中考数学专题——动态问题(非常全面)

合集下载

中考数学试题动态问题试题及答案

中考数学试题动态问题试题及答案

一、选择题1.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )2.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格3.下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )4.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43, B .()34, C .()12--, D .()21--,5.ABC △在如图所示的平面直角坐标系中,将ABC △向右平移3个单位长度后得111A B C △,再将111A B C △绕点O 旋转180°后得到222A B C △,则下列说法正确的是( )甲乙甲乙A .B .C .D.甲乙甲乙A .1A 的坐标为()31,B .113ABB A S =四边形C.2B C =D .245AC O ∠=°6.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处7.如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是( ) A .点1O 的坐标是(10), B .点1C 的坐标是(21)-,C .四边形111O BA B 是矩形D .若连接OC ,则梯形11OCA B 的面积是3(图1)8.如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ).A .π5168B .π24C .π584D .π129.将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了( )A .1圈B .1.5圈C .2圈D .2.5圈二、填空题10.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .11.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).12.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).13.如图,在Rt△ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.AEC (F )B 图(1) E AGB C (F ) D 图(2)C三、解答题14.已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.15.已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.AE CF BD图1图3ADFECBADBCE 图2F16. 在ABCD 中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转90得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=43,AE=1,在①的条件下,设CP 1=x ,S 11P FC =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.17. 如图,在平面直角坐标系xOy 中,ABC 三个机战的坐标分别为()6,0A -,()6,0B ,(0,C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。

动态问题复习

动态问题复习

1 / 4中考数学复习专题 动态探究题这种题型包括有动点问题,动线问题和动圆问题三类。

主要是考查学生对几何元素的运动变换的性质,它主要揭示“运动”与“静止”,“一般”与“特殊”的内在联系,以及在一定条件下可以相互转化的唯物辨证关系。

几何动态题的解题策略:第一:全面阅读题目,了解运动的方式与形式,全方位考察运动中的变与不变的量及其位置关系。

这是解题的关键,审题一定要清楚和仔细,真正全面地了解这是什么类型的运动?怎样运动?沿什么方运动?甚至速度是多少都要彻底搞清楚。

理解在运动、变化的过程中哪些量在变?哪些量保持不变?理解变量之间的位置、数量关系。

在考试中很多同学往往就是因为审题不清而导致失误,甚至不少同学根本连题目都还没有读清楚就望而怯步。

第二:要按给定条件画出不同状态下的图形,将运动的点用静态的图去分析,探索在运动变化中问题的不变性,抓住“静”的瞬间,使一般情形转化为特殊情形,找到“动”与“静”的关系,做到动中觅静,以静制动,动静互化。

同时,通过建立运动中两个变量的函数关系,用联系发展的观点来研究变动元素之间的关系,达到以动制动。

第三:应用分类讨论思想,将动态问题划分为若干既不重复,也不遗漏的几个小问题加以一一解决,从而使复杂、难于解决的问题简单化,特别是当问题条件不具体而模棱两可时,通过分类讨论可以确定准确的答案。

同学们在进行分类解题时,关键是要有分类意识,克服想当然的错误习惯。

特别是应用分类讨论时要将在运动过程中导致图形本质发生变化时的各种时刻的图形分类画出,变“动”为“静”,运用相关知识如方程、相似形进行探索,寻找各个相关几何量之间的关系,建立相应的数学模型进行求解。

(一)动点型动态探究题 1.(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?2.(09齐齐哈尔)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1) 直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 3.(09哈尔滨) 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4), 点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.4.(09济南)如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.CM2 / 45.(09兰州)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动, 设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由. 6. 如图,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0),B (18,6),C (8,6),四边形OABC 是梯形,点P 、Q 同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,当这两点有一点到达自己的终点时,另一点也停止运动。

九年级中考数学复习专题十 几何动态探究题

九年级中考数学复习专题十  几何动态探究题

专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。

中考数学专题复习 三角形动态问题 ——动点,动线,动图(25张PPT)

中考数学专题复习 三角形动态问题     ——动点,动线,动图(25张PPT)

解:(1)∵长方形ABCD, ∴∠A=∠B=90°, ∵点E为AD的中点,AD=6cm, ∴AE=3cm, 又∵P和Q的速度相等可得出AP=BQ=1cm,BP=3, ∴AE=BP, 在△AEP和△BQP中,
∴△AEP≌△BPQ( SAS), ∴∠AEP=∠BPQ, 又∵∠AEP+∠APE=90°, 故可得出∠BPQ+∠APE=90°, 即∠EPQ=90°, 即EP⊥PQ.
∠CBE+∠ECB=90∘
∴∠ACD=∠CBE
在△ADC和△CEB中,
{ ∠ADC=∠CEB=90∘ ∠ACD=∠CBE AC=CB, ∴△ADC≌△CEB, ∴AD=CE,DC=BE, ∴DE=CE−CD=AD−BE;
(3)DE=BE−AD. 易证得△ADC≌△CEB, ∴AD=CE,DC=BE, ∴DE=CD−CE=BE−AD.
∠MNC=∠C′PM=75°, ∠C′PN=∠BPN, ∴∠NPM=2×75°=150°, ∴∠C′PB=30°, 由折叠的性质可知:∠C′PN=∠BPN, ∴∠NPB′=15°.
平移问题
11.如图,两个直角三角形重叠在一起,将其中一个三角形沿 着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8, DH=3,平移距离为4,求阴影部分的面积为( D )
折叠与对称
8.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E 分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合, 若∠A=75°,则∠1+∠2= 150° ;
9.如图,将长方形纸片ABCD折叠,折痕为EF,若
AB=2,BC=3,则阴影部分的周长为___1_0____.
∵AE=ME,AB=MN,BF=NF, ∴ME+DE+MN+CD+CF+NF =AE+DE+AB+CD+CF+BF =AD+AB+CD+BC =2+3+2+3 =10.

中考数学-几何图形的动态问题(含答案)

中考数学-几何图形的动态问题(含答案)

中考数学-几何图形的动态问题(含答案)一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④2.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s 的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.3.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN 所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD 与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.4.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 25.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C. D.二、填空题6.如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x= ________时,△APE的面积等于5 .7.如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为________秒.在整个运动过程中,与矩形重叠部分面积的最大值为________.8.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为________9.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)10.如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________三、综合题11.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,点E、F分别从B、C 两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA、AB向终点B运动,速度为5cm/s,设它们运动的时间为x(s).(1)求x为何值时,△EFC和△ACD相似;(2)是否存在某一时刻,使得△EFD被AD分得的两部分面积之比为3:5,若存在,求出x 的值,若不存在,请说明理由;(3)若以EF为直径的圆与线段AC只有一个公共点,求出相应x的取值范围.12.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AG∶BE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2 ,则BC=________.13.如图,在平面直角坐标系中,已知A(-3,0),B(0,),点D与点A关于y轴对称,C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标并用尺规作图确定两点位置(保留作图痕迹)(2)若半径为1的⊙P从点A出发,沿A—D—B—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒0.5个单位长的速度增加,运动到点C时运动停止,当运动时间为t秒时①t为何值时,⊙P与y轴相切?②在整个运动过程中⊙P与y轴有公共点的时间共有几秒?简述过程.(3)若线段AB绕点O顺时针旋转90°,线段AB扫过的面积是多少?14.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.15.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?16.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE= .将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA 与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F 运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=________度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.17.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,(1)如果P、Q同时出发,几秒后,可使△PBQ的面积为8平方厘米?(2)线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.18.如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF 为等腰三角形时,求AP的长.19.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.20.如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P、Q两点的距离为5 cm?(2)当t为何值时,△PCQ的面积为15cm2?(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?答案解析部分一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④【答案】C【考点】分段函数,圆的认识,几何图形的动态问题,动点问题的函数图像【解析】【解答】当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③.故答案为:C.【分析】由题意知PB的最短距离为0,最长距离是圆的直径;而点P从A点沿顺时针旋转和逆时针旋转后与点B的距离有区别,当点P从A点沿顺时针旋转时,弦BP的长度y的变化是:从AB的长度增大到直径的长,然后渐次较小至点B为0,再从点B运动到点A,则弦BP的长度y由0增大到AB的长;当点P从A点沿逆时针旋转时,弦BP的长度y的变化是:从AB的长度减小到0,再由0增大到直径的长,最后由直径的长减小到AB的长。

中考数学经典总复习专题动线、动形问题完美全文

中考数学经典总复习专题动线、动形问题完美全文
的取值范围;
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2

x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。

2023年九年级数学中考压轴复习专题几何综合——动点问题课件

2023年九年级数学中考压轴复习专题几何综合——动点问题课件
6−5

=

4

Rt△ADH中,AD=5,tanA= = 3
6−5
∴y与x的函数关系式为
=
∴DH=4,AH=3.在Rt△EDH中,DH=4,

25
EH=x-3,
( 6 ≤≤35)
∴DE²=DH²+EH²=4²+(x-3)²=x²-6x+
4
例题 在△ABC中,AC=25,AB =35,tanA=3,D为AC边上的一点,且AD=5 ,E,F都为AB边上的动
所以结合已知条件与所给图形进行认真分析是非常重要的,
当然这样的分析是建立在熟练运用常见图形的几何性质之上
的.
(2)类似于例题这样的几何计算型的压轴题,同学们
要切实体会解直角三角形与相似三角形在计算中所发挥的
重要作用.
(3)对于类似于例题这样的动态几何,应时刻谨记
“动静结合”、“数形结合”的处理原则,以及“分类
∴∠EDF+∠ADF=90°,即
∠ADE=90°.在Rt△ADE中,AD=5,

4
tanA= = 3
4
20
5
25
∴DE=3AD= 3 ,AE=3AD= 3
∴△EDF∽△EAD,


∴ =
∴DE²=AE·EF=x·(x一y)=x²-xy.∴x²-6x+25=x²xy
(2) 如下图,作DH⊥AE于点H,在
目录
01
研究背景
03
典型例题探究
动 态 几 何 研 究 重 要 性
总结分析动态问题处理技巧
05
02
知识脉络梳理
初中阶段几何知识梳理
04 小试能手
技 巧 ,
挑战自我

2020年中考数学动态问题-折叠中有关计算题型(含答案)

2020年中考数学动态问题-折叠中有关计算题型(含答案)

专题04 动点折叠类问题中有关计算题型一、基础知识点综述动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答.实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力.要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.通过研究历年中考真题并结合2019年各省(市)的中考真题,特总结出此专题. 期望能给各位老师及同学以学习教学一些启发,一些指引,培养出学生的解题素养.下面我们从几个例题中展开论述,逐层拨开它的神秘面纱.二、精品例题解析题型一:图形折叠中的计算例1.(2019·青岛)如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长为cm .例2. 如图,矩形ABCD中,AB=36BC=12,E为AD的中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落在CF上的点G处,则折痕EF的长是例3.(2019·连云港)如图,在矩形ABCD中,AD=22AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=62MP;④BP=22AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个例4.(2019·潍坊)如图,在矩形ABCD中,AD=2,将∠A向内折叠,点A落在BC上,记为A’,折痕为DE. 若将∠B沿EA’向内折叠,点B恰好落在DE上,记为B’,则AB=例5.(2019·天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上. 若DE=5,则GE的长为例6.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合.以下结论错误的是( ) A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2 D.515sin +=∠AHD例7.(2019·金华)如图,将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线减去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF 的值是( )A. 522B. 21-C. 12D. 22例8.(2019·重庆)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC',DC ’与AB 交于点A ’,连结AC',若AD =AC ’=2,BD =3,则点D 到BC 的距离为( )A .233B .7213C .7D .13例9.(2019·重庆)如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1. 连接DE ,将△ADE 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G. 则四边形DFEG 的周长为() A. 8 B. 42 C. 224+ D. 322+题型二:图形折叠中证明、计算题例10.(2019·滨州) 如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG.(1)求证:四边形CEFG 是菱形;(2)若AB=6,AD=10,求四边形CEFG 的面积.二、精品例题解析题型一:图形折叠中的计算例1.(2019·青岛)如图,在正方形纸片 ABCD 中, E 是 CD 的中点,将正方形纸片折叠,点 B 落在线段AE 上的点 G 处,折痕为 AF .若 AD =4 cm ,则 CF 的长为 cm .【答案】625-【分析】要求CF 的长,观察图形,发现CF 在Rt △CEF 中,想到用勾股定理求解,然而EF 的长度是未知的,求解难度较大;再观察图形,发现CF=BC -BF ,只要求出BF 长度即可,而BF=GF ,进而想到利用面积法来求解,设CF=x ,BF=GF=4-x ,列方程求解x 即可.【解析】解:∵四边形ABCD 是正方形,∴AD=CD=BC=4,∠C=∠D=90°,设CF=x ,由折叠知:BF=GF=4-x ,∵E 是CD 中点,∴DE=2,在Rt △ADE 中,由勾股定理得:AE=5ADE ABF AEF CEF ABCD S S S S S =+++△△△△正方形 即:()()111116424425422222x x x =⨯⨯+⨯⨯-+⨯-+⨯⨯ 解得:x=65-,故答案为:65-. 例2. 如图,矩形ABCD 中,AB=36BC=12,E 为AD 的中点,F 为AB 上一点,将△AEF 沿EF折叠后,点A 恰好落在CF 上的点G 处,则折痕EF 的长是【分析】EF 在Rt △AEF 中,求出AF 的长即可利用勾股定理求解折痕EF 的长度;连接CE ,可证△CEG ≌△CED ,得EF ⊥CE ,设AF=x ,利用CF 2=BF 2+BC 2,CF 2=EF 2+CE 2,列出方程求解AF 的长. 【答案】215.【解析】解:∵E 是AD 的中点,∴AE=ED ,由折叠知:AE=EG ,∴EG=DE,连接CE ,在Rt △CDE 和Rt △CDG 中,CE=CE ,EG=AE=DE∴Rt △CDE ≌Rt △CDG∴∠GEC=∠DEC ,∴∠FEC=90°,设AF=x ,则BF=36x ,BC=AD=12,在Rt △EFC 和Rt △BFC 中,由勾股定理得:222222AE AF DE CD BF BC +++=+即:(()22222266363612x x +++=-+,解得:x=26, ∴()22626215+=故:答案为215.例3.(2019·连云港)如图,在矩形ABCD中,AD=22AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=6MP;④BP=2AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】B.【解析】解:由折叠性质知:∠DMC=∠EMC,∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=12×180°=90°,∴△CMP是直角三角形;故①正确;由折叠知:∠D=∠MEC=90°,∠MEG=∠A=90°,∴∠GEC=180°,即点C、E、G在同一条直线上,故②错误;∵AD=2,设AB=x,则AD=2,由折叠知:DM=12AD2x,由勾股定理得:CM3x,∵∠PMC =90°,MN ⊥PC ,∴△CMN ∽△CPM ,∴CM 2=CN •CP ,∴CP 22x =,∴PN =CP ﹣CN =2x ,由勾股定理得:PM x ,∴PC PM=即PC MP ,故③错误;PB x ,AB PB=∴PB =2AB ,故④正确, 由折叠知:CD =CE ,EG =AB ,AB =CD ,∴CE =EG ,∵∠CEM =∠G =90°,∴FE ∥PG ,∴CF =PF ,∵∠PMC =90°,∴CF =PF =MF ,∴点F 是△CMP 外接圆的圆心,故⑤正确;故答案为:B .例4.(2019·潍坊)如图,在矩形ABCD 中,AD=2,将∠A 向内折叠,点A 落在BC 上,记为A ’,折痕为DE. 若将∠B 沿EA ’向内折叠,点B 恰好落在DE 上,记为B ’,则AB=【答案】232 33+.【解析】解:由折叠知:∠AED=∠DEA’=∠BEA’,而∠AED+∠DEA’+∠BEA’=180°,∴∠AED=∠DEA’=∠BEA’=60°,∴∠EDA=∠EDA’=∠CDA’=30°,∵AD=2,∴A’E=AE=323 33AD=,∴BE=32'33A E=,即AB=AE+BE=2323+.例5.(2019·天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上. 若DE=5,则GE的长为【答案】49 13.【解析】解:∵四边形ABCD 是正方形,∴∠D=∠DAB=90°,AD=AB ,由折叠性质知:AE ⊥BF ,∴∠DAE+∠BAE=∠ABF+∠BAE=90°,即∠DAE=∠ABF ,∴△ADE ≌△BAF ,∴AF=DE=5,由勾股定理得:AE=BF=13,∴AG=2×51213⨯=12013, ∴GE=AE -AG=4913. 故答案为:4913. 例6.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合.以下结论错误的是( ) A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2 D.515sin +=∠AHD【答案】D.【解析】解:由折叠知:四边形BADH 为菱形,∴EH=BE+BH在Rt △ABE 中,由勾股定理得:225BE AE +=∴5,5,在Rt △AEH 中,由勾股定理,得:AH 2=()2222512=1025EH AE +=+++, 故A 正确;CD=AD -AC=5-1,BC=2,∴51CD BC -=,故B 正确; BC 2=4,CD ×EH=(5-1)×(5+1)=4, 故C 正确;∵∠AHD=∠AHE ,∴515sin sin +≠=∠=∠AH AE AHE AHD 故D 错误,即答案为D.例7.(2019·金华)如图,将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线减去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF 的值是( )A. 52-B. 21C. 12D. 22【答案】A.【解析】解:设正方形ABCD 的边长为a ,连接HF ,GE 交于点O ,则GE ⊥HF ,∠GFH=45°,∴2, 由题意知:正方形EFGH 、与其它四个五边形的面积均相等,∴正方形EFGE 面积为:25a , 即GF=55a , ∴FO=2251022GF a a =⨯= FM=OM -FO=102a a - ∴105221025a a FM GF a --==, 故答案为A.例8.(2019·重庆)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC',DC ’与AB 交于点A ’,连结AC',若AD =AC ’=2,BD =3,则点D 到BC 的距离为( )A .233 B .7213 C .7 D .13【答案】B.【解析】解:如图,连接CC ’,交BD 于M ,过D 作DH ⊥BC ’于H ,∵AD=AC ’=2,AD=CD=2,由翻折知:CD=DC ’=2,∠DBC=∠BDC ’,∴△ADC ’为等边三角形,DH 即为所求,∴∠ACC ’=∠DC ’C=30°,∴DM=1,C ’M= 3 ∵BD=3, ∴BM=BD -DM=2,在Rt △BMC ’中,由勾股定理得:BC ’= 22'7C M BM +=,∵'11''22BC D S BD MC BC DF =⋅=⋅△ ∴DH=3217, 故答案为:B.例9.(2019·重庆)如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1. 连接DE ,将△ADE 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G. 则四边形DFEG 的周长为() A. 8 B. 42 C. 224+ D. 322+【答案】B.【解析】解:∵∠ABC =45°,AD ⊥BC 于点D ,∴∠BAD =90°﹣∠ABC =45°,∴△ABD 是等腰直角三角形,∴AD =BD ,∴∠GBD+∠C =90°,∵∠EAD+∠C =90°,∴∠GBD =∠EAD ,∵∠ADB =∠EDG =90°,∴∠ADB ﹣∠ADG =∠EDG ﹣∠ADG ,即∠BDG =∠ADE ,∴△BDG ≌△ADE ,∴BG =AE =1,DG =DE ,∵∠EDG =90°,∴△EDG 为等腰直角三角形,∴∠AED =∠AEB+∠DEG =90°+45°=135°,∵△AED 沿直线AE 翻折得△AEF ,∴△AED ≌△AEF ,∴∠AED =∠AEF =135°,ED =EF ,∴∠DEF =360°﹣∠AED ﹣∠AEF =90°,∴△DEF 为等腰直角三角形,∴EF =DE =DG ,在Rt △AEB 中,由勾股定理得:BE =,∴GE =BE ﹣BG =﹣1,在Rt △DGE 中,DG =DE=2GE =2﹣2,∴EF =DE =2﹣2, 在Rt △DEF 中,DF =DE =﹣1,∴四边形DFEG 的周长为:GD+EF+GE+DF =2(2)+2(1)=+2,题型二:图形折叠中证明、计算题例10.(2019·滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.【分析】(1)由翻折性质并借助全等三角形的性质和菱形的判定方法证明结论成立;(2)由勾股定理,可以求得AF的长,并求得EF和DF的值,从而可以得到四边形CEFG的面积.【答案】见解析.【解析】(1)证明:由题意可得:△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,专题04 动点折叠类问题中有关计算题型∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,在Rt△FDE中,由勾股定理得:22+(6﹣x)2=x2,解得,x=10 3,即CE=10 3,∴四边形CEFG的面积是:CE•DF=103×2=203.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。

动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。

只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.为更好的帮助考生,笔者总结这种问题的一般思路如下:第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。

针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。

针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。

第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。

如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。

第三、做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式,如本讲例5当中的比例关系意味着两种不一样的状况,是否能想到就成了关键。

动态几何训练题【思考1】已知:如图(1),射线//AM 射线BN ,AB 是它们的公垂线,点D 、C 分别在AM 、BN 上运动(点D 与点A 不重合、点C 与点B 不重合),E 是AB 边上的动点(点E 与A 、B 不重合),在运动过程中始终保持EC DE ⊥,且a AB DE AD ==+. (1)求证:ADE ∆∽BEC ∆; (2)如图(2),当点E 为AB 边的中点时,求证:CD BC AD =+; (3)设m AE =,请探究:BEC ∆的周长是否与m 值有关?若有关,请用含有m 的代数式表示BEC ∆的周长;若无关,请说明理由.第25题(1)第25题(2)【思考2】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0 <∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD=°;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【思考3】如图:已知,四边形ABCD中,AD//BC,DC⊥BC,已知AB=5,BC=6,cosB=35.点O为BC边上的一个动点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD 于点M,交射线BC于点N,连结MN.(1)当BO=AD时,求BP的长;(2)点O运动的过程中,是否存在BP=MN的情况?若存在,请求出当BO为多长时BP=MN;若不存在,请说明理由;(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C 半径CN 的取值范围。

【思考4】在ABCD 中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转90得到线段EF(如图1(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转90 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=43,AE=1,在①的条件下,设CP 1=x ,S 11P FC =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.第三部分 思考题解析【思考1解析】(1)证明:∵ EC DE ⊥,∴ ︒=∠90DEC .∴ ︒=∠+∠90BEC AED . 又∵ ︒=∠=∠90B A ,∴ ︒=∠+∠90EDA AED . ∴ EDA BEC ∠=∠.∴ ADE ∆∽BEC ∆.第25题A B CD O P M N ABCD(备用图)(2)证明:如图,过点E 作EF BC //,交CD 于点F , ∵ E 是AB 的中点,容易证明)(21BC AD EF +=.在DEC Rt ∆中,∵ CF DF =,∴ CD EF 21=. ∴)(21BC AD +CD 21=. ∴ CD BC AD =+. (3)解:AED ∆的周长DE AD AE ++=m a +=,m a BE -=. 设x AD =,则x a DE -=.∵ ︒=∠90A ,∴ 222AD AE DE +=.即22222x m x ax a +=+-. ∴ am a x 222-=.由(1)知ADE ∆∽BEC ∆, ∴ 的周长的周长BEC ∆∆ADE BE AD =m a a m a --=222am a 2+=. ∴ BEC ∆的周长⋅+=ma a2ADE ∆的周长a 2=. ∴ BEC ∆的周长与m 值无关. 【思考2答案】解:(1)∠BPD= 30 °;(2)如图8,连结CD . 解一:∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2. ∵ △ABC 是等边三角形, ∴ BA=BC=AC ,∠ACB= 60°. ∵ BP=BA , ∴ BP=BC . ∵ BD= BD ,∴ △PBD ≌△CBD . ∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD , ∴ △BCD ≌△ACD . ∴ 134302ACB ∠=∠=∠=︒. ∴ ∠BPD =30°. 解二:∵ △ABC 是等边三角形, ∴ BA =BC=AC .∵ DB=DA , ∴ CD 垂直平分AB . ∴ 134302ACB ∠=∠=∠=︒. ∵ BP=BA ,∴ BP=BC .∵ 点D 在∠PBC 的平分线上,∴ △PBD 与△CBD 关于BD 所在直线对称. ∴ ∠BPD=∠3. ∴ ∠BPD =30°. (3)∠BPD= 30°或 150° . 图形见图9、图10.【思考3解析】解:(1)过点A 作AE ⊥BC,在Rt △ABE 中,由AB=5,cosB=35得BE=3. ∵CD ⊥BC ,AD//BC ,BC=6,∴AD=EC=BC -BE=3.当BO=AD=3时, 在⊙O 中,过点O 作OH ⊥AB,则BH=HP ∵cos BH B BO =,∴BH=39355⨯=. ∴BP=185. (2)不存在BP=MN 的情况- 假设BP=MN 成立,∵BP 和MN 为⊙O 的弦,则必有∠BOP=∠DOC.过P 作PQ ⊥BC ,过点O 作OH ⊥AB, ∵CD ⊥BC ,则有△PQO ∽△DOC- 设BO=x ,则PO=x,由3cos 5BH B x ==,得BH=35x , ∴BP=2BH=65x . ∴BQ=BP×cosB=1825x ,PQ=2425x .∴OQ=1872525x x x -=.∵△PQO ∽△DOC ,∴PQ DC OQ OC =即244257625x xx=-,得296x =. 当296x =时,BP=65x =295>5=AB ,与点P 应在边AB 上不符,∴不存在BP=MN 的情况.(3)情况一:⊙O 与⊙C 相外切,此时,0<CN <6;------7分 情况二:⊙O 与⊙C 相内切,此时,0<CN≤73.-------8分 【思考4解析】解:(1)①直线1FG 与直线CD 的位置关系为互相垂直. 证明:如图1,设直线1FG 与直线CD 的交点为H .∵线段1EC EP 、分别绕点E 逆时针旋转90°依次得到线段1EF EG 、,∴111190PEG CEF EG EP EF EC ∠=∠===°,,. ∵1190G EF PEF ∠=-∠°,1190PEC PEF ∠=-∠°, ∴11G EF PEC ∠=∠.∴11G EF PEC △≌△.∴11G FE PCE ∠=∠. ∵EC CD ⊥,∴190PCE ∠=°,∴190G FE ∠=°.∴90EFH ∠=°. ∴90FHC ∠=°.∴1FG CD ⊥.②按题目要求所画图形见图1,直线12G G 与直线CD 的位置关系为互相垂直.(2)∵四边形ABCD 是平行四边形,∴B ADC ∠=∠.∵461tan 3AD AE B ===,,, A BC DOP MNQ H FDC BAE图1G 2G 1P 1H P 2∴45tan tan 3DE EBC B =∠==,.可得4CE =. 由(1)可得四边形EFCH 为正方形.∴4CH CE ==.①如图2,当1P 点在线段CH 的延长线上时,∵1114FG CP x PH x ===-,, ∴11111(4)22P FG x x S FG PH -=⨯⨯=△.∴212(4)2y x x x =->. ②如图3,当1P 点在线段CH 上(不与C H 、两点重合)时,∵1114FG CP x PH x ===-,,∴11111(4)22P FG x x S FG PH -=⨯=△. ∴212(04)2y x x x =-+<<. ③当1P 点与H 点重合时,即4x =时,11PFG △不存在.综上所述,y 与x 之间的函数关系式及自变量x 的取值范围是212(4)2y x x x =->或212(04)2y x x x =-+<<.B。

相关文档
最新文档