金属薄板成形性能与试验方法 成形极限图(FLD)试验

合集下载

成形极限图试验

成形极限图试验

成形极限图试验成形极限图(FLD)或成形极限曲线(FLC)是板料冲压成形性能发展过程中的较新成果。

成形极限图的试验方法如下所述:1)在试验用坯料上制备好坐标网格;2)以一定的加载方式使坯料产生胀形变形,测出试件破裂或失稳时的应变ε1、ε2(长、短轴方向);3)改变坯料尺寸或加载条件,重复2)项试验,测得另一状态下的ε1、ε2;4)取得一定量的数值后,在平面坐标图上描绘出各试验点,然后圆滑连线,作出FLD。

成形极限曲线将整个图形分成如1所示的三部分:安全区、破裂区及临界区。

图1 成形极限图及其用法于大型复杂薄板冲压件成形时,凹模内毛坯产生破裂的情况较多。

这一部分毛坯一般是在拉应力作用下成形的,变形区内产生的断裂是延性断裂。

掌握板材拉伸失稳理论,利用成形极限图,可以对这种破坏问题较快地作出判断,找出原因,提出相应的解决办法。

拉伸失稳理论是计算建立成形极限图的基础。

拉伸失稳是指在拉应力作用下,材料在板平面方向内失去了塑性变形稳定性而产生缩颈,并随这发生破裂。

拉伸失稳可分为分散失稳和集中失稳两种。

分散性失稳是指板料的塑性变形达到一定程度后,变形开始出现在材料内某些性能不均匀或厚度不均匀的部位,载荷开始随变形程度增大而减小,由于应变硬化,这些缩颈能在一定的尺寸范围内转移,使材料在这个范围内产生一种亚稳定的塑性流动,故载荷下降比较缓慢。

但由于材料的硬化增强,变形抗力又有所提高,最后,最薄弱的环节逐渐显示出来,缩颈就逐步集中到某一狭窄区段,这样就逐渐形成了集中失稳。

产生集中失稳时,缩颈点也不能再转移出去,此时金属产生不稳定流动,由于这时承载面急剧减小,变形;力也就急剧下降,很快就异致破坏。

成形极限是指材料不发生塑性失稳破坏时的极限应变值。

但由于目前失稳理论的计算值还不能准确反映实际冲压成形中毛坯的变形极限,在实际生产中普遍应用由实验得到的成形极限图。

成形极限图(FLD),也称成形极限线(FLC)是对板材成形性能的一种定量描述,同时也是对冲压工艺成败性的一种判断曲线。

金属薄板成形性能与试验方法 成形极限图(FLD)试验

金属薄板成形性能与试验方法 成形极限图(FLD)试验

1. 试样表面上网格圆畸变后的形状如图3 05 所示, 畸变后网格圆的长轴记作d 短轴记作d、 2并将d ,
和 d 近似视为试样平面内一点上的两个主应变方向。 7
d 夕 do d <do , ,
dJ do d -d. , ,
d d, d , d > ad, , 户
图 3 网格圆畸变 1. 测量临界网格圆的长、 06 短轴 d 和 d 时, , 2 可以使用读数显微镜、 测量显微镜、 投影仪或专门设计的 测量工具、 检测装置等压 如工程应变比例尺, 见附录 A( 参考件)。 」 1. 根据测量结果, 07 按公式()() 1 ,2计算试样的表面极限应变。
图 2 网格圆图案
62 试样表而的网格圆可用照像制版、 . 光刻技术、 电化学腐蚀或其他方法制取。
63 网格圆初始直径d 的大小, . 。 影响试验的测量计算结果, 其选用原则为: 采用大尺 寸 模具时可将 d , 的数值取大一些, 而用小尺寸 模具时则取小一些。
64 如果使用本标准 7 1 . . 条推荐的凸模尺寸, 则推荐使用 d=15 ". 的网格圆。 o . 25 ^ mm 65 网格圆直径的偏差不大 f . - 其数值的 2 Y4 o
了 模具
71 对于试验模具的几何尺寸 ( . 包括拉深筋的部位、 形状和尺寸等) 不作具体规定, 仅推荐使用直径为
伸试验和液压胀形试验 。 42 刚性凸模胀形试验时, . 将一侧表面制有网格圆的试样置于凹模与压边圈之间, 利用压边力压紧拉 国家技术监督局 1 9 一 2 1 批准 951一3 1 9 一 8 0 实施 9 60 一 1
GB T 5 2 . 一 1 9 / 1 8 5 8 9 5
深筋以外的试样材料, 试样中部在凸模力作用下产生胀形变形并形成凸包( 见图 1 , )其表而上的网格圆 发生畸变, 当凸包上某个局部产生缩颈或破裂时 , 停止试验 , 测量缩颈区( 或缩颈区附近) 或破裂区附近 的网格圆长轴和短轴尺寸, 由此计算金属薄板允许的局部表面极限主应变量(, 或(, 2。 e,2 。、 ) e) 。

(仅供参考)拉伸曲线、成形极限图介绍

(仅供参考)拉伸曲线、成形极限图介绍

7
σ=F/S0
ReH
c
de
ReL
ε= △L/L0
第4阶段:屈服阶段(cde) 特点: (1)应力下降,应变增加; (2)Luders Band:在应力 达到c点时产生,试样表面沿 45 °度产生滑移带。 (3)c点:上屈服点
e点:屈服结束点 ce间最低点:下屈服点 (4)微观和Cottrell气团对位错 的定扎和反定扎有关。
注:屈服强度σs为下屈服应力;当屈服平台不明显时, σs=ReL
取σ0.2(变形量为0.2%时对应的应力)为屈服强度。
8
σ=F/S0
f
σb
e
ε= △L/L0
第5阶段:塑性变形加工硬化阶 段(ef) 特点: (1)试样在塑性变形下产生加 工硬化,应力不断上升,均匀塑 性变形阶段; (2)f点:应力应变曲线的最高 点;对应的应力为抗拉强度σb; (3)加工硬化阶段和位错密度 增加有关,位错在外力作用下发 生交割、增殖、塞积,要使位错 继续滑移,需进一步提高外力;
化达到平衡;
(2)不均匀塑性变形;
(3)力不再增加,试样最薄弱
的截面出现微孔,连接扩散成小
裂纹,裂纹扩展,形成缩颈,最 L m n ε= △L/L0 终断裂。
注:ok:最大力非比例伸长率; oL:最大力总伸长率; om:断后伸长率; on:断裂总伸长率。
11
12
成形极限图(FLD)或成形极限线(FLC)是评定金属板料 局部成形能力重要工具,在分析冲压成形的破裂问题时经 常使用。 FLD:冲压成形时,金属板料上缩颈或破裂区表面应变量称 为表面极限应变量。二维应变坐标系中,用不同应变路径 下表面极限应变量连成曲线或勾画出条带形区域称为冲压 成型时,成形极限曲线(Forming Limit Curve,缩写FLC), 极限应变量与极限曲线共同构成成形极限图(Forming Limit Diagram,缩写FLD) 。

金属薄板成形性能试验

金属薄板成形性能试验

金属薄板成形性能试验1. 简介成形性能是指薄板对各种冲压成形的适应能力,即薄板在指定加工过程中产生塑性变形而不失效的能力。

成形性能研究的重点是成形极限的大小,也就是薄板发生破裂前能够获得的最大变形程度。

1.1 模拟成形性能指标选择或评定金属薄板冲压成形品级时,可对模拟成形性能指标提出要求。

设计或分析冲压成形工艺过程,以及设计冲压成形模具时,经常需要参考模拟成形性能指标的数据。

薄板常用模拟成形性能指标有:1、胀形性能指标:杯突值IE;2、拉深性能指标:极限拉深比LDR或载荷极限拉深比LDR(T);3、扩孔(内孔外翻)性能指标:极限扩孔率(平均极限扩孔率)λ(λ);4、弯曲性能指标:最小相对弯曲半径R min/t;5、“拉深+胀形”复合成形性能指标:锥杯值CCV;6、面内变形均匀性指标:凸耳率Z e;7、贴模(抗皱)性指标:方板对角拉伸试验皱高;8、定形性指标:张拉弯曲回弹值。

1.2 特定成形性能指标选择或评定金属薄板冲压成形品级、协议金属薄板的订货供货、设计或分析冲压成形工艺过程时,可对金属薄板的材料特性指标或工艺性能指标提出要求,或参考它们的数据,它们统称为特定成形性能指标:1、塑性应变比(r值)或平均塑性应变比(r);2、应变硬化指数(n值);3、塑性应变比平面各向异性度(r∆)。

1.3 局部成形极限评定、估测金属薄板的局部成形性能,或分析解决冲压成形破裂问题时,可使用金属薄板的成形极限图或成形极限曲线。

1.4 其他以上所列举的各种成型性能试验方法均为我国冲压生产和冶金制造行业已经使用或比较熟悉的模拟成型性能试验方法,而且也属于国际上的主流成形性能试验范畴。

除这些方法外,国际上还流行其他一些模拟成形性能试验,见图1。

图1 模拟成形性能试验方法注:整体成形极限指金属薄板在冲压过程中发生颈缩、破裂、皱曲等成形缺陷之前,某种特定的整体几何尺寸或某种几何特征的整体尺寸可以达到的极限变形程度。

局部成形极限指金属薄板在冲压过程中发生颈缩、破裂、皱曲等成形缺陷之前,局部点位或局部变形区域可以达到的极限变形程度。

FLD简介

FLD简介

成形极限图(FLD)2009-05-25 11:07:52| 分类:板料成形| 标签:|举报|字号大中小订阅(一)FLD试验主题内容与适用范围本标准规定了金属薄板成形极限图(forming limit diagram,编写fld)的实验室测定方法。

本标准适用于厚度0.2~3.0mm的金属薄板。

(二)FLD试验单位、符号与名称(三)FLD试验原理1 在实验室条件下测定成形极限图时,通常采用刚性凸模对试样进行胀形的方法,必要时可辅以拉伸试验和液压胀形试验。

2 刚性凸模胀形试验时,将一侧表面制有网格圆的试样置于凹模与压边圈之间,利用压边力压紧拉深筋以外的试样材料,试样中部在凸模力作用下产生胀形变形并形成凸包(见图1),其表面上的网格圆发生畸变,当凸包上某个局部产生缩颈或破裂时,停止试验,测量缩颈区(或缩颈区附近)或破裂区附近的网格圆长轴和短轴尺寸,由此计算金属薄板允许的局部表面极限主应变量(e1、e2)或(ε1、ε2)。

注:表面应变指平行于板料平面的二维应变,本标准中的(e1、e2)表示表面工程极限主应变量,(ε1、ε2)表示表面真实极限主应变量。

3 使用下述两种方法可以获得不同应变路径下的表面极限主应变量。

3.l 改变试样与凸模接触面间润滑条件:主要用来测定成形极限图的右半部分(双拉变形区,即e1>0、e2≥0或ε1>0、ε2≥0),如果在试样与凸模之间加衬合适厚度的橡胶(或橡皮)薄垫,可以比较方便地获得接近于等双拉应变状成态(e1=e2或ε1=ε2)下的表面极限应变量,通常,不同的润滑条件选择地越多,度验确定的成形极限图越可靠。

3.2 采用不同宽度的试样主要用来测定成形极限图的左半部分(拉-压变形区,即e1>0、e2≤0或ε1>0、ε2≤0),如果试样宽度选择地合适,可以获得接近于单向拉伸应变状态(e1=-2e2或ε1=-2ε2)和平面应变状态(e2=0或ε2=0)下的表面极限应变量,通常,试样的宽度规格越多,试验确定的成形极限图越可靠。

锻压、冲压工艺标准精选(最新)资料.

锻压、冲压工艺标准精选(最新)资料.

锻压、冲压工艺标准精选(最新)G6402《GB/T 6402-2008 钢锻件超声检测方法》G8176《GB 8176-2012 冲压车间安全生产通则》G8541《GB/T 8541-2012 锻压术语》G12361《GB/T12361-2003 钢质模锻件通用技术条件》G12362《GB/T12362-2003 钢质模锻件公差及机械加工余量》G12363《GB/T 12363-2005 锻件功能分类》G13318《GB13318-2003 锻造生产安全与环保通则》G13320《GB/T 13320-2007 钢质模锻件金相组织评级图及评定方法》G13887《GB 13887-2008 冷冲压安全规程》G13914《GB/T 13914-2013 冲压件尺寸公差》G13915《GB/T 13915-2013 冲压件角度公差》G13916《GB/T 13916-2013 冲压件形状和位置未注公差》G14999.6《GB/T 14999.6-2010 锻制高温合金双重晶粒组织和一次碳化物分布测定方法》G15055《GB/T 15055-2007 冲压件未注公差尺寸极限偏差》G15825.1《GB/T 15825.1-2008 金属薄板成形性能与试验方法第1部分:成形性能和指标》G15825.2《GB/T 15825.2-2008 金属薄板成形性能与试验方法第2部分:通用试验规程》G15825.3《GB/T 15825.3-2008 金属薄板成形性能与试验方法第3部分:拉深与拉深载荷试验》G15825.4《GB/T 15825.4-2008 金属薄板成形性能与试验方法第4部分:扩孔试验》G15825.5《GB/T 15825.5-2008 金属薄板成形性能与试验方法第5部分:弯曲试验》G15825.6《GB/T 15825.6-2008 金属薄板成形性能与试验方法第6部分:锥杯试验》G15825.7《GB/T 15825.7-2008 金属薄板成形性能与试验方法第7部分:凸耳试验》G15825.8《GB/T 15825.8-2008 金属薄板成形性能与试验方法第8部分:成形极限图(FLD)测定指南》G15826《GB/T15826.1~9-1995 锤上自由锻自由锻件机械加工余量与公差》G16743《GB/T 16743-2010 冲裁间隙》G17107《GB/T17107-1997 锻件用结构钢牌号和力学性能》G20078《GB/T 20078-2006 铜和铜合金锻件》G20911《GB/T 20911-2007 锻造用半成品尺寸、形状和质量公差》G21469《GB/T 21469-2008 锤上钢质自由锻件机械加工余量与公差一般要求》G21470《GB/T 21470-2008 锤上钢质自由锻件机械加工余量与公差盘、柱、环、筒类》G21471《GB/T 21471-2008 锤上钢质自由锻件机械加工余量与公差轴类》G22131《GB/T 22131-2008 筒形锻件内表面超声波检测方法》G25134《GB/T 25134-2010 锻压制件及其模具三维几何量光学检测规范》G25135《GB/T 25135-2010 锻造工艺质量控制规范》G25136《GB/T 25136-2010 钢质自由锻件检验通用规则》G25137《GB/T 25137-2010 钛及钛合金锻件》G26030《GB/T 26030-2010 镍及镍合金锻件》G26036《GB/T 26036-2010 汽车轮毂用铝合金模锻件》G26637《GB/T 26637-2011 镁合金锻件》G26638《GB/T 26638-2011 液压机上钢质自由锻件复杂程度分类及折合系数》G26639《GB/T 26639-2011 液压机上钢质自由锻件通用技术条件》G29532《GB/T 29532-2013 钢质精密热模锻件通用技术条件》G29533《GB/T 29533-2013 钢质模锻件材料消耗工艺定额编制方法》G29534《GB/T 29534-2013 温锻冷锻联合成形锻件通用技术条件》G29535《GB/T 29535-2013 温锻冷锻联合成形工艺工艺编制原则》G30566《GB/T 30566-2014 GH4169合金棒材、锻件和环形件》G30567《GB/T 30567-2014 钢质精密热模锻件工艺编制原则》G30568《GB/T 30568-2014 锆及锆合金锻件》G30569《GB/T 30569-2014 直齿锥齿轮精密冷锻件结构设计规范》G30570《GB/T 30570-2014 金属冷冲压件结构要素》G30571《GB/T 30571-2014 金属冷冲压件通用技术条件》G30572《GB/T 30572-2014 精密冲裁件工艺编制原则》G30573《GB/T 30573-2014 精密冲裁件通用技术条件》G30895《GB/T 30895-2014 热轧环件》GJ904A《GJB904A-1999 锻造工艺质量控制要求》GJ1057《GJB 1057-1990 铝合金过时效锻件》GJ2351《GJB2351-1995 航空航天用铝合金锻件规范》GJ5154《GJB5154-2002 航空航天用镁合金锻件规范》GJ2744A《GJB2744A-2007 K 航空用钛及钛合金锻件规范》GJ5040《GJB5040-2001 航空用钢锻件规范》GJ5061《GJB 5061-2001 航空航天用超高强度钢锻件规范》GJ5911K《GJB 5911-2006 K 舰艇用15CrNi3MoV钢锻钢规范》HB0-19《HB0-19-2011 开口弯边》HB0-20《HB0-20-2011 皱纹弯边》HB0-22《HB0-22-2008 挤压型材下陷》HB0-35《HB0-35-2011 挤压型材倾斜角度极限值》HB199《HB/Z199-2005 钛合金锻造工艺》H283《HB/Z283-1996钢的锻造工艺》HB5224《HB5224-2011 航空发动机用钛合金盘模锻件规范》H5355《HB5355-1994 锻造工艺质量控制》H5402《HB5402-1997 锻件试制定型规范》HB6077《HB6077-2008 模锻件公差及机械加工余量》HB6587《HB 6587-1992 锤上自由锻件机械加工余量与尺寸公差》H7238《HB7238-1995 钛合金环形锻件》H7726《HB7726-2002 航空发动机用钛合金叶片精锻件规范》HB8401《HB 8401-2013 钣金成形工装设计要求》QJ262《QJ 262-1994 钣金冲压件通用技术条件》QJ502A《QJ 502A-2001 铝合金、铜合金锻件技术条件》QJ2141A《QJ2141A-2011 高温合金锻件规范》WJ2537《WJ2537-1999 兵器用冲压件规范》CB773《CB/T 773-1998 结构钢锻件技术条件》J1266《JB/T 1266-2014 25 MW~200 MW汽轮机轮盘及叶轮锻件技术条件》J1268《JB/T 1268-2014 汽轮发电机Mn18Cr5 系无磁性护环锻件技术条件》J1270《JB/T 1270-2014 水轮机、水轮发电机大轴锻件技术条件》J1271《JB/T 1271-2014 交、直流电机轴锻件技术条件》J1581《JB/T 1581-2014 汽轮机、汽轮发电机转子和主轴锻件超声检测方法》J1582《JB/T 1582-2014 汽轮机叶轮锻件超声检测方法》J3733《JB/T 3733-2006 大型锻造合金钢热轧工作辊》J4120《JB/T 4120-2006 大型锻造合金钢支承辊》J4129《JB/T4129-1999 冲压件毛刺高度》J4201《JB/T4201-1999 直齿锥齿轮精密热锻件技术条件》J4290《JB/T4290-1999 高速工具钢锻件技术条件》J4378《JB/T4378.1~2-1999 金属冷冲压件》J4381《JB/T 4381-2011 冲压剪切下料未注公差尺寸的极限偏差》J4385《JB/T4385.1~2-1999 锤上自由锻件》J5109《JB/T5109-2001 金属板料压弯工艺设计规范》J6052《JB/T 6052-2005 钢质自由锻件加热通用技术条件》J6053《JB/T6053-2004 钢制锻件热锻工艺燃料消耗定额计算方法》J6054《JB/T6054-2001 冷挤压件工艺编制原则》J6056《JB/T 6056-2005 冲压车间环境保护导则》J6395《JB/T 6395-2010 大型齿轮、齿圈锻件技术条件》J6396《JB/T 6396-2006 大型合金结构钢锻件技术条件》J6397《JB/T 6397-2006 大型碳素结构钢锻件技术条件》J6398《JB/T 6398-2006 大型不锈、耐酸、耐热钢锻件》J6402《JB/T 6402-2006 大型低合金钢铸件》J6405《JB/T 6405-2006 大型不锈钢铸件》J6541《JB/T6541-2004 冷挤压件形状和结构要素》J6957《JB/T6957-2007 精密冲裁件工艺编制原则》J6958《JB/T6958-2007 精密冲裁件通用技术条件》J6959《JB/T 6959-2008 金属板料拉深工艺设计规范》J6979《JB/T 6979-1993 大中型钢质锻模模块质量分级》J7023《JB/T 7023-2014 水轮发电机镜板锻件技术条件》J7025《JB/T 7025-2004 25MW以下汽轮机转子体和主轴锻件技术条件》J7026《JB/T 7026-2004 50MW以下汽轮发电机转子锻件技术条件》J7027《JB/T 7027-2002 300MW以上汽轮机转子体锻件技术条件》J7028《JB/T 7028-2004 25MW以下汽轮机转盘及叶轮锻件技术条件》J7029《JB/T 7029-2004 50MW以下汽轮发电机无磁性护环锻件技术条件》J7030《JB/T 7030-2014 汽轮发电机Mn18Cr18N 无磁性护环锻件技术条件》J7032《JB/T7032-2001 大型全纤维曲轴锻件》J7531《JB/T 7531-2005 旋压件设计规范》J7532《JB/T 7532-2005 旋压工艺编制原则》J7535《JB/T7535-1994 锻件工艺质量控制规范》J8421《JB/T8421-1996 钢质自由锻件检验通用规则》J8466《JB/T 8466-2014 锻钢件渗透检测》J8467《JB/T 8467-2014 锻钢件超声检测》J8468《JB/T 8468-2014 锻钢件磁粉检验》J8705《JB/T 8705-2014 50 MW以下汽轮发电机无中心孔转子锻件技术条件》J8706《JB/T 8706-2014 50 MW~200 MW汽轮发电机无中心孔转子锻件技术条件》J8707《JB/T8707-1998 300MW以上汽轮无中心孔转子锻件技术条件》J8708《JB/T 8708-2014 300 MW~600 MW汽轮发电机无中心孔转子锻件技术条件》J8888《JB/T8888-1999 环芯法测量汽轮机,汽轮发电机转子锻件残余应力的试验方法》J8930《JB/T8930-1999 冲压工艺质量控制规范》J9020《JB/T9020-1999 大型锻造曲轴的超声波检验》J9021《JB/T 9021-2010 汽轮机主轴和转子锻件的热稳定性试验方法》J9174《JB/T9174-1999 模锻件材料消耗工艺定额编制方法》J9175.1《JB/T 9175.1-2013 精密冲裁件第1部分:结构工艺性》J9175.2《JB/T 9175.2-2013 精密冲裁件第2部分:质量》J9176《JB/T9176-1999 冲压件材料消耗工艺定额编制方法》J9177《JB/T9177-1999 钢制模锻件结构要素》J9178.1《JB/T9178.1-1999 水压机上自由锻件通用技术条件》J9178.2《JB/T9178.2-1999 水压机上自由锻件复杂程度分类及折合系数》J9179《JB/T9179.1~8-1999 水压机上自由锻件机械加工余量与公差》J9180.1《JB/T 9180.1-2014 钢质冷挤压件第1部分:公差》J9180.2《JB/T 9180.2-2014 钢质冷挤压件第2部分:通用技术条件》J9181《JB/T9181-1999 直齿锥齿轮精密热锻件结构设计规范》J10138《JB/T10138-1999 渗碳轴承钢锻件》J10265《JB/T 10265-2014 水轮发电机用上下圆盘锻件技术条件》J10663《JB/T 10663-2006 25MW及25MW以下汽轮机无中心孔转子和主轴锻件技术条件》J10664《JB/T 10664-2006 25MW~200MW汽轮机无中心孔转子和主轴锻件技术条件》J11017《JB/T 11017-2010 1000MW及以上火电机组发电机转子锻件技术条件》J11018《JB/T 11018-2010 超临界及超超临界机组汽轮机用Cr10型不锈钢铸件技术条件》J11019《JB/T 11019-2010 超临界及超超临界机组汽轮机用高中压转子锻件技术条件》J11020《JB/T 11020-2010 超临界及超超临界机组汽轮机用超纯净钢低压转子锻件技术条件》J11021《JB/T 11021-2010 大型高铬锻钢支承辊技术条件》J11022《JB/T 11022-2010 大型高铬铸钢热轧工作辊技术条件》J11023《JB/T 11023-2010 大型高铬铸铁热轧工作辊技术条件》J11024《JB/T 11024-2010 大型核电机组汽轮机用焊接转子锻件技术条件》J11026《JB/T 11026-2010 大型核电机组四极汽轮发电机转子锻件技术条件》J11028《JB/T 11028-2010 汽轮发电机集电环锻件技术条件》J11030《JB/T 11030-2010 汽轮机高低压复合转子锻件技术条件》J11032《JB/T 11032-2010 燃气轮机压气机轮盘不锈钢锻件技术条件》J11033《JB/T 11033-2010 燃气轮机压气机轮盘合金钢锻件技术条件》J11760《JB/T 11760-2013 直齿锥齿轮精密冷锻件技术条件》J11761《JB/T 11761-2013 齿轮轴毛坯楔横轧技术条件》J12028《JB/T 12028-2014 涡旋压缩机铝合金精锻涡旋盘通用技术条件》J50196《JB/T50196-2000 3~600MW发电机无磁性护环合金钢锻件质量分等》J50197《JB/T50197-2000 3~600MW汽轮机转子和主轴锻件锻件质量分等》J53485《JB/T53485-2000 50MW以下发电机转子锻件质量分等》J53488《JB/T53488-2000 25MW以下汽轮机转盘及叶轮锻件产品质量分等》J53495《JB/T53495-2000 特大型轴承钢锻件产品质量分等》J53496《JB/T53496-2000 50~600MW发电机转子锻件质量分等》YB091《YB/T 091-2005 锻(轧)钢球》YS479《YS/T 479-2005 一般工业用铝及铝合金锻件》YS686《YS/T 686-2009 活塞裙用铝合金模锻件》TB2944《TB/T 2944-1999 铁道用碳素钢锻件》TB3014《TB/T 3014-2001 铁道用合金钢锻件》SJ10726《SJ/T10726-1996 冲压件一般检验原则》SJ10538《SJ/T10538-1994 冲压生产技术经济指标计算方法》A788《ASTM A788 -2004a 钢锻件通用要求的标准技术条件》(中文版)JB/T4129-1999 冲压件毛刺高度JB/T4201-1999 直齿锥齿轮精密热锻件技术条件JB/T4290-1999 高速工具钢锻件技术条件JB/T4378.1-1999 金属冷冲压件结构要素JB/T4378.2-1999 金属冷冲压件通用技术条件JB/T4381-1999 冲压剪切下料未注公差尺寸的极限偏差JB/T 4385.1-1999 锤上自由锻件通用技术条件JB/T 4385.2-1999 锤上自由锻件复杂程度分类及折合系数JB/T8930-1999 冲压工艺质量控制规范JB/T9174-1999 模锻件材料消耗工艺定额编制方法JB/T 9175.1-1999 精密冲裁件结构工艺性JB/T 9175.2-1999 精密冲裁件质量JB/T9176-1999 冲压件材料消耗工艺定额编制方法JB/T9177-1999 钢质模锻件结构要素JB/T9178.1-1999 水压机上自由锻件通用技术条件JB/T9178.2-1999 水压机上自由锻件复杂程度分类及折合系数JB/T 9179.1-1999 水压机上自由锻件机械加工余量与公差一般要求JB/T 9179.2-1999 水压机上自由锻件机械加工余量与公差圆轴、方轴和矩形截面类JB/T 9179.3-1999 水压机上自由锻件机械加工余量与公差台阶轴类JB/T 9179.4-1999 水压机上自由锻件机械加工余量与公差圆盘和冲孔类JB/T 9179.5-1999 水压机上自由锻件机械加工余量与公差短圆柱类JB/T 9179.6-1999 水压机上自由锻件机械加工余量与公差模块类JB/T 9179.7-1999 水压机上自由锻件机械加工余量与公差筒体类JB/T 9179.8-1999 水压机上自由锻件机械加工余量与公差圆环类JB/T 9180.1-1999 钢质冷挤压件公差JB/T 9180.2-1999 钢质冷挤压件通用技术条件JB/T9181-1999 直齿锥齿轮精密热锻件结构设计规范JB/T9194-1999 辊锻模结构形式及尺JB/T9195-1999 辊锻模通用技术条件JB/T10138-1999 渗碳轴承钢锻件。

FLD实验

FLD实验
FLD在模具制造业中应用介绍
1、通过板件上网格找出变薄不合格区域 2、生成FLD成型极限图,分析主副应变情况 3、充分利用CAE分析,综合各种因素,制定整改方案 4、重新压制板件后,测量变薄率对比验证至合格件
1
2
在试验用坯料上印至网格
钣料成型后根据网格找出不合格区域
钣料成型后根据网格找出不合格区域 扫描生成FLD图表,了解不合格区域 的主副应变情况
2
3
4
三. 网格印制的过程
1. 清洁钢板,用布将钢板上的油及灰尘擦净; 2. 将网格仪电线接好,红色电极夹住钢板
ቤተ መጻሕፍቲ ባይዱ
(此时滚压轮不得与钢板接触,否则通电后 将短路); 3. 将网格纸铺在钢板上(一定要平整),在网 格纸上铺好毛毡,在毛毡上均匀添加电解液; 4. 打开网格仪开关(红灯亮); 5. 将滚压轮在毛毡上滚动4-5次;
四. 印网格的注意事项:
• 电解液是弱酸性物质,有极弱的腐蚀性,工作 完成后应使用碱性物质洗手(肥皂即可); • 同理,如果钢板没有涂层,或印制后不马上进 行冲压测量,电解液擦干净后应涂油防锈; 即使是镀锌钢板也必须尽快将电解液擦干净; • 印制网格时不允许网格纸有移动,否则会印制 出重影,所以滚压轮不要推,要压着拉动; • 选择网格印刷区域,并不时钢板上所有的区域 都要印网格,网格应印制在形状变化剧烈,材 料流动量较大处,一般压料面不需要印网格;
FLD实验
2008-7-21
一.概述 二.网格印制设备 三.网格印制的过程 四.印网格的注意事项 五.网格钢板的冲压 六.测量及分析
一. 概述
宝钢研究院 吴磊
• • • • •
成型极限图的发展 工作原理 FLD的制作及注意事项 测量方法 实冲零件的准备工作及 注意事项

成形极限图的测试-应用和可信度分析

成形极限图的测试-应用和可信度分析

将不会产生废品 。
2 .2 模拟计算
图 1 钢模胀形试验
拉深状态 :特点是 d 1 >d 0 >d2 , 长轴真实应变 ε1 为正值 , 短轴真实应变 ε2 为负值 。 平面应变状 态 :特点是 d 1 >d 0 , d 2 =d0 , 长轴真实应变 ε1 为正 值 , 短轴真实应变 ε2 为零 。 胀形状态 :特点是 d1 > d0 , d2 >d 0 , 长轴真实应变 ε1 和短 轴真实应变 ε2 均为正值 。
2 .0
186
29 1
47 .2
0 .018 4 1 .576
0 .54 6
3
S t 13
0 .8
167
30 3
45 .3
0 .015 5 1 .726
0 .28 0
4
S t 14
1 .0
162
30 3
46 .9
0 .022 9 1 .903
0 .89 9
5
IF
0 .8
117
28 1
51 .4
0 .029 0 2 .226
that got by analogue computing in A SAM E(A utomated Strain Analysis and M easure Environment);A nalysis of punched parts' safety and precasting of selecting materials by using F LD , there' s be tter reliability in the punched par ts w ith plane strain and sw ell, and there' s not good reliability in the punched parts by deep drawing .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注: 试样长宽尺寸接近时, 极限应变量也有可能位于成形极限图的右半部双拉变形区内。
5 试样 51 根据试验装置特点和试验原理确定试样尺寸、 . 形状和数里。如果使用本标准 7 1 . 条推荐的凸模尺 寸, 则推荐使用边长 10 的方形( 8 mm 或内接圆直径 10 的正多边形 , 8r m i 或直径 10 8 mm的圆形) 试样
61 为了测定试样的表面应变壁, . 应在试样一侧表面制取 一 定数f的网格圆, i l 网格圆的数M和排列图
案自行设计( 叮附加某些必要的符号)图 2 , 所示图案供参考。
GB T 5 2 。 一 1 9 / 18 58 95
O 0 OO O e
O0O00O OO0O OC O00OOC OO000e 00 000C
主要用来测定成形极限图的右半部分( 双拉变形区, 、 , >o 1 ,2 )如果在试样与 即。>0e 或。 , >0E >0 ,
凸模之间加衬合适厚度的橡胶( 或橡皮) 薄垫, 可以比较方便地获得接近于等双拉应变状态(, : e=e或 。=。) , 2下的表面极限应变量 , 通常 , 不同的润滑条件选择地越多, 试验确定的成形极限图越可靠。 432 采用不同宽度的试样 ..
带有网格圆图案一侧的试样表面进行润滑 , 允许使用润滑油将固体润滑薄膜粘敷在待润滑的试样表面。 82 压边力 . 82 1 压边力应压紧拉深筋以外的试样材料, .. 保证它们不发生变形流动。 822 对同一尺寸规格或相同润滑方式下的试样进行重复试验时, .. 压边力偏差不超过士5 %n 83 试验速度 . 对试验速度( 凸模运动速度) 不作具体规定, 但不允许试验停机时产生较大的惯性运动, 以便及时准 确地捕捉试样凸包出现缩颈或破裂的瞬间。 试验装置与试验机
91 按G / 1852 . 条规定准备试验装置, . B T 2. 中51 5 如果使用本标准 71 . 条推荐的凸模尺寸, 要求满
足以 卜 技术条件 : 在工作行程内, 凸模与凹模中心线应重合, 其偏差不大于 0 1 mm; . 5
GB T 5 2 . 一 1 9 / 1 8 5 8 9 5
应尽量能使各试样的表面极限应变量在坐标系中均匀分布。 推荐使用G / 1852 章规定的1 B T 2. 第6 5 "
或 2 润滑剂作为液体润滑剂, “ 固体润滑剂推荐使用不同厚度的聚乙烯( 或聚氯乙烯 、 聚四氟乙烯 ) 薄膜、 适当厚度的橡胶( 或橡皮) 薄垫, 以及其他可以应用的润滑材料。
813 采用改变试样与凸模接触面间润滑条件进行试验时, .. 参考G / 1852 6 BT 2. 第 章规定, 5 只对不
1 主题内容与适用范围
本标准规定了金属薄板成形极限图(omn l id ga 缩写F D 的实验室测定方法。 Fr ig t rm, i i m a L)
本标准适用于厚度 02 . . 0 -3 mm的金属薄板。 2 引用标准
G / t852 金属薄板成形性能与 B T 2. 5 试验方法 通用试验规程
F ,
e, . e2 C 仁2 1、
d 0 d,
d,

表面工程( 极限) 卞应变 表面真实( 极限) 主应变 网格 圆初始直径 畸变后的网格 圆长轴尺 寸 畸变后的网格 圆短轴 尺 寸
应变 硬 化 指 数 塑性 应 变 比
们1 M TIM TT T 们飞 n

和宽度分别为101010108,04 和 2 m 6,4,2,0,06,0 0 m的矩形试样( 长度可根据试验装价自 行确定) 。 52 按G / 1852 3 . BT 2. 第 章规定制备试样, 5 并记录试样实测厚度。
53 为了防止窄条矩形试样在拉深筋处开裂, . 允许仿效板料拉伸试验试样将其形状改为中部稍窄、 两 端稍宽的阶梯形状。 6 网格圆的制取
64 如果使用本标准 7 1 . . 条推荐的凸模尺寸, 则推荐使用 d=15 ". 的网格圆。 o . 25 ^ mm 65 网格圆直径的偏差不大 f . - 其数值的 2 Y4 o
了 模具
71 对于试验模具的几何尺寸 ( . 包括拉深筋的部位、 形状和尺寸等) 不作具体规定, 仅推荐使用直径为
b 试验装置应能对试样定位, . 试样中心与凸模中心线偏差不大于 05 . mm
按G / 1852中52 BT 2. 5 . 条规定准备试验机。
1 测量和计算 0 1. 用于测量和计算表面极限应变量的网格圆称为临界网格圆。 01 1. 确定试样上一点的表面极限应变量时, 02 原则上应通过测量缩颈区临界网格圆的直径变化进行计 算, 但从工程应用的观点出发, 亦允许在缩颈区或破裂区附近选择临界网格圆进行测量, 近似计算试样 上一点的表面极限应变量。 1. 从工程应用观点出发, 03 推荐用下述方法选择临界网格圆: 将位于缩颈区、 但未破裂的网格圆作为临界网格圆; b 将紧靠缩颈或裂纹的网格圆作为临界网格圆; . 将与缩颈或裂纹横贯其中部之网格圆相邻的网格圆作为临界网格圆。 1. 选择临界网格圆时, 04 应注意下述事项: 临界网格圆的个数不宜选择过 多( 通常可取几个)并应尽可能相邻或靠近, , 且彼此之间相应的 测量差值不大于 1 %; 0 b 为了保持试验结果的一致性 , . 必须使用同一种临界网格圆选择方法进行测量、 计算和标绘成形 极限图。
图 2 网格圆图案
62 试样表而的网格圆可用照像制版、 . 光刻技术、 电化学腐蚀或其他方法制取。
63 网格圆初始直径d 的大小, . 。 影响试验的测量计算结果, 其选用原则为: 采用大尺 寸 模具时可将 d , 的数值取大一些, 而用小尺寸 模具时则取小一些。
GB T 5 2 . 一 1 9 / 1 8 5 8 9 5
深筋以外的试样材料, 试样中部在凸模力作用下产生胀形变形并形成凸包( 见图 1 , )其表而上的网格圆 发生畸变, 当凸包上某个局部产生缩颈或破裂时 , 停止试验 , 测量缩颈区( 或缩颈区附近) 或破裂区附近 的网格圆长轴和短轴尺寸, 由此计算金属薄板允许的局部表面极限主应变量(, 或(, 2。 e,2 。、 ) e) 。
中华 人民 共 和 国国 家 标 准
金属薄板成形性能与试验方法 成形极限图(L ) ( D 试验 F
S et tl ma it a d s m to s h e mea fr bly t t h d o i n e e
GB T 5 2 . 一 1 9 / 18 58 95
-F mig darm( L ts r n l t ga F D) t o i mi i e
4 试验 原理
41 在实验室条件 下 . 测定成形极限图时, 通常采用刚性凸模对试样进行胀形的方法, 必要时可辅以拉
伸试验和液压胀形试验 。 42 刚性凸模胀形试验时, . 将一侧表面制有网格圆的试样置于凹模与压边圈之间, 利用压边力压紧拉 国家技术监督局 1 9 一 2 1 批准 951一3 1 9 一 8 0 实施 9 60 一 1
d 一 试) , X 0 % 10
d ,
l 十
(1 )
‘一一 ,- d: 一
d 一d , , X 0 % 10
GB ' 1 8 5 8 1 9 / 52 .一 95 r
,d , = I( n e) 1+ ,
id no
矶 -do

= 1( n 1十 e) 2

(2 )
主要用来测定成形极限图的左半部分( 压变形区, 、 ,镇0 。 , 簇。, 拉一 即。 e 或 t E )如果试样宽度 >0 , >o 2 选择地合适, 可以获得接近于单向拉伸应变状态(, ( =一2: :一一22和平面应变状态(2 或 e e或 , e ) ( =0 e
e=0下的表面极限应变量, 2 ) 通常 , 试样的宽度规格越多, 试验确定的成形极限图越可靠。
注: 表面应变指平行于板料平面的二维应变 , 本标准中的(、 2表示表 面工程极限主应变量 , , , ‘、 ) ‘ ( ,) e e 表示表面真实
极 限 主应 变 量 。
缩 顶 或 破裂
!边 圈 卜
拉 深筋
图 1 刚性凸模胀形试验 43 使用下述两种方法可以获得不同应变路径下的表面极限主应变堂。 . 431 改变试样与凸模接触面间润滑条状如图3 05 所示, 畸变后网格圆的长轴记作d 短轴记作d、 2并将d ,
和 d 近似视为试样平面内一点上的两个主应变方向。 7
d 夕 do d <do , ,
dJ do d -d. , ,
d d, d , d > ad, , 户
图 3 网格圆畸变 1. 测量临界网格圆的长、 06 短轴 d 和 d 时, , 2 可以使用读数显微镜、 测量显微镜、 投影仪或专门设计的 测量工具、 检测装置等压 如工程应变比例尺, 见附录 A( 参考件)。 」 1. 根据测量结果, 07 按公式()() 1 ,2计算试样的表面极限应变。
e, %
1崔 2;
e, }%
1川 1
即 ()j

x) 吸
l ` 由 、.
: . 几 尸 . 洲 :

凡 ・
, F 。 L ) C
歼 玄月‘‘
. 1 4 0 -

一 1 0
1 试验程序和操作方法 1 1. 按本标准第 5章和第 6 11 章规定准备试样。
1. 按 G / 1852 42512522 523 12 B T 2. 中 .,..,.. 和 .. 条规定, 5 对模具、 试验装置和试验机进行清洗、
检查和润滑。 1. 进行预试验。 13 1. 进行正式试验, 14 试验前放w试样时, 应将试样上制有网格圆的 一 面贴靠凹模。试验过程中应保证 将试样压紧, 直至试样上发生局部缩颈或破裂为止。 1. 对于同一尺寸规格和相同润滑方式的试样进行 3次以上有效重复试验。 15 1. 出现 卜 16 述任一情况, 试验无效 : 试样的缩颈或破裂发生在凹模孔口附近; b 使用不同宽度的试样时, . 试样侧边发生撕裂; 试样在拉深筋附近破裂; d 选不出合适的临界网格圆。 . 1. 测量临界网格圆的长、 17 短轴尺寸, 并计算表面极限应变量。 1 标绘成形极限图 2 1. 以表而应变 。( 。) 21 2或 2为横坐标、 表面应变 。( 。) 1或 ,为纵坐标, 建立表面应变坐标系。在 e一 坐标 ,2 e 系中, 质将 ‘和 。 的分度比例取为 2 t 4 )而在 。-, 习J z , : b , I图 2 坐标系中两者分度一般相同。 E 1. 将试验测定的表而极限应变量(, 或(, 标绘在表面应变坐标系中( 22 e,2 B, e) E) 2 参见图 4 0 )
相关文档
最新文档