滑动轴承油膜的形成过程

合集下载

实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析分解

实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析分解

3)转速对油膜压力的影响 转速越高,单位时间通过载荷作用面的润滑 油就越多,产生的摩擦力就越大,油膜压力就越 大,特别是当转速达到一定值使流体的流动由层 流变为紊流时,承载力会得到显著提高。在转速 升高的同时会使润滑油的温度上升,运动粘度下 降,使油膜压力降低承载能力下降。相比而言, 油温升高带来的油膜压力降低比转速上升带来的 油膜压力升高要小得多。 4)液体动压滑动轴承设计的结构、尺寸,制造 精度,材料选择对动压油膜的产生和压力的大小 都有直接的影响。
实验7 液体动压滑动轴承油膜压 力与摩擦仿真及测试分析
7.1 实验目的
通过在 HSB 型试验台上,对液体动压 轴承进行径向和轴向油膜压力分布及大小的 测量和仿真,对摩擦特性曲线进行测定及仿 真,了解影响液体动压滑动轴承油膜建立及 影响油膜大小各项因素之间的关系。
7.2 实验原理
利用轴承与轴颈配合面之间形成的楔形间
3、滑动轴承油膜压力仿真与测试分析界面
4、滑动轴承摩擦特征仿真与测试分析界面
7.8 实验内容
1.液体动压轴承油膜压力周向分布测试分析
该实验装置采用压力传感器、A/D板采集该 轴承周向上七个点位置的油膜压力,并输入计 算机通过曲线拟合作出该轴承油膜压力周向分 布图。通过分析其分布规律,了解影响油膜压
传感器采集的实时数据。
注:此键仅用于观察和手动纪录各压力传感器采集的数据,软件所
需数据将由控制系统自动发送、接收和处理。
7.7软件界面操作说明
1、由计算机桌面“长庆科教”进入启动界面
2、在图7-7启动界面非文字区单击左键, 即可进入滑动轴承实验教学界面。


[实验指导]: 单击此键,进入实验指导书。 [进入油膜压力分析]: 单击此键,进入油膜压力及摩擦特性分析。 [进入摩擦特性分析]: 单击此键,进入连续摩擦特性分析。 [实验参数设置]: 单击此键,进入实验参数设置。 [退出]: 单击此键,结束程序的运行,返回WINDOWS界面。

液体动压润滑向心滑动轴承实验

液体动压润滑向心滑动轴承实验

3’
4’
5’
2’
F
3
45
6’
6
2 1’
1
7 7’
端泄影响系数
Pm
2’ 1’
3’ 4’
5’ 6’ 7’
12 3
4 5 67
七、实验报告要求
数据记录
压力表号 p1
p2
p3
p4
p5
p6
p7
p8 (轴向)
压力
江苏大学工业中心
七、实验报告要求
绘制油膜的轴向和周向压力分布曲线
3’
µl
=
0.001 m mm
5’
江苏大学工业中心
四、实验设备
动力装置 油压测试装置
加载装置
1-直流电动机 2-三角带 3-传感器 4-螺旋加载杆 5-弹簧片 6-测力计(百分表) 7-压力表(径向7只,轴向一只) 8-主轴瓦 9-主轴 10-主轴箱
江苏大学工业中心
五、实验步骤
实验条件:W=70kgf,n=500r/min。 1、打开电源。 2、将转速调至500r/min左右。 3、加载,外载荷为70Kg.f。 4、等待油压表稳定后读出P1-P8的数据,记录在表格中。
稳定后再进行数据记录。
江苏大学工业中心
分组实验
2’
F
3
4 5
6’
µP
MPa
= 0.01
mm
4’
8’
8’
2
1’ 1 20o
6 7’ 7
30o
30o
0
0
B/4
d
B/2
B
n
周向压力分布曲线
轴向压力分布曲线
江苏大学工业中心
七、实验报告要求

滑动轴承——精选推荐

滑动轴承——精选推荐

*第十章 滑动轴承重要基本概念1.动压油膜形成过程随着轴颈转速的提高,轴颈中心的位置和油膜厚度的变化如图10-3所示。

图10-3从n =0,到n →∞,轴颈中心的运动轨迹为一半圆。

利用此原理可以测量轴承的偏心距e ,从而计算出最小油膜厚度h min 。

2.动压油膜形成条件(1) 相对运动的两表面必须构成收敛的楔形间隙;(2) 两表面必须有一定的相对速度,其运动方向应使润滑油从大口流入、从小口流出; (3) 润滑油必须具有一定的粘度,且供油要充分。

3.非液体摩擦滑动轴承的失效形式、设计准则和验算内容,液体动压润滑轴承设计时也要进行这些计算失效形式:磨损、胶合设计准则:维护边界油膜不被破坏,尽量减少轴承材料的磨损。

验算内容:为防止过度磨损,验算:p =BdP≤ [ p ] MPa 为防止温升过高而胶合,验算:Pv =100060⨯⋅ndBd P π≤ [pv ] MPa ·m/s 为防止局部过度磨损,验算:V = 100060⨯ndπ≤ [v ] m/s因为在液体动压润滑滑动轴承的启动和停车过程中,也是处于非液体摩擦状态,也会发生磨损,也需要进行上述三个条件的验算。

4.对滑动轴承材料性能的要求除强度(抗压、抗冲击)外,还应有良好的减摩性(摩擦系数小)、耐磨性(抗磨损、抗胶合)、跑合性、导热性、润滑性、顺应性、嵌藏性等。

5.液体动压润滑轴承的工作能力准则 (1) 保证油膜厚度条件:h min ≥[h ];(2) 保障温升条件:t ∆ ≤ [t ∆]=10~30C ︒。

精选例题与解析例10-1 一向心滑动轴承,已知:轴颈直径d = 50mm ,宽径比B /d =0.8,轴的转速n = 1500r/min ,轴承受径向载荷F = 5000N ,轴瓦材料初步选择锡青铜ZcuSn5Pb5Zn5,试按照非液体润滑轴承计算,校核该轴承是否可用。

如不可用,提出改进方法。

解:根据给定材料ZCuSn5Pb5Zn5查得:[p ] = 8MPa ,[v ]= 3 m/s ,[pv ]=12 MPa ·m/s 。

《机械设计基础》第15章 滑动轴承

《机械设计基础》第15章  滑动轴承

τ
P+dp τ+dτ
雷诺耳实验(1883年)——层流与湍流的现象
雷诺方程:
h0 - h dp = 6ηv dx h3
其中:p——油膜压力 η——润滑油粘度 V——速度 h——间隙厚度(油膜厚度) h0——油膜压力为极限值时的间隙厚度
分析雷诺方程:
(1)当相对运动的两表面 形成收敛油楔时。即能保 证移动件带着油从大口走 u 向小口。 o
形成动压润滑的条件: (1)相对运动的两表面形成收敛油楔时。 (2)两表面必须有一定的相对速度。
(3)润滑油必须有一定的粘度,并供油充分。
(4)油膜的最小厚度应大于两表面不平度之和。
例:试判断下列图形能否建立动压润滑油膜?
v v v v
向心滑动轴承形成动压油膜的过程:
F F FF F
o
o1 o1 o o1 1 o1
润滑脂 (黄油) 固体润滑剂
钙基、钠基、铅基、锂基等。
石墨、二流化钼、聚氟乙烯树脂等 (用于高温下的轴承)。
空气、氢气等(只用于高速、高 温以及原子能工业等特殊场合)
气体润滑剂
●润滑剂的主要指标:
(1) 粘度——是润滑油最重要的物理性能指标,是选择润滑 油的主要依据,它标志着流体流动时内摩擦阻 力的大小。粘度越大,内摩擦阻力越大,即流 动性越差。 (2)凝点——是润滑油冷却到不能流动时的温度。凝点越低越好。 (3) 闪点——是润滑油在靠近试验火焰发生闪燃时的温度。 闪点是鉴定润滑油耐火性能的指标。在工作温度 较高和易燃环境中,应选用闪点高于工作温度 20°~30°C的润滑油。 (4) 油性——是指润滑油湿润或吸附在表面的能力。吸附能力 越强,油性越好。 (5) 滴点——是指润滑脂受热后开始滴落时的温度。润滑脂使 用工作温度应低于滴点20°~30°C,低于40°~ 60°更好。 (6)针入度(稠度)——是表征指润脂稀稠度的指标。针入度越 小,表示润滑脂越稠;反之,流动性越大。

滑动轴承实验报告

滑动轴承实验报告

一、实验目的1. 了解滑动轴承的结构和工作原理。

2. 测量轴承的径向和轴向油膜压力分布曲线。

3. 观察径向滑动轴承液体动压润滑油膜的形成过程和现象。

4. 分析轴承在不同载荷和速度条件下的性能变化。

二、实验原理滑动轴承是利用液体动压原理,通过在轴承和轴颈之间形成油膜,减小摩擦和磨损,保证机器的正常运转。

实验中,通过测量油膜压力分布,可以分析轴承的润滑性能和工作状态。

三、实验仪器与设备1. 滑动轴承实验台2. 轴承加载装置3. 润滑油泵4. 压力传感器5. 数据采集系统6. 计算机及实验软件四、实验步骤1. 将实验台安装好,检查各部件连接是否牢固。

2. 添加润滑油,确保油量充足。

3. 启动润滑油泵,调节转速至预定值。

4. 打开轴承加载装置,逐步增加载荷。

5. 使用压力传感器测量轴承的径向和轴向油膜压力。

6. 记录实验数据,包括转速、载荷、油膜压力等。

7. 改变转速和载荷,重复实验步骤。

五、实验结果与分析1. 径向油膜压力分布曲线实验结果显示,轴承的径向油膜压力分布曲线呈抛物线形状。

在轴承中心区域,油膜压力最大,随着距离轴承中心的增加,油膜压力逐渐减小。

这是因为液体动压原理使得油膜压力在轴承中心区域达到最大值。

2. 轴向油膜压力分布曲线实验结果显示,轴承的轴向油膜压力分布曲线呈线性形状。

在轴承中心区域,轴向油膜压力最大,随着距离轴承中心的增加,轴向油膜压力逐渐减小。

这是由于轴承受到轴向载荷,使得轴向油膜压力在轴承中心区域达到最大值。

3. 载荷对油膜压力的影响实验结果显示,随着载荷的增加,轴承的径向和轴向油膜压力均呈上升趋势。

这是因为载荷的增加使得轴承受到更大的压力,导致油膜压力增大。

4. 转速对油膜压力的影响实验结果显示,随着转速的增加,轴承的径向和轴向油膜压力均呈下降趋势。

这是因为转速的增加使得油膜厚度减小,导致油膜压力降低。

六、实验结论1. 滑动轴承的径向和轴向油膜压力分布曲线呈抛物线和线性形状。

滑动轴承工作原理

滑动轴承工作原理

滑动轴承工作原理
滑动轴承是一种通过滑动摩擦来支撑轴承对的一种机械元件。

它的工作原理可以简单概括为以下几点:
1. 润滑剂:在滑动轴承中,润滑剂起到重要作用。

它可以减少轴承与轴的摩擦力和磨损,降低摩擦面的温度,并阻止氧化、腐蚀和污染物进入轴承内部。

2. 摩擦力:滑动轴承的工作原理是通过两块平面面对面的滑动摩擦来支撑轴承对。

当轴承受到外力作用时,摩擦力将平衡外力,使轴承保持稳定运行。

3. 压力分布:滑动轴承会通过润滑剂在摩擦面上形成一层油膜,减小摩擦系数。

这种油膜的形成会使轴承上的压力分布变得均匀,降低表面接触的应力集中。

4. 温度控制:滑动轴承的工作过程中会产生一定的热量。

通过润滑剂的传导、对流和辐射等方式,将轴承产生的热量带走,保持轴承的温度在可接受范围内。

总的来说,滑动轴承的工作原理是依靠润滑剂和摩擦力来实现对轴承的支撑。

合适的润滑剂和适当的工作条件能够保证滑动轴承的正常运行,提高其使用寿命和工作效率。

液体动压滑动轴承油膜压力分布和摩擦特性曲线

液体动压滑动轴承油膜压力分布和摩擦特性曲线

机械设计基础(Ⅲ)实验报告 班级姓名液体动压滑动轴承油膜压力分布和摩擦特性曲线 学号一、 概述液体动压滑动轴承的工作原理是通过轴颈的旋转将润滑油带入摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时油就被挤入轴与轴瓦配合面间的楔形间隙内而形成流体动压效应,在承载区内的油层中产生压力,当压力的大小能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜,这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦间的摩擦是处于完全液体摩擦润滑状态,其油膜形成过程及油膜压力分布如图6-1所示。

图6-1 建立液体动压润滑的过程及油膜压力分布图滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度η(Pa.s)、轴的转速n(r/min)和轴承压强p(Mpa)有关,令pnηλ=式中,λ——轴承摩擦特性系数。

图6-2 轴承摩擦特性曲线观察滑动轴承形成液体摩擦润滑过程中摩擦系数变化的情况,f-λ关系曲线如图6-2所示,曲线上有摩擦系数最低点,相应于这点的轴承摩擦特性系数λkp称为临界特性数。

在λkp以右,轴承建立液体摩擦润滑,在λkp以左,轴承为非液体摩擦润滑,滑动表面之间有金属接触,因此摩擦系数f 随λ减小而急剧增大,不同的轴颈和轴承材料、加工情况、轴承相对间隙等,λkp也随之不同。

本实验的目的是:了解轴承油膜承载现象及其参数对轴承性能的影响;掌握油膜压力、摩擦系数的测试及数据处理方法。

二、 实验要求1、在轴承载荷F=188kgf 时,测定轴承周向油膜压力和轴向油膜压力,用坐标纸绘制出周向和轴向油膜压力分布曲线,并求出轴承的实际承载量。

在轴承载荷F=128kgf 时,测定轴承周向油膜压力和轴向油膜压力,用计算机进行数据处理,得出周向和轴向油膜压力分布曲线及轴承的承载量。

2、测定轴承压力、轴转速、润滑油粘度与摩擦系数之间的关系,用计算机进行数据处理,得出轴承f-λ曲线。

三、 实验设备及原理本实验使用 HZS-1型液体动压轴承实验台,它由传动装置、加载装置、摩擦系数测量装置、油膜压力测量装置和被试验轴承和轴等所组成。

形成流体动压润滑的必要条件和向心滑动轴承形成动压润滑的过程。

形成流体动压润滑的必要条件和向心滑动轴承形成动压润滑的过程。

形成流体动压润滑的必要条件和向心滑动轴承形成动压
润滑的过程。

形成流体动压润滑的必要条件:
1. 必须有一定的相对运动速度。

在流体动压润滑中,油膜的支撑力来源于两表面间的速度差所引起的动压力。

因此,润滑剂必须具有必要的流动性以形成一定的相对运动速度。

2. 必须具备一定的流体润滑剂。

润滑剂应具备一定的粘度,且能形成流体动力润滑油膜。

3. 两表面必须具备一定的平行度和平直度。

当两表面平行时,润滑剂可沿轴向顺利流动,并具有良好的润滑效果;而当两表面不平直时,润滑剂则难以在表面间保持一定的油膜厚度,从而影响润滑效果。

4. 必须具备一定的温度和压力。

适当的温度和压力有助于提高润滑剂的流动性,并促进润滑剂在摩擦表面上的均匀分布。

向心滑动轴承形成动压润滑的过程:
1. 当轴承在一定转速下工作时,轴颈与轴承之间的润滑油由于受到剪切作用而产生一定的粘性阻力。

2. 随着转速的增加,轴颈与轴承之间的相对运动速度也增加,导致润滑油被轴颈携带的旋转作用加强。

3. 随着转速和携带旋转作用的增加,润滑油被挤向轴承的两端边缘,从而产生压力升高。

4. 当轴承两端边缘的压力升高到一定程度时,会形成足够强度的油膜支撑力,将轴颈与轴承顶起,从而实现流体动压润滑。

5. 在流体动压润滑状态下,轴承与轴颈之间的摩擦阻力大幅度下降,减小了磨损,提高了轴承的使用寿命和工作稳定性。

以上内容仅供参考,建议查阅关于向心滑动轴承的书籍文献获取更全面和准确的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滑动轴承油膜的形成过程
滑动轴承油膜的形成是通过润滑油在轴承工作表面形成一层薄膜的过程。

以下是滑动轴承油膜形成的一般过程:
1.起动阶段:在轴承开始转动之前,润滑油首先填满轴承内部空间和油槽。

在轴承停止工作时,油膜通常会被压缩或流失。

2.边界润滑阶段:当轴承开始转动时,润滑油开始在金属表面形成一个极薄的润滑膜,即边界膜。

边界膜主要由润滑油中的添加剂和极压抗磨剂组成,它们能够填充金属表面的微小凹陷和不规则部分,减少金属之间的直接接触,提供初步的润滑效果。

3.混合润滑阶段:随着轴承的继续转动和润滑油的进一步供应,润滑油开始在金属表面形成一个更稳定和均匀的油膜,即混合膜。

混合膜的厚度通常在几个微米到几十个微米之间。

这一油膜能够提供更好的润滑效果,减少摩擦和磨损。

4.流体动压润滑阶段:当轴承在高速运转或重负荷下工作时,润滑油在轴承工作表面形成一个流体动压油膜。

这种油膜是由轴承工作时产生的液压力将润滑油挤入轴承与轴之间形成的。

流体动压油膜的形成可以减少接触压力和摩擦,提供更好的润滑效果和支撑力,减少轴承磨损和热量产生。

以上过程中,润滑油的供应和润滑油膜的形成是相互作用的。

合适的润滑油选择、适当的油脂黏度、轴承设计和运行条件的控制都是确保滑动轴承形成稳定油膜的重要因素。

1/ 1。

相关文档
最新文档