《加减消元法》第一课时教案
人教版数学七年级下册《加减消元法》教学设计1

人教版数学七年级下册《加减消元法》教学设计1一. 教材分析人教版数学七年级下册《加减消元法》是学生在学习了二元一次方程的基础上,进一步探究解二元一次方程组的方法。
本节课通过引入实际问题,让学生感受数学与生活的联系,培养学生的数学应用能力。
教材以学生为主体,注重引导学生探究、发现、归纳解题方法,培养学生的逻辑思维能力和团队合作精神。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和问题解决能力,但对二元一次方程组的理解和应用还有待提高。
学生在学习过程中,需要教师耐心引导,激发他们的学习兴趣,帮助他们发现解题规律,提高解题效率。
三. 教学目标1.理解加减消元法的含义,掌握其解二元一次方程组的基本步骤。
2.能够运用加减消元法解决实际问题,提高数学应用能力。
3.培养学生的逻辑思维能力、团队合作精神和积极探索精神。
四. 教学重难点1.重点:加减消元法的步骤和应用。
2.难点:如何引导学生发现加减消元法的规律,提高解题速度。
五. 教学方法1.情境教学法:通过引入实际问题,让学生感受数学与生活的联系,激发学习兴趣。
2.探究教学法:引导学生分组讨论,发现加减消元法的规律。
3.案例教学法:分析典型例题,让学生在实践中掌握解题方法。
4.反馈教学法:及时给予学生反馈,提高学生的解题能力。
六. 教学准备1.教学课件:制作课件,展示加减消元法的步骤和应用。
2.练习题:准备适量的练习题,巩固所学知识。
3.教学道具:准备一些实物道具,帮助学生形象地理解加减消元法。
七. 教学过程1.导入(5分钟)利用生活实例,引入二元一次方程组,激发学生的学习兴趣。
2.呈现(10分钟)展示加减消元法的步骤和应用,引导学生观察、分析,发现解题规律。
3.操练(10分钟)学生分组讨论,尝试用加减消元法解决实际问题。
教师巡回指导,及时给予反馈。
4.巩固(10分钟)出示适量练习题,让学生独立完成,检验学习效果。
5.拓展(10分钟)引导学生思考:加减消元法在实际生活中的应用有哪些?如何灵活运用加减消元法解决复杂问题?6.小结(5分钟)总结本节课所学内容,强调加减消元法的步骤和应用。
8.2.2加减消元法第一课时导学案

七年级数学导读单第7周 第5课时 总课时第35节主题 8.2.2加减消元法第一课时 主备人史明杰 授课人课型问题解决授课时间学习目标 理解加减消元法的含义,会用加减法解简单的二元一次方程组.重点 用“加减法”解二元一次方程组 难点用“加减法”解二元一次方程组预习提纲:用代入法解方程组:课上探究:活动1:观察方程组,回答下面的问题。
⎩⎨⎧=+=+16y x 210y x 规范书写:解:○2-○1,得 x=6把x=6代入○1,得 y=所以这个方程组的解是⎩⎨⎧==y x未知数y 的系数 ,若把方程○2和方程○1相减可得: (注:左边和左边相减,右边和右边相减。
)( )-( )= - 化简得,x=发现:如果未知数的系数相同则两个方程左右两边分别 也可消去一个未知数.⎩⎨⎧=-=+8y 10x 158.2y 10x 3⎩⎨⎧=+=+16y x 210y x ①②检测1: 解方程组:⎩⎨⎧=-=14y 3x 210y 3-x 4活动2:联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+8y 10x 158.2y 10x 3归纳:两个二元一次方程组中,同一个未知数的系数 或 时,把这两个方程的两边分别 或 ,就能消去这个未知数,得到一个 方程,这种方法就叫做加减消元法。
检测2: 用加减法解下列方程组:⎩⎨⎧=+=2y 2x 24y 2-x⎩⎨⎧=+=-10y 2x 32y 2x 3七年级数学训练单第7周 第5课时 总课时第35节主题主备人 史明杰授课人课型问题解决授课时间解方程组:作业:383216(1)(2)27314772415(3)(4)875231x y m n x y m n x y x y x y x y +=+=⎧⎧⎨⎨-=-=⎩⎩+=+=⎧⎧⎨⎨-=-=⎩⎩⎩⎨⎧-=+-=-2x 24145y y x ⎩⎨⎧=-=-1062165y x y x。
加减消元法教案

加减消元法教案教案标题:加减消元法教案教案目标:1. 理解加减消元法的概念和原理。
2. 掌握加减消元法在解决代数方程组中的应用。
3. 能够独立运用加减消元法解决简单的代数方程组问题。
教案步骤:步骤一:引入(5分钟)1. 引导学生回顾代数方程组的概念,并简要介绍解代数方程组的方法。
2. 提问:在解代数方程组时,我们通常采用什么方法?学生回答:联立方程法。
3. 引出本节课的主题:加减消元法,解释加减消元法的概念和作用。
步骤二:讲解(15分钟)1. 通过一个简单的例子,讲解加减消元法的基本原理和步骤。
示例:解方程组2x + 3y = 73x - 2y = 4步骤:a. 为了消去y,将第一个方程乘以2,第二个方程乘以3,得到:4x + 6y = 149x - 6y = 12b. 将两个方程相加,得到新的方程:13x = 26c. 解得x = 2。
d. 将x的值代入原方程中,解得y = 1。
2. 强调加减消元法的关键在于通过乘以一个适当的系数,使得两个方程的某一项系数相等或相差一个倍数。
步骤三:练习(20分钟)1. 分发练习题,让学生独立完成。
示例题目:a. 解方程组2x + 3y = 104x - 5y = 7b. 解方程组3x - 2y = 82x + 5y = 12. 鼓励学生在解题过程中积极思考和交流,解答疑惑。
步骤四:总结(10分钟)1. 汇总学生的解题思路和答案,让学生互相交流和比较。
2. 总结加减消元法的优点和适用范围。
3. 强调加减消元法在解决代数方程组中的重要性和实用性。
步骤五:拓展(5分钟)1. 提出一个拓展问题,激发学生进一步思考和探索。
示例问题:加减消元法适用于解决几个方程的代数方程组?如果方程的个数很多,是否还适用?为什么?2. 鼓励学生积极思考,并提供一些启示和指导。
教案评估:1. 在练习环节中观察学生的解题过程和答案,及时纠正他们的错误。
2. 对学生的参与度、理解程度和解题能力进行评估。
8.2.2加减消元法第一课时教学预案

新镇中学“有效教学”工具七年级数学教学预案第7周第5课时总课时第35节主题8.2.2加减消元法解二元一次方程组主备人史明杰授课人课型问题解决授课时间教学目标知识与技能:理解加减消元法的含义,会用加减法解简单的二元一次方程组.过程与方法:了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想情感态度与价值观:通过对二元一次方程组解法的探索,理解消元的基本思想,体会化归思想方法。
重点用“加减法”解二元一次方程组难点用“加减法”解二元一次方程组关键使学生理解加减消元法所体现的“化未知为已知”的化归思想方法。
教法学法内容与时间教师有效问题设计学生有效活动设计有效反馈评价设计一、创设情境,引入新课3由代入法解二元一次方程知识引入记住加减法解二元一次方程的方法解读目标、明确学习任务二、呈现问题,自主学习10 1、要求准确认真阅读导读单2、巡视导读单完成情况,关注学困生的学习情况3、答疑1以小组喜欢的方式做导学单知识应用,2、回顾导学单,整理自己在学习中的问题,以便和小组同学交流完成检测1三、合作探究,排疑解难10 1、参与小组交流,引导解决2、巡视,关注组内生成的问题1、组内成员交流;2先交流导学单3组长要督促学困生的学习4、组长整理小组问题完成检测2四、师生反思,小结归纳2从学习目标、计算的方法、学生表现等方面进行小结强化重点,加深印象。
五、达标检测,导学评价20 1、巡视,了解学情2、适时点拨、引导、纠正。
独立完成训练单并在组内互检提出不能解决的问题。
数学《加减消元法-解二元一次方程组》教案

数学《加减消元法-解二元一次方程组》教案课时安排:第一课时:引入加减消元法第二课时:解决简单的二元一次方程组第三课时:引入倍加消元法第四课时:解决复杂的二元一次方程组课堂活动:第一课时:1.引入问题:小明有 6 条红色的绳子, 8 条绿色的绳子和 10 条蓝色的绳子,共计有多少条绳子?同学们快速作答并验证答案。
2.老师通过上述问题引导学生理解加减消元法。
3.教师给出一个简单的二元一次方程组,让学生通过加减消元法来解决。
4.让学生自己找到一些二元一次方程组,让同桌分别用加减消元法来解决。
第二课时:1.老师总结昨天加减消元法的解决方法,引入倍加消元法,告诉学生在某些情况下倍加消元法可能更适合。
2.老师给出一个适合倍加消元法的问题,让同学们快速求解。
3.让一些同学将他们在昨天找到的二元一次方程组用倍加消元法来解决。
第三课时:1.老师对昨天学过的知识进行复习。
2.展示一些更复杂的二元一次方程组,让同学们思考如何用加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程。
第四课时:1.老师对昨天学习的内容进行总结,让同学们回顾、检验自己的学习成果。
2.老师给出几道复杂的二元一次方程组,让同学们通过加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程并与同学分享。
作业安排:1.课后练习,让同学们运用加减消元法和倍加消元法来解决一些二元一次方程组。
2.让同学们自己编写一些二元一次方程组,让同桌来解决。
人教版数学七年级下册8.2《加减消元法》教案

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“加减消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解加减消元法的基本概念。加减消元法是一种解决二元一次方程组的方法,通过相互加减方程来消去一个未知数,从而求解方程组。它在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用加减消元法解决实际问题,以及它如何帮助我们求解方程组。
-掌握在实际问题中,如何将描述问题的文字语言转化为数学语言,建立方程组。
-在进行消元操作时,如何处理可能出现的计算错误,如符号错误、计算顺序错误等。
-难点举例:当面对方程组$$\begin{cases}2x + 5y = 1\\3x + 2y = 4\end{cases}$$,学生可能会在将第一个方程乘以3,第二个方程乘以2时出现计算错误,或者在相减时忘记改变符号。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《加减消元法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(例如,两个物品的价格和数量问题)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索加减消元法的奥秘。
-理解如何从消元后的结果中恢复出方程组的解,特别是当消元后得到的是一个方程关于一个未知数的表达式时,如何找到另一个未知数的值。
湘教版七年级数学下册第一章1.2.2加减消元法(1)教案
第1章二元一次方程组第4课时1.2 二元一次方程组的解法1.2.2 加减消元法(1)主备:审核:日期:2021.2.18 全册课时序号:4课题 1.2.2 加减消元法(1)课型新授课教学目标知识与技能1、理解并掌握用加减消元法的概念;2、能熟练地用加减消元法解二元一次方程组;3、进一步体验转化思想在二元一次方程组过程中的运用。
4、树立模型意识,认识二元一次方程组的应用价值。
过程与方法1、通过探究,学生发现:当方程组中有一个未知数的系数相同或相反时,可以把两个方程相减或相加,消去一个未知数,从而解出方程组的解;2、通过示范、讲授例3,师生讨论,学生能总结出加减消元法的概念;3、通过教学例4,学生能掌握用加减消元法解方程组中没有同一个未知数的系数相同的二元一次方程组。
情感态度与价值观进一步体会数学模型与现实生活的联系,感受数学的应用价值,增强克服困难的勇气和信心,提高学习数学的兴趣。
教学重点1、解二元一次方程组的基本思路。
2、用加减法解二元一次方程组。
教学难点1、理解加减消元法的消元原理。
2、用加减法解解方程组中没有同一个未知数的系数相同的二元一次方程组。
教学准备 1.制作ppt教学课件;2.选编习题教学方法探究法、讨论法、练习法教学过程一、情景展示,温故导新说一说:1、解二元一次方程组的基本思路是什么?ppt 展示:消去一个未知数(简称消元),得到一个一元一次方程,然后解这个一元一次方程。
2、 用代入法解二元一次方程组的方法是什么?ppt 展示:从一个方程得出用含一个未知数的代数式表示另一 个未知数,代入另一个方程,从而消去一个未知数,把 二元一次方程组转化为一个一元一次方程。
二、教学新知,启智赋能(一)探究问题出示问题:如何解下面的二元一次方程组?⎩⎨⎧=--=+②532①132y x y x 1、 学生回答并用代入消元法解得方程组的解为⎩⎨⎧-==.11y x ,2、 提出问题:还有没有更简单的解法呢?3、 分析探讨用加减消元法解这个方程组引导:观察方程组,想一想,除代入法外还有什么方法消去一个未知数?分析:方程①和②,可以发现:未知数x 的系数相同,我们把这两个方程的两边分别相减,可以消去哪一个未知数?学生回答后,用ppt 展示:4、 边讲解边用ppt 展示用加减法解方程组的过程:解:①-②式得, 2x+3y-(2x-3y)=-1-5 ③化简,得 6y=-6,解得 y=-1.把y=-1代入①式,得 2x+3×(-1)=-1.解得 x=1.因此原方程组的解是 ⎩⎨⎧-==.11y x ,5、 做一做解上述方程组时,在消元的过程中,如果把方程①与方程②相加,可以消去一个未知数吗?学生做后回答,教师点评。
小学数学《加减消元法》教案
加减消元法(1)一、教学目标 (一)知识与技能:1.会用加减消元法解简单的二元一次方程组;2.理解加减消元法的基本思想,体会化未知为已知的化归思想.(二)过程与方法:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、和交流让学生理解加减消元法解二元一次方程组的步骤.(三)情感态度与价值观:通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣.二、教学重点、难点重点:用加减消元法解二元一次方程组.难点:灵活运用加减消元法的技巧,把二元转化为一元. 三、教学过程 忆一忆1.解二元一次方程组的基本思路是什么? 消元: 二元 → 一元2.用代入法解二元一次方程组的主要步骤是什么?等式的性质1: 等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2: 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 思考我们熟悉的方程组:⎩⎨⎧=+=+②①16210y x y x ,这个方程组的两个方程中,y 的系数有什么关系? 利用这种关系你能发现新的消元方法吗?这两个方程中未知数y 的系数相等,②-①可消去未知数y . ②左边-①左边=②右边-①右边 2x +y -(x +y )=16-10 解这个方程得 x =6 把x =6代入①,得 y =4所以这个方程组的解是⎩⎨⎧==46y x①-②也能消去未知数y ,求得x 吗?联系前面的解法,想一想怎样解方程组⎩⎨⎧=-=+②①810158.2103y x y x解:①+②,得 18x =10.8x =0.6把x =0.6代入①,得 3×0.6+10y =2.8y =0.1 所以这个方程组的解是⎩⎨⎧==1.06.0y x当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.例3 用加减法解方程组⎩⎨⎧=-=+②①33651643y x y x分析:这两个方程中没有同一个未知数的系数相反或相等,直接加减这两个方程不能消元. 我们对方程变形,使得这两个方程中某个未知数的系数相反或相等.解:①×3,得 9x +12y =48 ③ ②×2,得 10x -12y =66 ④ ③+④,得 19x =114x =6 (把x =6代入②可以解得y 吗?)把x =6代入①,得 3×6+4y =16y =-21 所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x如果用加减法消去x 应如何解?解得的结果一样吗? 解:①×5,得 15x +20y =80 ③ ②×3,得 15x -18y =99 ④ ③-④,得 38y =-19y =-21 把y =-21代入①,得 3x +4×(-21)=16 x =6所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x练习1.用加减法解下列方程组: (1) ⎩⎨⎧-=-=+②①12392y x y x (2) ⎩⎨⎧=+=+②①15432525y x y x解:(1)①+②,得 4x =8 x =2把x =2代入①,得 2+2y =9y =3.5 所以这个方程组的解是⎩⎨⎧==5.32y x解:(2)①×2,得 10x +4y =50 ③③-②,得 7x =35x =5把x =5代入②,得 3×5+4y =15y =0 所以这个方程组的解是⎩⎨⎧==05y x(3) ⎩⎨⎧=+=+②①523852y x y x (4) ⎩⎨⎧-=-=+②①223632y x y x解:(3)①×3,得 6x +15y =24 ③②×2,得 6x +4y =10 ④ ③-④,得 11y =14,解得 y =1114 把y =1114代入①,得 2x +5×1114=8,解得 x =119 所以这个方程组的解是 ⎪⎪⎩⎪⎪⎨⎧==1114119y x解:(4)①×2,得 4x +6y =12 ③②×3,得 9x -6y =-6 ④ ③+④,得 13x =6,解得 x =136 把x =136代入①,得 2×136+3y =6,解得 y =1322 所以这个方程组的解是 ⎪⎪⎩⎪⎪⎨⎧==1322136y x课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗? 四、教学反思从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等. 调动了学生学习的积极性,充分发挥了学生的主体作用. 课堂拓展了学生的学习空间,给学生充分发表意见的自由度.加减消元法(2)一、教学目标(一)知识与技能:1.会用加减法解二元一次方程组;2.分析实际问题,列解二元一次方程组解决实际问题.(二)过程与方法:通过“找等量关系”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.(三)情感态度与价值观:学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣. 二、教学重点、难点重点:分析问题,寻找等量关系,列解二元一次方程组解决实际问题. 难点:寻找实际问题中的两个等量关系. 复习巩固解下列几个方程组,你会选择用代入法还是加减法去求解?为什么? (1)⎩⎨⎧-==+②①32123x y y x (2)⎩⎨⎧=+-=-②①1026456y x y x (3)⎩⎨⎧=+=-②①1062735y x y x(1)代入法⎩⎨⎧-==11y x (2)加减法⎩⎨⎧==21y x (3)加减法⎩⎨⎧==12y x例4 2台大收割机和5台小收割机同时工作2h 共收割小麦3.6hm 2,3台大收割机和2台小收割机同时工作5h 共收割小麦8hm 2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?分析:如果1台大收割机和1台小收割机每小时各收割小麦 x hm 2和 y hm 2,那么2台大收割机和5台小收割机同时工作1h 共收割小麦________hm 2,3台大收割机和2台小收割机同时工作1小时共收割小麦________公顷.解:设1台大收割机和1台小收割机每小时各收割小麦 x hm 2和 y hm 2.根据两种工作方式中的相等关系,得方程组 ⎩⎨⎧=+=+8)23(56.3)52(2y x y x去括号,得 ⎩⎨⎧=+=+②①810156.3104y x y x②-①,得 11x =4.4 解这个方程,得 x =0.4把x =0.4代入① ,得 y =0.2 因此,这个方程组的解是 ⎩⎨⎧==2.04.0y x答:1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.练习2.一条船顺流航行,每小时行20km ;逆流航行,每小时行16km .求轮船在静水中的速度与水的流速.解:设轮船在静水中的速度为 x km /h ,水的流速为y km /h .列方程组得⎩⎨⎧=-=+②①1620y x y x①+②,得 2x =36,解得 x =18 ①-②,得 2y =4,解得 y =2 所以这个方程组的解是 ⎩⎨⎧==218y x答:轮船在静水中的速度为18km /h ,水的流速2km /h .3.运输360t 化肥,装载了6节火车车厢与15辆汽车;运输440t 化肥,装载了8节火车车厢与10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?解:设每节火车车厢与每辆汽车平均各装 x t 和 y t .列方程组得⎩⎨⎧=+=+②①440108360156y x y x①×2,得 12x +30y =720 ③ ②×3,得 24x +30y =1320 ④ ④-③,得 12x =600,解得 x =50把x =50代入①,得 6×50+15y =360,解得 y =4 所以这个方程组的解是 ⎩⎨⎧==450y x答:每节火车车厢与每辆汽车平均各装50t 和4t .课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗? 四、教学反思从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等. 调动了学生学习的积极性,充分发挥了学生的主体作用. 课堂拓展了学生的学习空间,给学生充分发表意见的自由度.。
3.6.2 加减消元法 教案 数学湘教版七年级上册(2024年)新版教材
3.6.2 加减消元法【教学目标】1.学会用加减消元法解二元一次方程组.2.灵活地对方程进行恒等变形使之便于加减消元.3.能根据方程组的特点,灵活选择解方程组的方法.4.通过经历二元一次方程组解法的探究过程,进一步体会化“未知”为“已知”、化复杂问题为简单问题的化归思想方法.5.经历二元一次方程组一般解法的探究过程,理解加减消元法在解方程组中的作用,学会通过观察,结合方程特点选择合理思考方向进行新知识探索.【重点难点】1.重点:把方程组变形后用加减法消元.2.难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”.【教学过程】一、创设情境1.复习:用代入消元法解二元一次方程组的方法是什么?2.如何用代入法解二元一次方程组:{7x +3y =1,①2x -3y =8.②学生独立做,做完后交流方法.方法1:由①式得x =1-3y 7③,然后把③式代入②式消去x 得到关于y 的方程,求出y ,再求x.方法2:整体代入法:由①式得3y =1-7x ③,然后把③式代入②式得到关于x 的方程,求出x ,再求y.3.新课导入:有没有更好的方法来达到消元的目的,本节课我们就来研究这个问题.二、探究归纳探究点1:用加减消元法解某一未知数系数相同或互为相反数的方程组1.【观察】上面方程组中未知数y的系数有什么特点?这对解方程组有什么启发?2.【想一想】根据等式的性质,由①+②会得到什么?引导学生发现将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y,得到了一个关于x的一元一次方程,从而实现了化“二元”为“一元”的目的.3.学以致用:【典例示范】出示教材P122例3教师规范表达解答过程,为学生作出示范.解:①-②,得:8y=-8,解得y=-1,把y=-1代入①,得:2x+3×(-1)=-1,解得x=1,所以方程组的解为{x=1y=-1.解答完本题后,口算检验,让学生养成进行检验的习惯.【解题反思】强调以下两点:(1)注意解此题的易错点是①-②时是(2x+3y)-(2x-5y)=-1-7,方程左边去括号时注意符号.另外解题时,①-②或②-①都可以消去未知数x,不过在②-①得到的方程中,y 的系数是负数,所以在上面的解法中选择①-②;(2)把y=-1代入①或②,最后结果是一样的,但我们通常的做法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值.【针对性训练】教材P124练习T1(1)、(2)探究点2:用加减消元法解两个未知数系数既不相等也不互为相反数的二元一次方程组.1.【思考】方程组{2x +3y =-11①6x -5y =9②. (1)上面的方程组是否符合用加减法消元的条件?(2)如何转化可使某个未知数系数的绝对值相等?先留一定的时间让学生观察此方程组,让学生说明自己观察到方程有什么特点,能不能自己解决此方程组,用什么方法解决?如学生提出用代入消元法,可以让学生先按此法完成,然后再问能不能用刚学过的加减消元法解决?让学生讨论尝试.学生可能会得到以下结论:想法一:对于用加减消元法解,x ,y 的系数既不相同也不是相反数,没有办法用加减消元法.想法二:是不是可以这样想,将方程组中的方程用等式的基本性质将这个方程组中的x 或y 的系数化成相等(或互为相反数)的情形,再用加减消元法,达到消元的目的.想法三:只要在方程①和方程②的两边分别除以2和6,x 的系数不就变成“1”了吗?这样就可以用加减消元法了.想法四:不同意三的做法.如果这样做,是可以解决这一问题,但y 的系数和常数项都变成了分数,这样解不是变麻烦了吗?那还不如用代入消元法了.不如找x 的系数2和6的最小公倍数6,在方程①两边同乘3,得③,然后③-②,就可以将x 消去,得y =-3,把y =-3代入①得,x =-1.所以方程组的解为{x =-1y =-3. 教师点评:其实在我们学习数学的过程中,二元一次方程组中未知数的系数不一定刚好是1或-1,或同一个未知数的系数刚好相同或相反.我们遇到的往往就是这样的方程组,我们要想比较简捷地把它解出来,就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.请大家把解答过程写出来.2.【归纳总结】加减消元法:对于二元一次方程组,把一个方程进行适当变形后,再加上(或减去)另一个方程,消去其中一个未知数,得到只含有另一个未知数的一元一次方程,解这个一元一次方程求出另一个未知数的值,再把这个值代入原二元一次方程组的任意一个方程,就可以求出被消去的未知数的值,从而得到原二元一次方程组的解.3.【针对性训练】教材P124练习T1(3)、(4)4.【议一议】用自己的语言总结解二元一次方程组的基本思路,然后与同学交流.5.【归纳总结】解二元一次方程组的基本思路是:消去一个未知数(简称消元),得到一个一元一次方程,然后解这个一元一次方程,求出另一个未知数的值,接着再去求另一个未知数的值.代入消元法和加减消元法是两种求解方程组的方法,应根据具体情况灵活选择.三、交流反思1.关于二元一次方程组的两种解法:代入消元法和加减消元法.比较这两种解法我们发现其实质都是消元,即通过消去一个未知数,化“二元”为“一元”.2.用加减消元法解方程组的条件:某一未知数的系数的绝对值相等.3.用加减法解二元一次方程组的步骤:①变形,使某个未知数的系数绝对值相等;②加减消元;③解一元一次方程;④求另一个未知数的值,得方程组的解.四、检测反馈1.分别用加减法,代入法解方程组{5x -3y =132x +4y =02.解方程组{x -2=2(y -1),2(x -2)+(y -1)=5.3.方程组{x +y =25,2x -y =8,的解是否满足2x -y =8?满足2x -y =8的一对x ,y 的值是否是方程组{x +y =252x -y =8的解? 学生独立完成、检测,老师做最后总结.4.解方程组{2x -5y =245x +2y =315.解方程组{23x +12y =5,x -3y =6.五、布置作业 基础:教材P124练习T2,教材P125习题3.6T2,3综合:教材P125习题3.6T5六、板书设计3.6.2加减消元法1.用加减法进行消元的条件:2.主要步骤:例题 当堂检测………… …… ………… 七、教学反思能够设疑激趣,引入新型方程组,探究其解法,层层递进.利用富有挑战性的问题,激发学生的好奇心和求知欲,可引发学生对问题的思考,并促进学生运用已有的知识去发现和获取新的知识.优点:在深究教材章节内容后,围绕着确定的教学目标,根据所要教的内容和七年级学生的年龄特征和认知特点,在教学中主要采取“先学后教,问题教学,分层探究,当堂训练”的教法掌握重点,突破难点.缺点:组织学生观察、思考、探究、小组合作交流,没有较好的培养学生的综合能力.教师在巡视帮助学生释疑解难方面,做的还不够.。
加减消元法说课稿
加减消元法(1)说课稿一、说教材:<一〉教材内容分析:解二元一次方程组的知识,是解方程知识的延续,同时又是日后进展数学研究的重要工具,是我们在实际问题解决中的必备知识,因此对本节课内容的学习非常重要,本课知识内容本身也是一个从旧知到新知的发生过程,其中蕴涵着学习方法的贯彻和培养。
因此,我在本课的教学设计中,充分考虑了教材编排和学生实际之间的关系,有意识地进展了重新安排,把教学建议中的一个课时安排变成了两个课时,希望能通过变化让学生更好地理解解方程组的根本思想和根据,纯熟准确地解方程组,更好地掌握本部分知识。
〈二〉教学目的分析:根据我对本节课知识内容的理解,期望本节课到达如下三方面的教学目的:1、知识技能目的:使学生在掌握“一般代入消元法”解二元一次方程组的根底上,进一步理解加减消元法的思想根据,能用加减消元法解简单的二元一次方程组。
2、过程和方法目的:使学生经历探究用加减消元法解二元一次方程组的根本思想方法的过程,充分体会整体加减的根本数学方法。
3、情感、态度价值观目的:通过对二元一次方程组的解法的教学过程,开展学生观察分析及运算等根本才能。
〈三〉确定本节课的重点、难点和关键如下:1、重点:使学生掌握“加减消元法”的根本思想根据;能纯熟应用加减消元法解简单的二元一次方程组。
2、难点:用加减消元法解简单的二元一次方程组。
二、说教法和学法:1、教法:根据本节课的主要目的,结合课程实际内容,我主要是采取“边讲边练后总结"式的教学方法开展教学的。
因为本课内容虽然还是“解二元一次方程组”,但和上一节课学习的“代入消元法”的根据不同,所以对学生来说,还是很难靠自己的已有知识直接找到解决问题的方法.所以,在教学中,我注重了对学生考虑方向的引导,让学生在先破除“代入才可以消元"的错误思想后,再进展新知识的讨论和确立。
在这个过程中,同时以设疑的方法打破学生的思维定势,使学生有充足的空间进展创造性的思维,进入新知识的学习中去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x2 y10 2 x3 y13
2x2 y12 2 x3 y13
上面这些方程组的特点是什么? 解这类方程组基本思路是什么?主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
基本思路: 加减消元: 二元
一元
主要步骤: 加减
消去一个未知数(元)
求解
① ②
如果把这两个方程的左边与左边相减,右边与右边相减, 能得到什么结果?
分析: (2x 3y) (2x 2y) = 13 10
②左边
①左边 = ②右边 ①右边
左边与左边相减所得到的代数式和右边与右边 相减所得到的代数式有什么关系?依据是什么?
解方程组:
2 x2 y10 2 x3 y13
分别求出两个未知数的值
写解
写出方程组的解
加减消元法的概念
当两个二元一次方程中同一个未知数的系数相反或相等
时,把这两个方程的两边分别相加或相减,就能消去这
个未知数,得到一个一元一次方程。这种方法叫做加减
消元法,简称加减法。
你来说说:
利用加减消元法解方程组时,在方程组的两个方程中: (1)某个未知数的系数互为相反数,则可以直接
探究新知:
1、你会解这个方程组吗? 动手试试!
2x2 y10 2 x3 y13
2、有没有更简单的解法?试试 用上图中相抵消的思维去做?
追问1:观察上述方程组,未知 数的x系数有什么特点?
追问2:利用这种关系你能发现 新的消元方法吗?
解方程组: 2x2 y10 2 x3 y13
练习1:教科书96页(2)(3)(4)
练习2:
求x+y的值
你能把我们今天内容小结一下吗?
回顾: 用加减法解二元一次方程组的基本思想 是什么? 这种方法的适用条件是什么?步骤又是 怎样的?
布置作业
1、必做题:教题:若方程组 的解是
求 的值。
追问2 能否对方程变形,使得两个方程中某个 未知数的系数相反或相同?
追问3 如何用加减法消去x?
分析:3×①+2×②
3 (2x 2 y) 2 (3x 5y) 3×10+2×13
3×①左边+2×②左边=3×①右边+2×②右边
解:①×3+②×2得:
解得:
把
带入①得:
所以原方程组的解为
消元--解二元一次方程组
加减法(第1课时)
生活小问题:
班上廖艺和管梦豪到易堂商店买水和面包,买的数量和 所花的费用如 黑 板 上 所示。每个面包的售价是多少?比一 比看谁求得快.
上题中若设每瓶水的售价为x,每个面包的售 价为y,请根据上图关系列出方程组。
2 x2 y10 2 x3 y 13
① ②
(2x 3y) (2x 2y) = 13 10
分析: ②左边
①左边 = ②右边 ①右边
解:由②-①得: y=3
把 y=3代入①得: x=2
所以方程组的解为:
x2 y3
变式一:
2x2 y12
解方程组 2 x3 y13
① ②
问1:观察上述方程组, 未知数x系数有什么特点?
问2:怎样才能消去未 知数x的系数呢?
变式一:
2x2 y12
解方程组 2 x3 y13
① ②
分析:可以发现-2x与2x互为相反数,若把两个方程的左边与
左边相加,右边与右边相加,就可以消去未知数x
解:①+ ② 得: -y=25 解得 :
y=-25 把y=-25代入① 解得:
x=-31 所以方程组的解是
x19 y 14
追问1
试试怎么消去y,对比下哪个更 容易操作。
追问2 你能说说同一未知数系数不一样的方程组该 怎么解呢?
用加减法解同一个未知数的 系数绝对值不相等时,把一 个(或两个)方程的两边乘 以适当的数,使两个方程中 某一未知数的系数绝对值相 等,从而化为第一类型方程 组求。
巩固新知:
把这两个方程中的两边分别相加,
消去这个未知数;
(2)如果某个未知数系数相等,则可以直接
把这两个方程中的两边分别相减,
消去这个未知数
同减异加
练习提升:
(1)
(2)
探究:同一未知数系数绝对值不相等的加减消元
变式二:解方程组
-2x2 y10 ① 3x5 y13 ②
追问1 直接加减是否可以消元?