哈尔滨2016年数学中考题第20题解法

合集下载

【中考真题】2016年黑龙江省哈尔滨市中考数学试题(含答案解析)

【中考真题】2016年黑龙江省哈尔滨市中考数学试题(含答案解析)

2016年黑龙江省哈尔滨市中考数学真题一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A. B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤17.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700 000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin 60°+tan 45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.参考答案解析一、选择题(每小题3分,共计30分)1.B【解析】﹣6的绝对值是6.故选B.2.C【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选C.3.D【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选D.4.D【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.C【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选C.6.A【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选A.7.C【解析】设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C.8.D【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选D.9.A【解析】A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选A.10.B【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.5.7×106【解析】5700 000=5.7×106.故答案为:5.7×106.12.x≠【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.﹣2【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.a(x+a)2【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.6【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.﹣4【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.或【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.4【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF ,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.3【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin 60°+tan 45°=2×+1=+1时,原式==.22.解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DP A=90°∴△AQB≌△DP A(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.26.解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EP A′=90°,∴∠EP A′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴P A′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,∴P与H的纵坐标相等,∴PH∥x轴,∴∠HPQ=∠PQD,∠PGH=∠QGD,∵DG=GH,∴△PGH≌△QGD,∴PH=DQ,∵A(﹣4,0),C(2,0),∴Q(﹣1,0),∵D(﹣5,0),∴DQ=PH=4,∴﹣t+t2+t+1=4,t=±,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。

2016年黑龙江省哈尔滨市中考数学试卷及答案解析

2016年黑龙江省哈尔滨市中考数学试卷及答案解析

2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1 7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.【点评】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为 5.7×106.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700000=5.7×106.故答案为:5.7×106.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.(3分)函数y=中,自变量x的取值范围是x≠.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.【点评】本题考查了函数自变量的取值范围,利用分母不为零得出不等式是解题关键.13.(3分)计算2﹣的结果是﹣2.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)2【点评】本题考查了因式分解的知识,解题的关键是能够首先确定多项式的公因式,难度不大.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.【点评】本题考查了扇形面积的计算.正确理解公式是关键.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决本题的关键是证明四边形CDEF为矩形.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1黑2白1白2黑1黑1黑1黑1黑2黑1白1黑1白2黑2黑2黑1黑2黑2黑2白1黑2白2白1白1黑1白1黑2白1白1白1白2白2白2黑1白2黑2白2白1白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.20.(3分)如图,在菱形ABCD 中,∠BAD =120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =6,则FG 的长为3.【分析】首先证明△ABC ,△ADC 都是等边三角形,再证明FG 是菱形的高,根据2•S △ABC =BC •FG即可解决问题.【解答】解:∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形,∵EG ⊥AC ,∴∠AEG =∠AGE =30°,∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.【点评】本题考查的是扇形统计图和条形统计图,解题的关键是读懂统计图,从统计图中得到必要的信息.24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【点评】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ 的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED =即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.【点评】本题考查圆的综合问题,涉及圆周角定理,中位线的性质,锐角三角函数,勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H 的纵坐标相等,则PH与x轴平行,证明△PGH≌△QGD,得PH=DQ=4,列式可得t 的值,求出t的值并取舍,计算出点F的坐标.也可以利用线段中点公式求出结论.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,。

黑龙江省哈尔滨市松北区2016年中考数学模拟试卷二附答案解析

黑龙江省哈尔滨市松北区2016年中考数学模拟试卷二附答案解析

2016年黑龙江省哈尔滨市松北区中考数学模拟试卷(二)一、选择题1.﹣2的相反数是()A.B.﹣ C.2 D.﹣22.下列运算中,正确的是()A.a2+a3=a5B. =±2 C.a2•a3=a5D.(2a)3=6a33.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.如图是由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是()A.B.C.D.5.把抛物线y=﹣2x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的顶点坐标是()A.(﹣1,﹣4) B.(﹣1,4)C.(1,﹣4)D.(1,4)6.一个盒子中装有2个白球、5个红球,从这个盒子中随机摸出一个球,是红球的概率为()A.B.C.D.7.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50° B.60° C.40° D.30°8.在△ABC中,D、F、E分别在边BC、AB、AC上一点,连接BE交FD于点G,若四边形AFDE是平行四边形,则下列说法错误的是()A. = B. = C. = D. =9.已知Rt△ABC中,∠C=90°,b为∠B的对边,a为∠A的对边,若b与∠A已知,则下列各式正确的是()A.a=bsin∠A B.a=bcos∠A C.a=btan∠A D.a=b÷tan∠A10.已知A、B两地相距4km,上午8:00时,亮亮从A地步行到B地,8:20时芳芳从B地出发骑自行车到A地,亮亮和芳芳两人离A地的距离S(km)与亮亮所用时间t(min)之间的函数关系如图所示,下列四个说法中正确的有()(1)亮亮的速度是4km/h;(2)芳芳的速度是km/min;(3)两人于8:30在途中相遇;(3)芳芳8:45到达A地.A.1个B.2个C.3个D.4个二、填空题11.某单位三月份需要分发绩效工资共计70000元,将670000用科学记数法表示为.12.计算﹣的结果是.13.在函数y=中,自变量x的取值范围是.14.把多项式2x2﹣8y2分解因式的结果是.15.不等式组的解集是.16.一个扇形的面积是18πcm2,圆心角是54°,则此扇形的半径是cm.17.某工厂三月份的利润为90万元,五月份的利润为108.9万元,则平均每月增长的百分率为.18.点A在函数y=﹣(x<0)的图象上,点B在y=(x>0)的图象上(如图所示),0为坐标原点,AB ∥x轴,则△OAB的面积为.19.已知△ABC中,AE为BC边上的高线,若∠A BC=50°,∠CAE=20°,则∠ACB= °.20.如图,点A为线段DE上一点,AB=AC=,∠D=∠BAC=2∠E=120°,若AE﹣BD=BD﹣CE=1cm,则△ACE的面积= cm2.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分)21.先化简,再求值:,其中x=2sin45°+°.22.图(a)、图(b)是两张形状,大小完全相同的8×8的方格纸,方格纸中的每个小正方形的边长均为1,请在图(a)、图(b)中分别画出符合要求的图形,要求:所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积为12;(2)以EF为一边,画△EFP,使其面积为的轴对称图形.23.某学生组织全体学生参加了“走出校门,服务社会”的活动,八年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:(1)八年级一班有多少名学生?(2)求去敬老院服务的学生人数,并补全直方图的空缺部分.(3)若八年级有800名学生,估计该年级去敬老院的人数.24.已知,△ABC中,AB=AC,点D,E,F分别是边AB,AC,BC的中点,连接DF与EF.(1)如图1,求证:四边形ADFE是菱形;(2)如图2,连接DE,若AB=5cm,BC=6cm,请直接写出图中所有长为3cm的线段和四边形ADFE的面积.25.哈市松北区教育局为鼓励先进、倡导绿色出行,组织骑行大赛,并未参赛的部分优秀学生选手购买骑行帽,按原价用规划的2400元可购买这种骑行帽若干个,商场老板也是个自行车运动爱好者,得知情况后,决定给予八折优惠,结果教育局用这规划的2400元购买的骑行帽数量比按原价购买多四个.(1)求这种骑行帽原价多少元一个?(2)由于宣传到位,参赛同学增多,教育局准备再追加购奖款10000元,用于购买这种骑行帽和防霾口罩共200个,用于奖励参赛学生,商场老板调取订货单查出骑行帽进价80元/个,防霾口罩进价10元/个,商场老板与教育局协商后将防霾口罩按利润率20%的价格出售,骑行帽仍可按八折购买,则教育局用追加购奖款最多可购买多少个骑行帽?26.已知⊙O中弦AB⊥弦CD,垂足为H.(1)如图1,当AB为直径时,求证:BC=BD;(2)如图2,当tan∠ACD=,且BO=时,求BC的长;(3)如图3,在(2)的条件下,若AB=CB,过H作BD的垂线垂足为E,直线HE交AC于点F,交⊙O于点G,求△OFH的面积.27.已知抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点(A左B右),交y轴于点C,点D在抛物线上,CD∥x 轴,将射线AD沿x轴翻折后交抛物线于点E.(1)如图1,求线段AB的长;(2)如图2,若AE=AD+2,求抛物线解析式;(3)在(2)的条件下,延长EA交直线CD于点M,点P为第四象限内抛物线上一点,直线AP交直线CD于点N,当S△PMN=S△OAN时,求点P的坐标.2016年黑龙江省哈尔滨市松北区中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的相反数是()A.B.﹣ C.2 D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列运算中,正确的是()A.a2+a3=a5B. =±2 C.a2•a3=a5D.(2a)3=6a3【考点】同底数幂的乘法;算术平方根;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,开平方运算,积的乘方等于乘方的积,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、4的算术平方根是2,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.【点评】本题考查了同底数幂的乘法,熟练掌握运算性质和法则是解题的关键.3.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形判断即可得解.【解答】解:第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,所以,共有2个轴对称图形.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.如图是由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】由已知条件可知,俯视图有3行,每行小正方数形数目分别为1,3,1;第一行的1个在中间,第三行的1个在最左边,据此得出答案即可.【解答】解:由6个相同的小正方体组成的几何体,那么这个几何体的俯视图是.故选:D.【点评】此题考查简单组合体的三视图,根据看到的小正方形的个数和位置是正确解决问题的关键.5.把抛物线y=﹣2x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的顶点坐标是()A.(﹣1,﹣4) B.(﹣1,4)C.(1,﹣4)D.(1,4)【考点】二次函数图象与几何变换.【分析】直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,即可得出顶点坐标.【解答】解:∵将抛物线y=﹣2x2+1向左平移1个单位,然后向上平移3个单位,∴平移后的抛物线的解析式为:y=﹣2(x+1)2+1+3,即y=﹣2(x+1)2+4.则平移后的抛物线的顶点坐标为:(﹣1,4).故选B.【点评】此题主要考查了二次函数图象的平移变换,正确掌握平移规律是解题关键.6.一个盒子中装有2个白球、5个红球,从这个盒子中随机摸出一个球,是红球的概率为()A.B.C.D.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意可得:一个盒子中装有2个白球、5个红球,共7个,从这个盒子中随机摸出一个球,是红球的概率为.故选C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.7.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50° B.60° C.40° D.30°【考点】旋转的性质.【专题】平移、旋转与对称.【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180° 解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.在△ABC中,D、F、E分别在边BC、AB、AC上一点,连接BE交FD于点G,若四边形AFDE是平行四边形,则下列说法错误的是()A. = B. = C. = D. =【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据四边形AFDE是平行四边形,于是得到DF∥AC,DE∥AF,即可得到结论.【解答】解:∵四边形AFDE是平行四边形,∴DF∥AC,DE∥AF,∴=,,故A,B正确,∵DF∥AC,∴,,∴,故C正确;∵DF∥AC,∴≠,故D错误;故选D.【点评】本题考查了平分线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.9.已知Rt△ABC中,∠C=90°,b为∠B的对边,a为∠A的对边,若b与∠A已知,则下列各式正确的是()A.a=bsin∠A B.a=bcos∠A C.a=btan∠A D.a=b÷tan∠A【考点】锐角三角函数的定义.【分析】利用锐角三角函数的定义列出算式,然后变形计算即可.【解答】解:如图所示:tanA=,则a=a=btan∠A.故选:C.【点评】本题主要考查的是锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键.10.已知A、B两地相距4km,上午8:00时,亮亮从A地步行到B地,8:20时芳芳从B地出发骑自行车到A地,亮亮和芳芳两人离A地的距离S(km)与亮亮所用时间t(min)之间的函数关系如图所示,下列四个说法中正确的有()(1)亮亮的速度是4km/h;(2)芳芳的速度是km/min;(3)两人于8:30在途中相遇;(3)芳芳8:45到达A地.A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】(1)让A、B两地的距离,除以亮亮所用时间60即为亮亮步行的速度;(2)让相遇时距离A地的距离,除以亮亮的速度,即为亮亮走到相遇时所用的时间,进而得到芳芳从出发到相遇所用时间即可得芳芳的速度;(3)由(2)可知其相遇时刻;(4)根据(2)得到芳芳的速度,进而得到芳芳走完全程所用的时间,进而得到芳芳到达A地的时刻即可.【解答】解:因为亮亮60分走完全程4千米,所以亮亮的速度是4千米/时,故(1)正确;由图中看出两人在走了2千米时相遇,那么亮亮此时用了30min,则芳芳用了30﹣20=10min,∴芳芳的速度为: =km/h,故(2)正确;两人于8:30在途中相遇,故(3)正确;∵4÷=20(min),∴芳芳到达A地的时间为8:40,故(4)错误;故选:C.【点评】本题主要考查一次函数图象的应用,根据数形结合得到亮亮、芳芳相应的速度以及相应的时间是解决本题的关键.二、填空题11.某单位三月份需要分发绩效工资共计70000元,将670000用科学记数法表示为 6.7×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将670000用科学记数法表示为6.7×105,故答案为:6.7×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.计算﹣的结果是2.【考点】二次根式的加减法.【分析】根据二次根式的性质,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:﹣=3﹣=2,故答案为:2.【点评】本题考查了二次根式的加减,合并同类二次根式是解题关键.13.在函数y=中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.把多项式2x2﹣8y2分解因式的结果是2(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2,再利用平方差公式进行二次分解.【解答】解:原式=2(x2﹣4y2)=2(x+2y)(x﹣2y),故答案为:2(x+2y)(x﹣2y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.不等式组的解集是<x<2 .【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x>和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>,解②得x<2,所以不等式组的解集为<x<2.故答案为<x<2.【点评】本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.一个扇形的面积是18πcm2,圆心角是54°,则此扇形的半径是2cm.【考点】扇形面积的计算.【分析】根据扇形的面积公式进行计算即可.【解答】解:设这个扇形的半径是rcm,根据扇形面积公式,得=18π,解得r=±2(负值舍去),则r=2cm,故答案为:2.【点评】此题考查了扇形的面积公式,熟记公式是解题的关键.17.某工厂三月份的利润为90万元,五月份的利润为108.9万元,则平均每月增长的百分率为10% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该商店平均每月利润增长的百分率是x,那么四月份的利润为90(1+x),五月份的利润为90(1+x)(1+x),然后根据五月份的利润达到108.9万元即可列出方程,解方程即可.【解答】解:设该商店平均每月利润增长的百分率是x,依题意得:90(1+x)2=108.9,∴1+x=±1.1,∴x=0.1=10%或x=﹣2.1(负值舍去).即该商店平均每月利润增长的百分率是10%.故答案为:10%【点评】此题主要考查了一元二次方程的知识,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用﹣,难度一般.18.点A在函数y=﹣(x<0)的图象上,点B在y=(x>0)的图象上(如图所示),0为坐标原点,AB∥x轴,则△OAB的面积为.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义即可得到结论.【解答】解:∵AB∥x轴,∴△OAB的面积=×|﹣2|+×3=.故答案为:.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征、图形与坐标的性质,三角形的面积公式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.已知△ABC中,AE为BC边上的高线,若∠ABC=50°,∠CAE=20°,则∠ACB= 70或110 °.【考点】三角形内角和定理.【分析】在△ABE中可求得∠BAE,当∠ACB为锐角时,则在△AEC中由三角形内角和定理可求得∠ACB,当∠ACB为钝角时,在△AEC中,利用三角形外角的性质可求得∠ACB.【解答】解:∵AE⊥BC,∴∠BAE+∠ABC=90°,∴∠BAE=90°﹣50°=40°,当∠ACB为锐角时,如图1,在△AEC中,∠ACB+∠CAE=90°,∴∠ACB=90°﹣20°=70°,当∠ACB为钝角时,如图2,则∠ACB=∠CAE+∠AEC=20°+90°=110°,故答案为:70或110.【点评】本题主要考查三角形内角和定理及外角的性质,掌握三角形内角和为180°是解题的关键.20.如图,点A为线段DE上一点,AB=AC=,∠D=∠BAC=2∠E=120°,若AE﹣BD=BD﹣CE=1cm,则△ACE的面积= cm2.【考点】全等三角形的判定与性质.【分析】作∠AFC=∠D=120°,则∠EFC=60°,由三角形的外角性质得出∠B=∠CAF,∠E=60°,由AAS证明△AFC≌△BDA,得出AF=BD,证明△CEF是等边三角形,得出CE=CF=EF=1cm,求出AF=BD=2cm,得出AE=AF+EF=3cm,作CM⊥AE于M,由等边三角形的性质和勾股定理求出CM=EM=,即可求出△ACE的面积.【解答】解:作∠AFC=∠D=120°,如图所示:则∠EFC=60°,∵∠BAF=∠BAC+∠CAF=∠D+∠B,∠D=∠BAC=2∠E=120°,∴∠B=∠CAF,∠E=60°,在△AFC和△BDA中,,∴△AFC≌△BDA(AAS),∴AF=BD,∴AE﹣BD=AE﹣AF=EF=1nm,∵∠EFC=∠E=60°,∴△CEF是等边三角形,∴CE=CF=EF=1cm,∴AE﹣BD=BD﹣CE=1cm,∴AF=BD=2cm,∴AE=AF+EF=3cm,作CM⊥AE于M,∵△EFC是等边三角形,∴EM=EF=,∴CM=EM=,∴△ACE的面积=×3×=(cm2);故答案为:.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质以及三角形面积的计算;通过作辅助线构造全等三角形是解决问题的关键.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分)21.先化简,再求值:,其中x=2sin45°+°.【考点】分式的化简求值;二次根式的乘除法;特殊角的三角函数值.【专题】计算题.【分析】先把分式化简,再将x的值化简后代入求解.【解答】解:=[﹣]•x=,x=2sin45°+°=+1.把x=+1代入,原式==﹣.【点评】本题主要考查分式的化简求值.解题的关键是把分式化到最简,然后代值计算.22.图(a)、图(b)是两张形状,大小完全相同的8×8的方格纸,方格纸中的每个小正方形的边长均为1,请在图(a)、图(b)中分别画出符合要求的图形,要求:所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积为12;(2)以EF为一边,画△EFP,使其面积为的轴对称图形.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】(1)根据平行四边形的底边为4,高为3,进行画图;(2)根据等腰三角形的腰为5,腰上的高为3,进行画图.【解答】解:(1)如图所示:四边形ABCD是面积为12的平行四边形;(2)如图所示:△EFP是面积为的等腰三角形.【点评】本题主要考查了利用图形的基本变换进行作图,作图时需要运用平行四边形的性质以及等腰三角形的性质进行计算.注意:平行四边形是中心对称图形,等腰三角形是轴对称图形.23.某学生组织全体学生参加了“走出校门,服务社会”的活动,八年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:(1)八年级一班有多少名学生?(2)求去敬老院服务的学生人数,并补全直方图的空缺部分.(3)若八年级有800名学生,估计该年级去敬老院的人数.【考点】扇形统计图;用样本估计总体;频数(率)分布直方图.【分析】(1)参加社区文艺演出的有15人,且占,即可求得该班的总人数;(2)求出去敬老院服务的人数即可补全直方图的空缺部分;(3)用样本中去敬老院人数所占百分比乘以总人数800即可得.【解答】解:(1)15÷=50(人),答:八年级一班有50名学生;(2)去敬老院服务的学生人数:50﹣25﹣15=10(人),补齐如图,(3)由样本估计总体得:×800=160(人),答:八年级大约有160人去敬老院.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知,△ABC中,AB=AC,点D,E,F分别是边AB,AC,BC的中点,连接DF与EF.(1)如图1,求证:四边形ADFE是菱形;(2)如图2,连接DE,若AB=5cm,BC=6cm,请直接写出图中所有长为3cm的线段和四边形ADFE的面积.【考点】菱形的判定;直角三角形斜边上的中线;勾股定理;三角形中位线定理.【分析】(1)求出AF⊥BC,根据直角三角形的性质求出AD=DF,根据三角形的中位线求出AD=EF,AE=DF,根据菱形的判定推出即可;(2)根据三角形的中位线性质得出长为3cm的线段即可;求出△ABC的面积,求出S四边形ADFE=S△ABC,即可求出答案.【解答】(1)证明:连接AF,∵AB=AC,∴AF⊥BC,∴∠AFB=90°,∵D为AB中点,∴AD=BD=DF,∵点D,E,F分别是边AB,AC,BC的中点,∴EF=AB=AD,DF=AC=AE,∴四边形ADFE是平行四边形,∵AD=DF,∴四边形ADFE为菱形;(2)解:长度为3cm的线段有DE,BF,CF,理由是:∵点D,E,F分别是边AB,AC,BC的中点,BC=6cm,∴DE=BF=CF=BC=3cm;∵∠AFB=90°,∴在Rt△AFB中,由勾股定理得:AF===4,∴S△ABC===12(cm2),∵D为AB的中点,E为AC的中点,∴S△AFD=S△BFD=S△AFB,S△AFE=S△CFE=S△AFC,∴S四边形ADFE=S△AFD+S△AFE=S△ABC=×12cm2=6cm2,即四边形ADFE的面积为6cm2.【点评】本题考查了勾股定理,三角形的中位线性质,菱形的判定的应用,能综合运用知识点进行推理和计算是解此题的关键,注意:等底等高的三角形的面积相等,有一组邻边相等的平行四边形是菱形.25.哈市松北区教育局为鼓励先进、倡导绿色出行,组织骑行大赛,并未参赛的部分优秀学生选手购买骑行帽,按原价用规划的2400元可购买这种骑行帽若干个,商场老板也是个自行车运动爱好者,得知情况后,决定给予八折优惠,结果教育局用这规划的2400元购买的骑行帽数量比按原价购买多四个.(1)求这种骑行帽原价多少元一个?(2)由于宣传到位,参赛同学增多,教育局准备再追加购奖款10000元,用于购买这种骑行帽和防霾口罩共200个,用于奖励参赛学生,商场老板调取订货单查出骑行帽进价80元/个,防霾口罩进价10元/个,商场老板与教育局协商后将防霾口罩按利润率20%的价格出售,骑行帽仍可按八折购买,则教育局用追加购奖款最多可购买多少个骑行帽?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设这种骑行帽原价x元一个,根据题意列出方程解答;(2)设购买m个骑行帽,则购买(200﹣m)个口罩,根据题意列出不等式解答即可.【解答】解:(1)设这种骑行帽原价x元一个,解得:x=150,经检验x=150是原方程的解,答:这种骑行帽原价150元一个;(2)设购买m个骑行帽,则购买(200﹣m)个口罩120m+(1+20%)×10(200﹣m)≤10000解得:m∵m为正整数,∴m最大取70.答:则教育局用追加购奖款最多可购买70个骑行帽.【点评】本题考查的是分式方程的运用,解决问题的关键是读懂题意,依题意列出方程和不等式进行求解.26.已知⊙O中弦AB⊥弦CD,垂足为H.(1)如图1,当AB为直径时,求证:BC=BD;(2)如图2,当tan∠ACD=,且BO=时,求BC的长;(3)如图3,在(2)的条件下,若AB=CB,过H作BD的垂线垂足为E,直线HE交AC于点F,交⊙O于点G,求△OFH的面积.【考点】圆的综合题.【专题】圆的有关概念及性质;与圆有关的位置关系.【分析】(1)由AB为直径,CD为弦,且直径与弦垂直,利用垂径定理得到B为中点,得到两条弧相等,利用等弧对等弦即可得证;(2)连接OC,过O作OR垂直于BC,设∠ACD=x,利用同弧所对的圆周角定理得到一对角相等,表示出∠ABD=x,进而表示出∠BDC,进而表示出∠BOC,由OB=OC,利用等边对等角得到一对角相等,根据tan∠ACD与BO的值,求出BR的值,利用垂径定理即可确定出BC的值;(3)连接OF、OH,过O作OM⊥AB于点M,ON⊥AC于点N,设AH=x,则有CH=2x,表示出BH,利用勾股定理求出x的值,求出AM与OM长,得出OH的长,进而利用勾股定理求出ON与FH的长,即可求出三角形OFH的面积.【解答】(1)证明:∵AB为直径,且AB⊥弦CD,∴=,∴BC=BD;(2)解:如图2,连接OC,过O作OR⊥BC于点R,设∠ACD=x,∵=,∴∠ACD=∠ABD=x,∵AB⊥CD,∴∠BDC=90°﹣x,∵=,∴∠BOC=2∠BDC=180°﹣2x,∵OB=OC,∴∠OBC=∠OCB=x,∴tan∠OBC=tan∠ACD=,∵BO=,∴BR=2OR=5,∵OR⊥BC,∴BC=2BR=10;(3)解:如图3,连接OF、OH,过O作OM⊥AB于点M,ON⊥EF于点N,设AH=x,则CH=2x,∵BA=BC=10,∴BH=10﹣x,在Rt△BCH中,由勾股定理解得:x=4,∴AM=5,OM=2.5,∴OH=,∵OE⊥BD,∴∠EHD=∠DBH=∠ACD=∠CHF,∴HF为△ACH的斜边中线,∴HF=AC,∴AC=4,∴CF=HF=2,在Rt△COF中得OF=,令HN=a,则FN=2﹣a,由勾股定理:ON2=OF2﹣FN2=OH2﹣NH2,解得:a=,∴ON=,∴△OFH的面积为×2×=.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,勾股定理,直角三角形斜边上的中线性质,垂径定理,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.27.已知抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点(A左B右),交y轴于点C,点D在抛物线上,CD∥x 轴,将射线AD沿x轴翻折后交抛物线于点E.(1)如图1,求线段AB的长;(2)如图2,若AE=AD+2,求抛物线解析式;(3)在(2)的条件下,延长EA交直线CD于点M,点P为第四象限内抛物线上一点,直线AP交直线CD于点N,当S△PMN=S△OAN时,求点P的坐标.【考点】二次函数综合题.【分析】(1)令y=0,求出点A,B的坐标,从而求出AB的长;(2)先用三角函数tan∠EAG===a(m﹣3),tan∠ADG===a,由∠FDA=∠BAD=∠EAG,建立方程a(m﹣3)=a,求出m;(3)先求出PK=,PH=(﹣t2+3t+4),从而得出S△DAM=9,再分两种情况进行计算.【解答】解:(1)当y=0时,x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0)B(3,0),∴AB=4,(2)如图1,过A作AF⊥直线CD于点F,过E作EG⊥直线X轴于点G,∴对称轴为直线x=1,∵CD∥X轴,∴D(2,﹣3a),∴DF=3,设E[m,a(m+1)(m﹣3)],tan∠EAG===a(m﹣3),tan∠ADG===a,∵∠FDA=∠BAD=∠EAG,∴a(m﹣3)=a,∴m=4,∴AG=5,∴3AE=5AD,∵AE=AD+2,∴AD=3,∴AF=3=3a,∴a=1,∴抛物线解析式为y=x2﹣2x﹣3;(3)如图2,过P作PH⊥X轴交AE于点H,过P作PK⊥直线AE于点E,∴直线AE的解析式为y=x+1,设P(t,t2﹣2t﹣3),则PH=t+1﹣( t2﹣2t﹣3)=﹣t2+3t+4,由(2)EG=AG=5,∴∠AEG=45°=∠KHP,∴PK=,PH=(﹣t2+3t+4),∵△AMD为等腰直角三角形,∴AM=AD=3,∴S△DAM=9,情况一:当P1在CD下方时,∵S△PMN=S△DAN,∴S△PMA=S△DAM,∴AM×P1K=18,∴(﹣t2+3t+4)×3=18,解得t1=1,t2=2(舍),∴P(1,﹣4);情况二:当P2在CD上方时,同同情况一可得∴S△PMA=S△DAM,∴t3=1,t4=2(舍)∴满足条件的点P为P(1,﹣4).【点评】此题是二次函数综合题,主要考查了求坐标交点坐标,三角形的面积的计算方法,锐角三角函数的意义,解本题的关键是用三角函数值相等建立方程.。

2016年黑龙江省哈尔滨市中考数学(有解析)

2016年黑龙江省哈尔滨市中考数学(有解析)

2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【解析】﹣6的绝对值是6.故选:B.2.下列运算正确的是()A.a2•a3=a6 B.(a2)3=a5 C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里).故选:D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2 B.150m2 C.330m2 D.450m2【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 5.7×106.【解析】5700 000=5.7×106.故答案为:5.7×106.12.函数y=中,自变量x的取值范围是x≠.【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.计算2﹣的结果是﹣2.【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF 对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【解】原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【解】(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【解】(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【解】(1)证明:∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)解:①AQ﹣AP=PQ ②AQ﹣BQ=PQ ③DP﹣AP=PQ ④DP﹣BQ=PQ 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【解】(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【解】(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【解】(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。

哈尔滨中考数学试题及答案-中考 (2).doc

哈尔滨中考数学试题及答案-中考 (2).doc

:2016年哈尔滨中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2016年黑龙江省哈尔滨市中考数学试卷-答案

2016年黑龙江省哈尔滨市中考数学试卷-答案

黑龙江省哈尔滨市2016年初中升学考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】根据负数的绝对值是它的相反数,6-的绝对值是6。

【提示】本题主要运用绝对值的定义。

规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

【考点】绝对值2.【答案】C【解析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案。

因为235a a a =,故选项A 错误;236(a )a =,故选项B 错误;22(2a 1)4a 4a 1+=++,故选项D 错误。

【提示】此题主要运用了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键。

【考点】幂的乘方与积的乘方,同底数幂的乘法,完全平方公式3.【答案】B【解析】依据轴对称图形的定义和中心对称图形的定义回答即可。

选项A 中的图形是轴对称图形,但不是中心对称图形,故A 错误。

选项B 中的图形是轴对称图形,也是中心对称图形,故B 正确。

选项C 中的图形是中心对称图形,但不是轴对称图形,故C 错误。

选项D 中的图形是轴对称图形,但不是中心对称图形,故D 错误。

【提示】本题掌握轴对称图形和中心对称图形的特点是关键。

【考点】中心对称图形,轴对称图形4.【答案】D【解析】由点(2,4)-在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k 值,再去验证四个选项中横纵坐标之积是否为k 值。

因为点(2,4)-在反比例函数k y x=的图象上,所以有k 2(4)8=⨯-=-。

选项A 中248⨯=,选项B 中1(8)8-⨯-=,选项C 中2(4)8-⨯-=,选项D 中4(2)8⨯-=-。

所以点(4,2)-在反比例函数k y x =的图象上。

故选D 。

【提示】本题运用了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k 。

黑龙江省哈尔滨市道里区2016年中考数学模拟试卷(解析版)

黑龙江省哈尔滨市道里区2016年中考数学模拟试卷(解析版)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.实数7的相反数是()A.B.﹣C.﹣7D.7【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:7的相反数是﹣7,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.下列运算中,正确的是()A.3a2a=6a2B.3=a6,故错误;C、不是同类项不能合并,故错误;D、不是同类项不能合并,故错误;故选A.【点评】本题考查了单项式乘单项式,合并同类项,幂的乘方,熟记计算法则是解题的关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,又是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.4.如果反比例函数y=的图象经过点(﹣2,3),那么该函数的图象也经过点()A.C.【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y=的图象经过点(﹣2,3),∴k=(﹣2)×3=﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有选项C符合题意.故选:C.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.如图所示的几何体是由六个小正方体组合而成的,它的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A .B .C .D .【分析】用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.【解答】解:∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴DE=BF ,BD=EF ;∵DE ∥BC ,∴==,==,∵EF ∥AB ,∴=, =,∴, 故选C .【点评】此题主要考查平行线分线段成比例定理的理解及运用.找准对应关系,避免错选其他答案.7.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,若菱形ABCD 的周长为20,则OH 的长为( )A .2B .2.5C .3D .3.5【分析】根据菱形的性质可得AO ⊥BO ,从而可判断OH 是Rt △DAB 斜边的中线,继而可得出OH 的长度.【解答】解:∵四边形ABCD 是菱形,∴AB=BC=CD=DA,AC⊥BD,∵菱形ABCD的周长为20,∴AD=5又∵点H是AD中点,则OH=AD=×5=,故选:B.【点评】本题考查了菱形的性质及直角三角形斜边的中线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.8.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148B.200(1﹣a%)2=148C.200(1﹣2a%)=148D.200(1﹣a2%)=148【分析】主要考查增长率问题,本题可用降价后的价格=降价前的价格×(1﹣降价率),首先用x表示两次降价后的售价,然后由题意可列出方程.【解答】解:依题意得两次降价后的售价为200(1﹣a%)2,∴200(1﹣a%)2=148.故选:B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是()A.45°B.30°C.25°D.15°【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又∠CAC′=90°,根据△CAC′的特性解题.【解答】解:由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,∴∠CC′B′=15°.故选D.【点评】本题考查了旋转的性质,旋转的性质:对应点与旋转中心的连线相等,夹角是旋转角.10.已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车提速后的速度是60千米/时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=﹣96x+384;④甲车到达B市乙车已返回A市2小时10分钟.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】①由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/小时,进一步求得甲车提速后的速度是40×1.5=60千米/时;②由图象可知乙车从出发到返回共用4﹣2=2小时,行车时间为2﹣=小时,速度为80×2÷=96千米/时;③设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;④求出甲车提速后到达B市所用的时间减去乙车返回A市所用的时间即可.【解答】解:①甲车提速后的速度:80÷2×1.5=60千米/时,故①正确;②乙车的速度:80×2÷(2﹣)=96千米/时,故②正确;③点C的横坐标为2+,纵坐标为80,坐标为(,80);设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得:,解得:,所以y与x的函数关系式y=﹣96x+384(≤x≤4),故③正确;④(260﹣80)÷60﹣80÷96=3﹣=(小时),即2小时10分钟,故④正确;故选:D.【点评】此题考查一次函数的实际运用,解决本题的关键是结合图象,理解题意,正确列出函数解析式解决问题.二、填空题(共10小题,每小题3分,满分30分)11.将258 000这个数用科学记数法表示为 2.58×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将258 000用科学记数法表示为:2.58×105.故答案为:2.58×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是x≠﹣3.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故答案为:x≠﹣3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.计算﹣3的结果是.【分析】先把各二次根式化为最减二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.把多项式2a3﹣8a分解因式的结果是2a(a+2)(a﹣2).【分析】首先提取公因式进而利用平方差公式法分解因式得出即可.【解答】解:2a3﹣8a=2a(a2﹣4)=2a(a+2)(a﹣2).故答案为:2a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法与公式法综合应用分解因式,注意分解因式要彻底是解题关键.15.一个扇形的面积是6πcm2,圆心角是60°,则此扇形的半径是6cm.【分析】利用扇形的面积计算公式直接代入计算即可.【解答】解:设这个扇形的半径是rcm.根据扇形面积公式,得=6π,解得r=±6(负值舍去).故答案为:6.【点评】此题考查了扇形的面积公式,掌握扇形面积计算公式的计算方法是解决问题的关键.16.方程的解是x=30.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:400x=600x﹣6000,移项合并得:200x=6000,解得:x=30,经检验x=30是分式方程的解,故答案为:x=30【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处总人数为在乙处总人数的2倍,则应调到甲处17人.【分析】设调到甲处x人,则调到乙处20﹣x人,根据在甲处总人数为在乙处总人数的2倍可以列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设调到甲处x人,则调到乙处20﹣x人,根据已知得:27+x=2×(19+20﹣x),解得:x=17.故答案为:17.【点评】本题考查了一元一次方程的应用,解题的关键是根据在甲处总人数为在乙处总人数的2倍列出关于x 的一元一次方程.本题属于基础题,难度不大,在解决该类型题目时,根据数量间的关系列对方程(或方程组)即可.18.在一个不透明的口袋中装有除颜色外其它都相同的5个红球和3个白球,任意从口袋中摸出一个球,摸到红球的概率为 85 . 【分析】由在一个不透明的口袋中装有除颜色外其它都相同的5个红球和3个白球,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有除颜色外其它都相同的5个红球和3个白球,∴任意从口袋中摸出一个球,摸到红球的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.在△ABC 中,AB=AC=5,若将△ABC 沿直线BD 翻折,使点C 落在直线AC 上的点C ′处,AC ′=3,则【分析】此题应分两种情况考虑:①点C ′在线段AC 上,②点C ′在线段CA 的延长线上,解法是一致的;首先在Rt △ADB 中,利用勾股定理求得BD 的长,然后再在Rt △BCD 中,利用勾股定理求得BC 的值.【解答】解:如图,分两种情况:①如图①,当C ′在线段AC 上时;AC ′=3,则CC ′=2,C ′D=CD=1;在Rt △ABD 中,AB=5,AD=AC ′+C ′D=4;由勾股定理得:BD=3,则BC==;②如图②,当C ′在线段CA 的延长线上时;AC ′=3,则CC ′=8,C ′D=CD=4;在Rt △ABD 中,AD=1,AB=5, 由勾股定理得:BD 2=AB 2﹣AD 2=24,则BC==2;故BC的长为或2.【点评】此题主要考查的是图形的翻折变换以及勾股定理的综合应用,注意分类讨论思想的运用,不要漏解.20.如图,在Rt△ABC中,∠ACB=90°,AC=BC,在AC上取一点D,在AB上取一点E,使∠BDC=∠EDA,过点E作EF⊥BD于点N.交BC于点F,若CF=8,AD=11,则CD的长为3.【分析】过B作BH⊥BC交DE的延长线于H,则BH∥AC,推出△ADE∽△BHE,根据相似三角形的性质得到=,根据平行线的性质得到∠H=∠1,∠2=∠DBH,等量代换得到∠H=∠DBH,于是得到DH=BD,过D作DM⊥BH与M,根据等腰三角形的性质得到BM=BH=CD,设CD=x,则BH=2x,根据余角的性质得到∠2=∠3,推出△ADE∽△BFE,根据相似三角形的性质即可得到结论.【解答】解:过B作BH⊥BC交DE的延长线于H,则BH∥AC,∴△ADE∽△BHE,∴=,∵BH∥AC,∴∠H=∠1,∠2=∠DBH,∵∠1=∠2,∴∠H=∠DBH,∴DH=BD,过D作DM⊥BH与M,∴BM=BH=CD,设CD=x,则BH=2x,∵EF⊥BD,∴∠BNF=90°,∴∠2+∠CBD=∠3+∠NBF,∴∠2=∠3,∵∠A=∠FBE=45°,∴∠1=∠3,∴△ADE∽△BFE,∴==,∴BF=BH,即11+x﹣8=2x,∴x=3.∴CD=3.故答案为:3.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.三、解答题(共7小题,满分60分)21.先化简,再求代数式(a﹣)的值,其中a=1+2cos45°,b=2sin30°﹣.【分析】先根据分式混合运算的法则把原式进行化简,再求出a、b的值代入进行计算即可.【解答】解:原式=÷==,当a=1+2cos45°=1+2×=1+,b=2sin30°﹣=2×﹣=1﹣时,原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫格点,图1,图2中分别有线段AB和线段CD,点A、B、C、D 均在格点上.(1)在图1中画出以AB为腰的等腰三角形ABE,使点E在格点上,且tan∠BAE=;(2)在图2中画出以CD为边的直角三角形CDF,点F在格点上,使三角形CDF的面积为等腰三角形ABE面积的5倍,并在CF找一点G(点G在格点上),且使DG平分三角形CDF的面积.【分析】(1)根据AB为腰,tan∠BAE=画出图象即可.(2)根据△CDF是直角三角形,面积为10=5即可画出图象.【解答】解:(1)△ABE如图1所示,(2)△CDF如图2所示,DG平分△CDF的面积.【点评】本题考查作图﹣设计与应用,解题的关键是根据面积10=55,找到5的线段,是数形结合的好题目,本题还考查学生的动手能力,属于中考常考题型.23.“元宵节”是我国的传统佳节,民间历来有吃“元宵”的习俗.我市某食品厂为了解市民对去年销售较好的黑芝麻馅元宵、水果馅元宵、豆沙馅元宵、五仁馅元宵(以下分别用A、B、C、D表示)这四种不同口味元宵的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃五仁馅元宵的有多少人.【分析】(1)根据B类的人数和所占的百分比求得总人数;(2)根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数乘以爱吃五仁馅元宵的人数所占的百分比即可得出答案.【解答】解:(1)本次参加抽样调查的居民有60÷10%=600(人);(2)根据题意得:C类的人数是:600﹣180﹣60﹣240=120(人),C类所占的百分比是:120÷600×100%=20%,A类所占的百分比是:100%﹣10%﹣40%﹣20%=30%;补全统计图如图所示:(3)根据题意得:8000×40%=3200(人),答:该居民区有8000人,估计爱吃D粽的人有3200人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图,已知射线MN表示一艘轮船的航行路线,从M到N的走向为南偏东30°,在M 的南偏东60°方向上有一点A,A处到M处为80海里.(1)求点A到航线MN的距离;(2)在航线MN上有点B,且∠MAB=15°,求轮船从M处到B处的距离.【分析】(1)过A作AH⊥MN于H.由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA﹣∠QMB=30°.解直角△AMH,得出AH=AM=40海里,MH=AH=40海里;(2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM ﹣∠MAB=45°,那么△AHB是等腰直角三角形,得出BH=AH=40海里.【解答】解:(1)如图,过A作AH⊥MN于H.∵∠QMB=30°,∠QMA=60°,∴∠NMA=∠QMA﹣∠QMB=30°.在直角△AMH中,∵∠AHM=90°,∠AMH=30°,AM=80海里,∴AH=AM=40海里,MH=AH=40海里,即点A到航线MN的距离为40海里;(2)在直角△AMH中,∵∠AHM=90°,∠AMH=30°,∴∠HAM=60°,∵∠MAB=15°,∴∠HAB=∠HAM﹣∠MAB=45°,∵∠AHB=90°,∴BH=AH=40海里,∵MH=40海里,∴MB=(40﹣40)海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.25.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?【分析】(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元.此问中的等量关系:①购进甲种2株,乙种3株,则共需要成本1700元;②购进甲种3株,乙种1株,则共需要成本1500元;依此列出方程求解即可;(2)结合(1)中求得的结果,根据题目中的不等关系:成本不超过30000元;列不等式进行分析.【解答】解:(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元,依题意有,解得.故甲种君子兰每株成本为400元,乙种君子兰每株成本为300元.(2)设购进甲种君子兰a株,则购进乙种君子兰(3a+10)株,依题意有400a+300(3a+10)≤30000,解得a≤.∵a为整数,∴a最大为20.故最多购进甲种君子兰20株.【点评】考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.26.已知四边形ABCD内接于⊙O,对角线AC与BD相交于点E.(1)如图1,当AC⊥BD,OF⊥CD于点F,交AC于点G时,求证:∠OGA=∠BAC;(2)如图2,在(1)问的条件下,求证:AB=2OF;(3)如图3,当AB=AD,∠BAC=∠BCD,BK⊥AC于点K时,且AK=1,BD=12,求CD 的长.【分析】(1)如图1,根据同角的余角相等,由AC⊥BD,OF⊥CD可得∠CGF=∠CDE,根据圆周角定理可得∠BAC=∠CDB,根据对顶角相等可得∠OGA=∠CGF,根据等量代换就可解决问题;(2)如图2,延长DO交圆于M,连接AM,CM,根据三角形中位线定理可得OF=MC,要证AB=2OF,只需证AB=MC,根据等角的余角相等可得∠ADM=∠CDB,即可得到∠ADB=∠MDC,从而得到AB=MC,问题得以解决;(3)如图3,在KC上取一点F,使得BF=BA,连接CD,根据等腰三角形的性质可得KF=AK=1,∠BAF=∠BFA,则有∠ABF=180°﹣2∠BAF.由∠BAC=∠BCD可得BC=BD,即可得到∠BCD=∠BDC,则有∠DBC=180°﹣2∠BCD,从而可得∠ABF=∠DBC,即可得到∠ABD=∠FBC,从而可证到△ABD≌△FBC,则有AD=FC,即可得到FC=AD=AB=BF.设FC=x,则BF=x,KC=x+1.根据勾股定理可得BK2=BF2﹣KF2=BC2﹣KC2,即x2﹣12=122﹣(x+1)2,解得x=8,则AB=FC=8.易证△BAF∽△BCD,运用相似三角形的性质即可求出CD的值.【解答】证明:(1)如图1,∵AC⊥BD,∴∠CED=90°.∵OF⊥CD于点F,∴∠GFC=90°.∴∠CGF=∠CDE=90°﹣∠ECD,∵∠OGA=∠CGF,∴∠OGA=∠CDE,∵∠CDE=∠BAC,∴∠OGA=∠BAC;(2)如图2,延长DO交圆于M,连接AM,CM,∵O为MD的中点,F为DC的中点,∴OF为△DCM的中位线,∴OF=MC,∵∠AMD=∠ACD,∠MAD=90°∴∠ADM+∠AMD=90°,∠ACD+∠CDB=90°,∴∠ADM=∠CDB,∴∠ADB=∠MDC,∴AB=MC,∴AB=2OF;(3)如图3,在KC上取一点F,使得BF=BA,连接CD,∵BF=BA,BK⊥AF,∴KF=AK=1,∠BAF=∠BFA,∴∠ABF=180°﹣2∠BAF.∵∠BAC=∠BCD,∴BC=BD,∴∠BCD=∠BDC,∴∠DBC=180°﹣2∠BCD,∴∠ABF=∠DBC,∴∠ABF+∠FBD=∠DBC+∠FBD,即∠ABD=∠FBC.在△ABD和△FBC中,,∴△ABD≌△FBC,∴AD=FC.∵AB=AD,∴FC=AB=BF.设FC=x,则BF=x,KC=x+1.∵BK⊥AC,即BKC=90°,∴BK2=BF2﹣KF2=BC2﹣KC2,∴x2﹣12=122﹣(x+1)2,整理得x2+x﹣72=0,解得x1=﹣9(舍),x2=8,∴AB=FC=8.∵∠ABF=∠DBC,∠BAF=∠BCD,∴△BAF∽△BCD,∴=,∴=,∴CD=3.【点评】本题主要考查了圆周角定理、圆周角与弦的关系、等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、同角或等角的余角相等、勾股定理、解一元二次方程等知识,综合性比较强,难度比较大,构造旋转型全等是解决第(3)小题的关键,若出现共顶角顶点且顶角相等的两个等腰三角形,就会有旋转型全等.27.如图,抛物线y=ax2﹣2ax+8分别交x轴于点A,B(点A在点B左侧),交y轴于点C,AB=6.(1)求a的值;(2)点D为抛物线的顶点,点Q在线段BD上,过点Q作QH⊥x轴于点H,在HQ的延长线上取点N,连接BN,在x轴上点H的左侧取点M,连接QM,且MH=6,若tan∠NBH ﹣tan∠MQH=3,求QN的长;(3)在(2)的条件下,在AD上取点P,使得AP=DQ,若∠DPQ+∠PQB=90°,求点P的坐标,并判断此时点N是否在抛物线上.【分析】(1)先求出A、B坐标,利用待定系数法即可解决问题.(2)如图1中,先求出直线BD的解析式为:y=﹣3x+12,设Q(a,﹣3a+12),则BH=4﹣a,QH=﹣3a+12,根据tan∠NBH﹣tan∠MQH=3列出方程求出a,求出NH、HQ即可解决问题.(3)如图2中,作DF⊥AB于F,AM⊥BD于M,NQ⊥BD交AD于N,PE⊥AB于E,首先证明NP=NQ,设DQ=AP=a,由此列出方程求出a,即可求出点P、Q坐标解决问题.【解答】解:(1)∵对称轴x=﹣=1,且AB=6,∴A(﹣2,0),B(4,0),∵把B(4,0)代入抛物线y=ax2﹣2ax+8中得:16a﹣8a+8=0,∴a=﹣1;(2)如图2中,抛物线解析式为:y=﹣x2+2x+8,y=﹣(x2﹣2x+1﹣1)+8=﹣(x﹣1)2+9,则顶点D(1,9),设直线BD的解析式为:y=kx+b,把B(4,0),D(1,9)代入y=kx+b中得:解得:,则直线BD的解析式为:y=﹣3x+12,设Q(a,﹣3a+12),则BH=4﹣a,QH=﹣3a+12,∵tan∠NBH﹣tan∠MQH=3,∴﹣=3,∴NH=﹣3a+14,∴QN=NH﹣QH=(﹣3a+14)﹣(﹣3a+12)=2;(3)如图2中,作DF⊥AB于F,AM⊥BD于M,NQ⊥BD交AD于N,PE⊥AB于E.∵∠DPQ+∠PQB=90°,∠PQB=∠DPQ+∠PDQ,∴2∠DPQ+∠PDQ=90°.∵∠PDQ+∠DNQ=90°,∴∠DNQ=2∠DPQ=∠DPQ+∠NQP,∴∠NPQ=∠NQP,∴NP=NQ,设DQ=AP=a,∵DA=DB.DF⊥AB,∴AF=FB=3,∵DF=9∴DA=DB=3,∵ABDF=AMDB,∴AM==,DM==,∵NQ∥AM,∴==,∴NQ=a,DN=a,∵PN=NQ,∴3﹣a﹣a=a,∴a=,∵PE∥DF,∴==,∴AO=1,PO=3,∴点P坐标(﹣1,3),∵QH∥DF,∴==∴==∴QH=6,BH=2,∴点Q坐标(2,6),点N坐标(2,8),∵抛物线解析式为:y=﹣x2+2x+8,∴x=2时,y=8,∴点N在抛物线上.【点评】本题考查二次函数综合题、一次函数、锐角三角函数、勾股定理、面积法等知识,解题的关键是学会利用参数,构建方程解决问题,学会添加常用辅助线,需要熟练应用平行线分线段成比例定理,属于中考压轴题.。

黑龙江哈尔滨2016年中考数学松北一模数学卷(含答案)

松北区2016年初中升学调研测试(一)数学试卷考生须知:1. 本试卷潇分为120分.考试时间为120分钟.2. 答题札考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形 玛” 准确粘姑在条形码区域内3. 请按照题号顺序在答题卡各题,目的答题区域内作答.起出答题区域书写的答案无效:在草福纸、 炳纸上答题无效.4. 选年题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字逐的签字笔书写,字体工整、宅5. 保升卡面整洁,不奏折叠、不要弄脏、弄较,不准使用涂改液、制纸刀.第I 卷选择题供30分)(涂卡)一、选择题(每小题3分,共计30分)七的倒数是()(A) -3(B)2.下列计算结果正确的是~3( )(D) 3(A) (—a 3)2 = a 9 (B) a 2 -a 3 = a 63.在下列四个图案中既是轴对称图形,(C) (|)-*-22 =-2 (D) (cos 60° -|)° =1又是中心对称图形的是((D )4. 如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()(A )两点确定一条直线(B )两点之间线段最短(C )垂线段最短(D )在同一平面内,过一点有且只有一条直线与已知直线垂直25. 已知反比例函数>^ =-一,下列结论丕正确的是()x(A )图象必经过点(-1,2) (B ) j 随x 的增大而增大(C )图象在第二、四象限内 (D )若x>h 则y>-26. 如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()(A )主视图改变,左视图改变 (B )俯视图不变,左视图不变(C )俯视图改变,左视图改变 (D )主视图改变,左视图不变7. 若一个多边形的内角和是900° ,则这个多边形是( )(A )五边形(B )六边形 (C )七边形(第4题图)(第6题图)(D )八边形数学试卷第1页(共4页)8. 某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为X, 那么x 满足的方程是((A) 100 (1+x)」81(C) 100 (1 -X%) 2=819. 如图,己知直线a〃b〃c,)(B) 100 (1 -x) <81(D) [00x2=8]直线m, n 与a, b, c 分别交于点A, C, E, B, D, F,若 AO4, CE=6, BD=3,则 DF 的值是((A) 4 (B) 4.5 (C) 5 (D) 5.5JO.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列 结论(1)甲先到达终点(2)前30分钟,甲在乙的前面(3) 第48分钟时,两人第一次相遇(4)这次比赛的全程是28千米,其中正确的个数是( )(A) 1 (B) 2 (C) 3 (D) 4)第口卷 非选择题供90分)二、填空题(每小题3分,共计30分)11.据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学计数法表示为12. 计算:V18-V2=.13. 在函数中,自变量x 的取值范围是.14. 如图所示的扇形是一个圆锥的侧面展开图,若ZAOB=120°则该圆锥的侧面积为 cm 2.15.分解因式:—X 3 + 2x 2 —x =16.不等式组・2x+l>~l a -a d H2x+] V 3的解集是.,孤AB 的长为12 s cm,(第17题图)17. 如图,在菱形4BCQ 中,点F 是对角线AC1.的一点,PELAB于点于,若PE=3,则点P 到4D 的距离为.18. 如图,4S 为。

哈尔滨市松北区2016年初中升学调研数学试题(二)含答案(图片版)

最大最全最精的教育资源网最大最全最精的教育资源网最大最全最精的教育资源网最大最全最精的教育资源网 参考答案一、选择题二、填空题(11.6.7×105 12.32 13.1≠x . 14.()()y x y x 223-+ 15.232<<x 16.302. 17.10% 18.25. 19.70或110. 20.433.三、解答题解:原式=x x x x x x x 1])1()1(1[22÷----=x x x 1)1(1÷--=x x x ∙--)1(1=11--x ----------4分 当45sin 2=x °+30tan 3°=12+时,------------1分原式=221121-=-+-------------2分22. 解:(1)略------------3分最大最全最精的教育资源网 (2)------------4分23.解:(1)15÷103=50 答:略------------2分 (2)50-25-15=10 补齐如图,正确即可------------3分(3)由样本估计总体得:800÷50×10=160------------2分答:八年级大约有160人去敬老院.------------1分24解:(1)连接AF ∵AB=AC ∴AF ⊥BC ∵D 为AB 中点 ∴AD=BD=DF同理:AE=EFDF=AD ∴四边形ADFE 为菱形-----------4-2分(2)长度为3cm 的线段有DE,BF,CF ;------------3分(3)四边形ADFE 的面积为6cm 2 (注意单位)------------1分25.解:(1)设这种骑行帽原价x 元一个是原分式方程的解经检验解得150150424008.02400===-x x xx 答:略------------3+1+1=5分(2)设购买m 个骑行帽,则购买(200-m )个口罩最大最全最精的教育资源网 10000)200(10)%201(120≤-⨯++m m ------------3分 解得:271070≤m ------------1分 ∵m 为正整数 ∴m 最大取70------------1分答:略 26.解(1)∵AB 为直径且AB ⊥弦CD∴弧BC=弧BD∴BC=BD ------------2分(2)连接OC ,过O 作OR ⊥BC 于点R设∠ACD=x,∵弧AD=弧AD ∴∠ACD=∠ABD=x∵AB ⊥CD ∴∠BDC=90°-x∵弧BC=弧BC ∴∠BOC=2∠BDC =180°-2x∵OB=OC ∴∠OBC=∠OCB= x ∴tan ∠OBC= tan ∠ACD=12 -----------1分∵BO=552∴BR=2OR=5 ------------1分 ∵OR ⊥BC ∴BC=2BR=10 ------------1分 (3)连接OF 、OH ,过O 作OM ⊥AB 于点M ,ON ⊥AC 于点N,设AH=x ,则CH=2x ∵BA=BC=10 ∴BH=1-x 在直角三角形BCH 中,由勾股定理解得x=4 ------1分则AM=5,OM=2.5 ∴OH=292--------1分 ∵OE ⊥BD ∴∠EHD=∠DBH=∠ACD=∠CHF ∴HF 为⊿ACH 的斜边中线 ∴HF=12AC ∴AC=45 ∴CF=HF=25 ------------1分最大最全最精的教育资源网 在Rt ⊿COF 中得OF=352 令HN=a ,则FN= 25-a 由勾股定理:ON 2=OF 2-FN 2=OH 2-NH2解得a=455 ------------1分∴ON=9510 ∴⊿OFH 的面积为9519251022∙∙= ------------1分 A B OC D H R A BOG C D H R M FE N27.解:(1)当y=0时,x 2-2x-3=0,解得:x 1=-1,x 2=3 ∴A (-1,0) B (3,0) ∴AB=4----2分(2)过A 作AF ⊥直线CD 于点F ,过E 作EG ⊥直线X 轴于点G可求对称轴为直线x=1 ∵CD ∥X 轴 ∴D (2,-3a ) ∴DF=3 设E[m,a(m+1)(m-3) ] tan ∠EAG=(m 1)(m 3)(m 3)1EG a a AG m +-==-+ tan ∠ADG=33AF a a DF == ------------1分 ∵∠FDA=∠BAD=∠EAG ∴(m 3)a -=a ∴m=4 ------------1分最大最全最精的教育资源网 ∴AG=5 ∴3AE=5AD ∵AE=AD+22∴AD=32∴AF=3=3a ∴a=1∴抛物线解析式为y=x2-2x-3------------1分(3)过P作PH⊥X轴交AE于点H,过P作PK⊥直线AE于点E,可求直线AE的解析式为y=x+1设P(t,t2-2t-3)则PH=t+1-( t2-2t-3)= -t2+3t+4由(2)EG=AG=5 ∴∠AEG=45°=∠KHP ∴PK=22PH=22(-t2+3t+4)--------1分⊿AMD为等腰直角三角形∴AM= AD=32∴S⊿DAM=9------------1分情况一:当P1在CD下方时,∵S⊿PMN=S⊿DAN∴S⊿PMA=S⊿DAM ∴AM·P1K=18∴22(-t2+3t+4) ·32=18 解得t1=1,t2=2(舍)------------1分∴P(1,-4)情况二:当P2在CD上方时,同上可得∴S⊿PMA=S⊿DAM ∴t3=1,t4=2 ∴满足条件的点P为P(1,-4)------------1分最大最全最精的教育资源网 N EDA B C OMxyP1HK。

黑龙江省哈尔滨市南岗区2016届中考数学一模试题(含解析)

黑龙江省哈尔滨市南岗区2016届中考数学一模试题一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.5 B.﹣5 C.D.﹣2.下列计算正确的是()A.2a+3a=6a B.a2•a3=a6C.a8÷a4=a2D.(﹣2a3)2=4a63.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.已知点P(﹣1,4)在反比例函数的图象上,则k的值是()A. B.C.4 D.﹣45.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.6.如图,市政府准备修建一座高AB为6m的过街天桥,已知∠ACB为天桥的坡面AC与地面BC的夹角,且sin∠ACB=,则坡面AC的长度为()A.6m B.8m C.10m D.12m7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.如图,在△ABC中,D、F、E分别为边BC、AB、AC上的一点,连接BE、FD,它们相交于点G,连接DE,若四边形AFDE是平行四边形,则下列说法正确的是()A.B.C.D.9.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55° B.60° C.65° D.70°10.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A.上午8:30 B.上午8:35 C.上午8:40 D.上午8:45二、填空题(共10小题,每小题3分,满分30分)11.将1300000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算= .14.把多项式2x2﹣8分解因式得:.15.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为.16.不等式组的解集是.17.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.18.某公司2月份的利润为160万元,4月份的利润250万元,则平均每月的增长率为.19.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为.20.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为.三、解答题(共7小题,满分60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一条直角边的等腰直角△ABC,顶点C在小正方形的顶点上;(2)在方格纸中画出△ABC的中线BD,将线段DC绕点C顺时针旋转90°得到线段CD′,画出旋转后的线段CD′,连接BD′,直接写出四边形BDCD′的面积.23.今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,为了解九年级学生参加活动情况,从九年级学生中随机抽取部分学生进行调查,统计了该天他们打扫街道,去敬老院服务和到社区文艺演出的人数,并绘制了如下不完整的条形统计图和扇形统计图,其中到社区文艺演出的人数占所调查的九年级学生人数的,请根据两幅统计图中的信息,回答下列问题:(1)本次成抽样调查共抽取了多少名九年级学生?(2)补全条形统计图;(3)若该中学九年级共有400名学生,请你估计该中学九年级去敬老院的学生有多少名?24.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.25.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?26.如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点l,过点A作⊙O的切线AF,与DE相交于点F.(1)求证:∠DAF=∠ABO;(2)当AB=AD时,求证:BC=2AF;(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若tan∠DAF=,EH=2,求线段CG的27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx﹣3与x轴相交于点A(﹣3,0)和点B,与y轴相交于点C.(1)求抛物线的解析式;(2)如图2,直线y=kx+3k经过点A,与y轴正半轴相交于点D,点P为第三象限内抛物线上一点,连接PD绕点P逆时针旋转,与线段AD相交于点E,且∠EPD=2∠PDC,若∠AEP+∠ADP=90°,求点D 的坐标;(3)如图3,在(2)的条件下,过点E作EF⊥PD,垂足为点G,EF与y轴相交于点F,连接PF,若sin∠PFC=,求PF的长.2016年黑龙江省哈尔滨市南岗区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.5 B.﹣5 C.D.﹣【考点】倒数.【分析】根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.【解答】解:的倒数是5.故选A.【点评】此题主要考查倒数的意义,关键是求一个数的倒数的方法.2.下列计算正确的是()A.2a+3a=6a B.a2•a3=a6C.a8÷a4=a2D.(﹣2a3)2=4a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为2a+3a=(2+3)a=5a,故本选项错误;B、应为a2•a3=a2+3=a5,故本选项错误;C、应为a8÷a4=a8﹣4=a4,故本选项错误;D、(﹣2a3)2=4a3×2=4a6,正确.故选D.【点评】本题考查合并同类项法则,同底数幂的乘法,同底数幂的除法,积的乘方的性质,熟练掌握运算性质是解题的关键.3.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念对各选项图形分析判断后即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形,轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知点P(﹣1,4)在反比例函数的图象上,则k的值是()A. B.C.4 D.﹣4【考点】待定系数法求反比例函数解析式.【专题】待定系数法.【分析】根据反比例函数图象上的点的坐标特征,将P(﹣1,4)代入反比例函数的解析式,然后解关于k的方程即可.【解答】解:∵点P(﹣1,4)在反比例函数的图象上,∴点P(﹣1,4)满足反比例函数的解析式,∴4=,解得,k=﹣4.故选D.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上的点的坐标特征”这一知识点.5.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选D.【点评】本题考查几何体的三视图,理解三视图的定义是正确解答的关键.6.如图,市政府准备修建一座高AB为6m的过街天桥,已知∠ACB为天桥的坡面AC与地面BC的夹角,且sin∠ACB=,则坡面AC的长度为()A.6m B.8m C.10m D.12m【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用锐角三角函数关系求出AC的长即可.【解答】解:由题意可得:sin∠ACB==,∵AB=6m,∴=,解得:AC=10,故选:C.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.8.如图,在△ABC中,D、F、E分别为边BC、AB、AC上的一点,连接BE、FD,它们相交于点G,连接DE,若四边形AFDE是平行四边形,则下列说法正确的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形AFDE是平行四边形,可得AE∥DF,DE∥AB,DE=AF,根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解:A、∵四边形AFDE是平行四边形,∴AE∥DF,DE∥AB,DE=AF,∴△BFG∽△EDG,∴,∴,故正确;B、∵,,∴,故错误;C、∵DF∥AC,∴,故错误;D、∵,,∴=.故错误.故选A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.9.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55° B.60° C.65° D.70°【考点】旋转的性质.【分析】根据旋转的性质得AC=AC′,∠CAC′等于旋转角,然后利用等腰三角形的性质和三角形内角和计算出∠C'CA的度数,再由平行线的性质即可得到∠BAC的大小.【解答】解:∵△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,∴AC=AC′,∠CAC′=40°,∴∠AC′C=∠ACC′=70°,∵CC′∥AB,∴∠BAC=∠ACC′=70°,故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A.上午8:30 B.上午8:35 C.上午8:40 D.上午8:45【考点】函数的图象.【专题】压轴题.【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【解答】解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷=12,所以乙走完全程需要时间为:4÷12=(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.故选C.【点评】在做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.二、填空题(共10小题,每小题3分,满分30分)11.将1300000用科学记数法表示为 1.3×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1300000用科学记数法表示为:1.3×106.故答案为:1.3×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是x≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.计算= .【考点】二次根式的加减法.【分析】首先把和化成最简二次根式,再合并同类二次根式即可.【解答】解:﹣=﹣=3﹣2=.故答案为:.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.14.把多项式2x2﹣8分解因式得:2(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案是:2(x+2)(x﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为9 .【考点】弧长的计算.【分析】根据弧长公式l=,可得r=,再将数据代入计算即可.【解答】解:∵l=,∴r===9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).16.不等式组的解集是<x<2 .【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x>和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>,解②得x<2,所以不等式组的解集为<x<2.故答案为<x<2.【点评】本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.【考点】概率公式.【专题】常规题型.【分析】根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【解答】解:∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为: =.故答案为:.【点评】此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.18.某公司2月份的利润为160万元,4月份的利润250万元,则平均每月的增长率为25% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每月的增长率是x,根据2月份的利润为160万元,4月份的利润250万元,可列方程求解.【解答】解:设平均每月的增长率是x,根据题意得160(1+x)2=250,解得x=25%或x=﹣225%(舍去).答:平均每月的增长率是25%.故答案为:25%.【点评】本题考查了一元二次方程的实际应用﹣﹣增长率问题,若设变化前的量为a,变化后的量为b,增长率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).19.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为3或.【考点】勾股定理;等腰三角形的性质.【分析】此题要分两种情况进行讨论:(1)当等腰三角形的顶角是钝角时,腰上的高在三角形的外部,先在Rt△ACO中由勾股定理求出AO=4,于是OB=AB+AO=9,然后在Rt△BCO中利用勾股定理即可求出BC即可;(2)当等腰三角形的顶角是锐角时,腰上的高在三角形的内部,在Rt△ACO中由勾股定理求出AD=4,于是DB=AB﹣AD=1,然后在Rt△BCD中利用勾股定理求出BC即可.【解答】解:分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2﹣OC2=52﹣32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴BC==3;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2﹣DC2=52﹣32=16,∴AD=4,DB=AB﹣AD=5﹣4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴BC=;综上可知,这个等腰三角形的底的长度为3或.故答案为:3或.【点评】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.20.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为.【考点】正方形的判定与性质;勾股定理.【分析】作∠DCM=∠ACB,并过D作DH⊥CM于H,延长HD交BA延长线于K,由AAS证明△ABC≌△DHC,得出BC=HC,AB=DH,证出四边形BCKH是正方形,得出∠K=90°,BK=HK,由已知条件得出AK=DK=BC﹣AB=,△ADK是等腰直角三角形,由勾股定理求出AD即可.【解答】解:作∠DCM=∠ACB,并过D作DH⊥CM于H,延长HD交BA延长线于K,如图所示:设∠DCM=∠ACB=x,∵AC=AD,∴∠DAC=∠ADC=x+45°,∴∠ACD=180°﹣2(x+45°)=90°﹣2x,∴∠BCH=90°,在△ABC和△DHC中,,∴△ABC≌△DHC(AAS),∴BC=HC,AB=DH,∴四边形BCKH是正方形,∴∠K=90°,BK=HK,∴AK=DK=BC﹣AB=,∴△ADK是等腰直角三角形,∴AD==.故答案为:.【点评】本题考查了全等三角形的判定与性质、正方形的判定与性质、勾股定理等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.三、解答题(共7小题,满分60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再求出a的值代入进行计算即可.【解答】解:原式=﹣•=﹣=,∵a=tan60°﹣6sin30°=﹣6×=﹣3,∴原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一条直角边的等腰直角△ABC,顶点C在小正方形的顶点上;(2)在方格纸中画出△ABC的中线BD,将线段DC绕点C顺时针旋转90°得到线段CD′,画出旋转后的线段CD′,连接BD′,直接写出四边形BDCD′的面积.【考点】作图-旋转变换.【分析】(1)直接利用等腰直角三角形的性质得出C点位置;(2)直接利用三角形中线的定义以及结合网格直接得出四边形BDCD′的面积.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:CD′即为所求,四边形BDCD′的面积为:×=10.【点评】此题主要考查了旋转变换以及等腰直角三角形的性质,正确得出对应点位置是解题关键.23.今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,为了解九年级学生参加活动情况,从九年级学生中随机抽取部分学生进行调查,统计了该天他们打扫街道,去敬老院服务和到社区文艺演出的人数,并绘制了如下不完整的条形统计图和扇形统计图,其中到社区文艺演出的人数占所调查的九年级学生人数的,请根据两幅统计图中的信息,回答下列问题:(1)本次成抽样调查共抽取了多少名九年级学生?(2)补全条形统计图;(3)若该中学九年级共有400名学生,请你估计该中学九年级去敬老院的学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)先根据条形图知到社区文艺演出的人数为15人,再由扇形统计图知占抽取总人数的,两者相除即可求解;(2)求出去敬老院服务的学生有多少人,即可补全条形统计图;(3)用总人数乘以该年级去敬老院的人数所占的百分比即可.【解答】解:(Ⅰ)由题意,可得抽取的部分同学的人数为:15÷=50(人);(2)去敬老院服务的学生有:50﹣25﹣15=10(人).条形统计图补充如下:(3)根据题意得:400×=80(人)答:估计该中学九年级去敬老院的学生有80人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.24.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】(1)只要证明∠CBG=∠CDE,即可用ASA证明△BCG≌△DCE.(2)利用勾股定理分别在RT△DHG,RT△BHG中,求出BH,HG即可解决.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BCG=∠DCE=90°,BC=CD,∵BF⊥DE,∴∠DFG=∠BCG=90°,∵∠BGC=∠DGF,∴∠CBG=∠CDE.在△BCG和△DCE中,,∴△BCG≌△DCE,(2)解:∵△BCG≌△DCE,∴CG=CE,∵BE=BC+CE=4,DG=CD﹣CG=2,∴BC=CD=3,CG=CE=,在RT△BDC中,∵∠BCD=90°,∴BD===6,过点G作GH⊥BD垂足为H,∵∠DHG=45°,∠DHG=90°,DG=2,∴=,∴DH=2,∴GH=DH=2,∵BD=BH﹣DH,∴BH=6﹣2=4,在RT△BHG中,∵∠BHG=90°,∴tan∠DBG=,∴tan∠DBG=.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,利用线段和差关系求出线段BC,CG是解题的关键.25.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为x元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.【点评】本题考查了方程组的应用,一元一次不等式组应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.26.如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点l,过点A作⊙O的切线AF,与DE相交于点F.(1)求证:∠DAF=∠ABO;(2)当AB=AD时,求证:BC=2AF;(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若tan∠DAF=,EH=2,求线段CG的长.【考点】圆的综合题;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质;锐角三角函数的定义.【专题】综合题.【分析】(1)连接AO,如图1,由OA=OB可得∠OAB=∠OBA,要证∠DAF=∠ABO,只需证∠DAF=∠BAO,只需证∠FAO=∠DAB=90°即可;(2)由于BC=2OA,要证BC=2AF,只需证OA=AF,只需证△AFD≌△AOB即可;(3)过点A作AN⊥BC于N,连接OH,OA,如图2,易得BE=2IE,DE=2EC,DI=2AF=BC,从而可得EC=3IE=BE.设BE=2x,则有EC=3x,BC=5x,HO=BO=,EO=.在Rt△HEO中运用勾股定理可求出x.利用三角函数可得BN=2AN=4NC,则有BC=5NC=10,从而可求出NC、ON,易证△AON∽△GOA,根据相似三角形的性质可求出OG,从而可求出CG.【解答】解:(1)连接AO,如图1.∵AF与⊙O相切于点A,∴OA⊥AF,即∠FAO=90°.∵BC是⊙O的直径,∴∠BAC=90°,∴∠DAB=90°,∴∠FAO=∠DAB=90°,∴∠DAF=∠BAO.∵OA=OB,∴∠OAB=∠OBA,∴∠DAF=∠ABO;(2)∵DE⊥BC,∴∠DEB=90°,∴∠DTB=90°+∠ABO.∵∠DTB=90°+∠D,∴∠D=∠ABO.在△AFD和△AOB中,,∴△AFD≌△AOB,∴AF=AO,∴BC=2OA=2AF;(3)过点A作AN⊥BC于N,连接OH,OA,如图2.∵∠D=∠B=∠BAO=∠DAF,tan∠DAF=,∴tanB==,tanD==,∴BE=2IE,DE=2EC.又∵∠DIA+∠D=∠DAF+∠FAI=90°,∴∠FIA=∠FAI,∴FI=FA,∴DI=2AF=BC,∴DE﹣IE=BE+EC,∴2EC﹣IE=2IE+EC,∴EC=3IE=BE.设BE=2x,则有EC=3x,BC=5x,HO=BO=,EO=.在Rt△HEO中,根据勾股定理可得()2+(2)2=()2,解得x=2(舍负).∵AN⊥BC,∠BAC=90°,∴∠NAC=∠ABC,∴tan∠NAC==,tan∠ABC==,∴BN=2AN=4NC,∴BC=5NC=10,∴NC=2,ON=5﹣2=3.∵∠AON=∠GOA,∠ANO=∠OAG=90°,∴△AON∽△GOA,∴=,∴=,∴OG=,∴CG=OG﹣OC=.【点评】本题主要考查了圆的切线的性质、圆周角定理、全等三角形的判定与性质、相似三角形的判定与性质、三角函数的定义、等腰三角形的判定与性质、勾股定理等知识,有一定的综合性,用含有x的代数式表示出OE、OH,并在Rt△HEO中运用勾股定理是解决第(3)小题的关键.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx﹣3与x轴相交于点A(﹣3,0)和点B,与y轴相交于点C.(1)求抛物线的解析式;(2)如图2,直线y=kx+3k经过点A,与y轴正半轴相交于点D,点P为第三象限内抛物线上一点,连接PD绕点P逆时针旋转,与线段AD相交于点E,且∠EPD=2∠PDC,若∠AEP+∠ADP=90°,求点D 的坐标;(3)如图3,在(2)的条件下,过点E作EF⊥PD,垂足为点G,EF与y轴相交于点F,连接PF,若sin∠PFC=,求PF的长.【考点】二次函数综合题.【专题】综合题.【分析】(1)直接把A点坐标代入y=x2+bx﹣3求出b的值即可得到抛物线解析式为y=x2+2x﹣3;(2)如图2,由三角形外角性质得∠AEP=∠2+∠3,加上∠3=2∠1,则∠AEP=∠2+2∠1,再利用∠AEP+∠2=90°可∠1+∠2=45°,于是可判断△AOD为等腰直角三角形,则OD=OA=2,由此得到D点坐标为(0,2);(3)过D作DH⊥y轴交PE的延长线于H,作PM⊥DH于M,PN⊥y轴于N,如图3,利用PM∥DN得到∠PDC=∠DPM,加上∠EPD=2∠PDC,则∠HPM=∠DPM,于是根据等腰三角形的性质可得MH=MD,接着判断四边形PNDM为矩形得到MD=PN,则DH=2PN,然后证明△DEH≌△DEF得到DH=DF,所以DF=2MD=2PN;再在Rt△PFN中利用正弦定义可得到PF=3PN,利用勾股定理得FN=PN,设P点坐标为(t,t2+2t﹣3),则DF=﹣2t,FN=﹣2t,于是可表示出ON=DF+FN﹣OD=﹣2t﹣2t﹣3,所以﹣2t﹣2t﹣3=﹣(t2+2t﹣3),解方程得到得t1=﹣,t2=3(舍去),所以PF=3PN=3.【解答】解:(1)把A(﹣3,0)代入y=x2+bx﹣3得9﹣3b﹣3=0,解得b=2,所以抛物线解析式为y=x2+2x﹣3;(2)如图2,∵∠AEP=∠2+∠3,而∠3=2∠1,∴∠AEP=∠2+2∠1,∵∠AEP+∠2=90°,∴∠2+2∠1+∠2=90°,∴∠1+∠2=45°,即∠ADO=45°,∴△AOD为等腰直角三角形,∴OD=OA=2,∴D点坐标为(0,2);(3)过D作DH⊥y轴交PE的延长线于H,作PM⊥DH于M,PN⊥y轴于N,如图3,∵PM∥DN,∴∠PDC=∠DPM,∵∠EPD=2∠PDC,∴∠HPM=∠DPM,而PM⊥DH,∴MH=MD,易得四边形PNDM为矩形,∴MD=PN,∴DH=2PN,∵EF⊥PD,∴∠GDF+∠DFG=90°,而∠PHD+∠HPM=90°,∴∠DFG=∠PHM,∵∠ADF=45°,∴∠HDE=45°,在△DEH和△DEF中,∴△DEH≌△DEF,∴DH=DF,∴DF=2MD=2PN,在Rt△PFN中,∵sin∠PFC==,∴PF=3PN,∴FN===2PN,设P点坐标为(t,t2+2t﹣3),则DF=﹣2t,FN=﹣2t,∴ON=DF+FN﹣OD=﹣2t﹣2t﹣3,∴﹣2t﹣2t﹣3=﹣(t2+2t﹣3),整理得t1=﹣,t2=3(舍去),∴PF=3PN=﹣3t=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档