行于x轴5、将二次函数y?x2的图象按向量a平移后,得到的图象与一次函数y?2x?5的图象只有一个公共点,则向量a?A. B. C. D.6. 如图,在正六边形ABCDEF中,已知AC?c,AD?d,则AE? .巩固练习1. 若e1,e2是夹角为的单位向量,且a?2e1?e2,b??3e1?2e2,则a?b?377A.1B. ?4C. ?D.222. 设a?,b?,c?则?c? A. B.0C.?3D.?11 答案 C3. 在?ABC中,已知向量AB?,BC?,则?ABC的面积等于 A.22B.24C.32D.2答案A4. 在?ABC中,a?5,b?8,C?60?,则BC?CA的值为A.10 B.20C.-10D.205. 已知下列命题中:若k?R,且kb?0,则k?0或b?0,若a?b?0,则a?0或b?0若不平行的两个非零向量a,b,满足|a|?|b|,则??0 ??若a与b平行,则a?b?|a|?|b|p2?q2?2其中真命题的个数是A.0B.1C.2D.36. 已知点O为△ABC外接圆的圆心,且OA?OB?CO?0,则△ABC的内角A等于 A.30?B.60? C.90?D.120?. 在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE线与CD交于点F.若AC?a,BD?b,则AF?的延长bD.a?3123bA.14a?12b B.23a?13b C.12a?14答案 B8. 已知a?1,b?6,a??2,则向量a与向量b的夹角是 A.6B.4C.3D.2答案 C9. 在平行四边形ABCD中,若BC?BA?BC?AB,则必有A.ABCD是菱形B.ABCD是矩形C.ABCD是正方形D.以上皆错10.已知向量a?,向量b?则|2a?b|的最大值,最小值分别是A.42,0B.4,42C.16,0D.4,0 二.填空题11. 已知Rt△ABC的斜边BC=5,则AB?BC?BC?CA?CA?AB 的值等于 . 答案-2512. 设p = ,q = ,若p与q的夹角??[0,2),则x的取值范围是13. 若平面向量a,b满足??1,a?b平行于x轴,b?,则a?答案-=解析 a?b?或,则a 或a.14. 在?ABC中,O为中线AM上一个动点,若AM=2,则OA?的最小值是________。
平面向量练习题及答案

平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
初一数学下册练习题解简单的平面向量问题

初一数学下册练习题解简单的平面向量问题初一数学下册练习题解:简单的平面向量问题在初一数学下册的学习中,平面向量是一个重要的概念。
通过学习平面向量,我们可以更好地理解和解决各种数学问题。
本文将为大家解答一些简单的平面向量练习题,帮助大家更好地掌握这一知识点。
1. 已知向量a = (3, 4),向量b = (-2, 6),求向量a + b的坐标。
解析:向量a + b的坐标等于对应位置的分量相加,即 (3 + (-2), 4 + 6),计算得到向量a + b的坐标为 (1, 10)。
2. 已知向量a = (2, -5),向量b = (1, 3),求向量a - b的坐标。
解析:向量a - b的坐标等于对应位置的分量相减,即 (2 - 1, -5 - 3),计算得到向量a - b的坐标为 (1, -8)。
3. 已知向量a = (4, -3),向量b = (-2, 5),求向量a · b的结果。
解析:向量a · b等于对应位置的分量相乘并相加,即 (4 * (-2)) + (-3 * 5),计算得到向量a · b的结果为 -23。
4. 求向量a = (3, 2)的模。
解析:向量a的模等于各个分量的平方和开根号,即√(3^2 + 2^2),计算得到向量a的模为√(13)。
5. 求两向量a = (1, 2)和b = (-3, 4)的夹角。
解析:夹角的求解可以使用向量的点积,夹角θ的余弦值等于向量a · b除以两向量的模的乘积的绝对值,即cosθ = (1 * (-3) + 2 * 4) /(√(1^2 + 2^2) * √((-3)^2 + 4^2))。
计算得到cosθ = 5/√29,所以夹角θ的弧度为arccos(5/√29)。
通过以上简单的练习题,我们对平面向量的一些基本操作有了更深入的理解。
继续进行更多的练习将有助于巩固和加深对平面向量的理解。
总结:在本文中,我们解答了一些初一数学下册中关于简单平面向量问题的练习题。
平面向量习题及答案

平面向量习题及答案平面向量习题及答案引言:平面向量是高中数学中的重要内容之一,它在几何、代数和物理等领域中都有广泛的应用。
通过解决平面向量习题,我们可以加深对平面向量的理解,提高解题能力。
本文将介绍几个常见的平面向量习题,并给出详细的解答过程。
一、向量的加法和减法1. 已知向量a=2i+3j,b=4i-5j,求a+b和a-b。
解答:a+b=(2+4)i+(3-5)j=6i-2ja-b=(2-4)i+(3+5)j=-2i+8j2. 已知向量a=3i+2j,b=-i+4j,求2a-3b。
解答:2a-3b=2(3i+2j)-3(-i+4j)=6i+4j+3i-12j=9i-8j二、向量的数量积和向量积1. 已知向量a=2i+3j,b=-i+4j,求a·b和|a×b|。
解答:a·b=(2)(-1)+(3)(4)=-2+12=10|a×b|=|(2)(4)-(3)(-1)|=|8+3|=112. 已知向量a=3i+2j,b=4i-5j,求a×b的模长和方向角。
解答:a×b=(3)(-5)-(2)(4)=-15-8=-23|a×b|=|-23|=23设a×b与x轴正向的夹角为θ,则cosθ=(4)/√(4^2+(-23)^2)=4/√545θ≈84.3°三、向量的共线与垂直1. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否共线。
解答:若a和b共线,则存在实数k,使得a=kb。
2i+3j=k(-4i-6j)2i+3j=-4ki-6kj2=-4k,3=-6k解得k=-1/2所以,a和b共线。
2. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否垂直。
解答:若a和b垂直,则a·b=0。
a·b=(2)(-4)+(3)(-6)=-8-18=-26-26≠0所以,a和b不垂直。
结论:通过解答上述平面向量习题,我们可以巩固向量的加法、减法、数量积、向量积等基本概念和运算规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.已知平面向量a=(1,2),b=(-2,m)且a∥b,则2a+3b=
27.设 满足 则 ()
28.已知平面三点 ,则x的值为()
29.已知向量 = , = ,若 ⊥ ,则| |=( )
二、填空题
30.若 ∥ ,则x=.
31.已知向量 , ,若向量 与 平行,则 ______.
32.边长为2的等边△ABC中,
一、选择题
1.已知三点 满足 ,则 的值 ( )
2.已知 , ,且 ,则 ( )
5.已知 ,则向量 与 的夹角为( )
6.设向量 ,则 的夹角等于( )
7.若向量 和向量 平行,则 ( )
8.已知 ,向量 与 垂直,则实数 的值为( ).
9.设平面向量 , ,若向量 共线,则 =( )
10.平面向量 与 的夹角为 , , ,则
(3)锐角 中,若 ,且 , ,求 的长.
69.已知向量 .
⑴当 的值;
⑵求 的最小正周期和单调递增区间
70.(本小题满分l2分)(注意:在试题卷上作答无效)
已知 的三个顶点的坐标为
(I)若 ,求 的值;
(II)若 ,求 的值.
71.பைடு நூலகம்非零向量 = , = ,且 , 的夹角为钝角,求 的取值围
46.已知向量 , ,且 ,则 的值为.
47. 与 共线,则 .
48.已知向量 ,向量 ,且 ,则 .
49.已知四点 ,则向量 在向量 方向上的射影是的数量为.
50.设向量 与 的夹角为 , , ,则 等于.
51.已知向量 , ,其中 ,且 ,则向量 和 的夹角是.
52.已知向量 与向量 的夹角为60°,若向量 ,且 ,则 的值为______
60.已知向量 , , , ,则 .
61.设 , ,若 // ,则 .
62.若 的夹角是。
63.设向量a=(t,-6),b=(—3,2),若a//b,则实数t的值是________
三、解答题(题型注释)
64.已知 , ,且 与 夹角为120°求
(1) ; (2) ; (3) 与 的夹角
65.已知单位向量 , 满足 。
38.已知 为相互垂直的单位向量,若向量 与 的夹角等于 ,则实数 _____.
39.若向量 =(2,3), =(4,7),则 =________.
40.在平面直角坐标系xOy中,已知向量a=(1,2),a-b=(3,1),c=(x,3),若(2a+b)∥c,则x=.
41.已知向量 , , .若 与 共线,则 =________.
C.锐角三角形D.等边三角形
17.下列向量中,与垂直的向量是( ).
A.B.C.D.
18.设平面向量 ( )
19.已知向量 , ,若 ,则 等于
20. 已知向量 满足 则 ( )
21.设向量 =(1. )与 =(-1, 2 )垂直,则 等于 ()
23.化简 =
25.如图,正方形 中,点 , 分别是 , 的中点,那么 ( )
33.已知向量a和向量b的夹角为135°,|a|=2,|b|=3,则向量a和向量b的数量积a·b=________.
34.若 , 点的坐标为 ,则 点的坐标为.
35.已知向量 =( , ), =( , ),若 ,则 =.
36.已知向量a=(1, ),则与a反向的单位向量是
37.若向量 , 的夹角为120°,| |=1,| |=3,则|5 - |=.
53.已知向量 则实数k等于______.
54. 已知向量 =(-1,2), =(3, ),若 ⊥ ,则 =___________.
55.已知平面向量 , , 且 // ,则 =.
56.已知 , 且 与 垂直,则 的值为__________.
57.已知向量 ,则 等于
58.已知向量 , , ,若 ∥ ,则k=.
求 ;
(2) 求 的值。
66.(11分)已知向量 , , .
(Ⅰ)求 的值;
(Ⅱ)若 , ,且 ,求 .
67.(本小题满分12分)已知 ,函数 .
(1)求函数 的最小正周期;
(2)在 中,已知 为锐角, , ,求 边的长.
68.(本小题满分14分)
已知向量 , 且满足 .
(1)求函数 的解析式;
(2)求函数 的最小正周期、最值及其对应的 值;
11.已知向量 , ,若 ,则实数x的值为
12.设向量 , ,当向量 与 平行时,则 等于
13.若 ,则向量 的夹角为( )
14.若 , 且( )⊥ ,则 与 的夹角是( )
15.已知向量 =(cos120°,sin120°), =(cos30°,sin30°),则△ABC的形状为
A.直角三角形B.钝角三角形
42.已知A(1,2),B(3,4),C(-2,2),D(-3,5),则向量 在向量 上的投影为______.
43.已知向量 若 则 .
44.设向量 , ,且 ,则锐角 为________.
45.已知A(4,1,3)、B(2,-5,1),C为线段AB上一点,且 , 则C的坐标为_____________