双气缸控制

双气缸控制
双气缸控制

双气缸控制

继电器逻辑电路系列文章(谨以此书献给广大的电工朋友

图1. 气缸和行程开关的分布

这个电路的要求: 当按下启动开关后,气缸A前进,压住行程开关K1后,气缸B前进,气缸B碰到K2后退,碰到K3后,气缸A退回,全过程结束.

气缸由二位四通电磁阀控制,常态下使气缸保持在后止点,得电后气缸前进.

象这样的电路说难不难,说易不易.关键在于对信号的认识和处理,时序图的绘制.

和我的另一篇文章<气缸的四行程控制>相比,这个电路要简单些,但是有共同之处.

对于信号的分类,可以分为 1.瞬时信号 2.持续信号 3.启动信号 4.停止信号 5.额外启动信号 6额外停止信号.在本例中,K1就是一个持续信号,它一直保持到过程的结束,如果有继电器以它为启动信号,而这个继电器并不工作到终点,就要考虑如何停止的问题.

根据信号的出现顺序和控制要求,画出以下时序图

从上图看得出:气缸A(YV1)实际上是全程通电,气缸B(YV2)是在K1到K2区间工作. K1是一个持续信号,一直保持到终点.K1和K2之间有一个额外信号K3,它是气缸B在前进过程中必须要碰到行

程开关K3所发出的.

现在我们按照一般思路来设计电路,给气缸A和B各分配一个继电器J1和J2,对应各自的工作区间.J1的启动由按钮发出,停止信号由K3发出. J 2由K1启动,K2停止.电路如下

上面的电路能达到控制要求吗?肯定不行

根据气缸布置图和时序图,很容易看出问题:

1.气缸A是保持不到终点的,因为气缸B开始向前运动时会碰到K3,

它会使气缸A(电磁阀YV1)提前断电. 这是因为继电器J1选择了以K3为停止信号,但是K3提前出现了一次,破坏了程序.

我们把K3称之为“额外停止信号”,想办法把它排除就可以了,这里我

们并联J2的触点来排除,如下图

我们在行程开关K3上并联2号继电器的常开触点,就解决了1号继电器提前停止的问题. 因为气缸B前进时要启动2号继电器,

它在K3上并联的常开触点闭合,然后K3再动作时1号继电器就不会

断电了.

2.我们发现气缸B(电磁阀YV2,继电器2)的动作也不对,它由K1启动

向前运动,然后压下K2,断电后退,工作过程完成.但气缸B后退会让

K2复位,气缸又向前运动-------如此反复不止,出现振荡现

象. 原因就在于K1是一个持续信号,虽然K2想让它停下来,但只要

K2不被压住,这个支路又通电了,如下图

要解决这个问题只有增加继电器了,如此一来共用到3个继电器,它的分布和时序如下图

在时序图右边的是器件的逻辑代数式,J1=(S+j1)(K3b+j2)的电路如下所示

它的意思是:启动按钮和自锁触点并联,行程开关K3和2号继电器常开触点并联,避免提前断电.然后两个部分再串联.

完整的电路如下所示

那么这个电路能不能用两个继电器来完成呢? 当然可以的.

我们把继电器的分布更合理一些,就可以了.如下图所示,两个继电器成阶梯形布置,它就能可靠地运算出三个独立的区间(逻辑与运算), 也能够运算出全部区间(逻辑或运算).

这一点在电磁阀的驱动上最能看出来

上图中继电器呈阶梯(交叉)分布,能够很好地运算出各个区间

从下面的线圈驱动电路可以看出,YV1的驱动,1号和2号继电器任何一个都可以. YV2的驱动,必须要两个继电器都工作才行,这样就很

巧妙地把两个电磁阀的工作区间确定了.

单杆双作用气缸

神威气动https://www.360docs.net/doc/512196627.html, 文档标题:单杆双作用气缸 一、单杆双作用气缸的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。

气动阀门的安装与调试步骤

第一步执行器与阀门的安装: 1.在拿到气缸后首先检查气缸型号是否正确, 检查气缸为开状态还是关状态,通常情况下安装时为关状态。(大口径阀门也可以开状态安装). 全关状态 2.检查气缸旋转方向,逆时针旋转开阀,顺时 针旋转关阀。 开方向关方向 3.在气缸与阀门连接时检查气缸的连接孔中心 距与阀门上法兰连接孔中心距是否一致。 4.检查气缸轴方与阀门的轴方是否一致,如果

轴方不一致可加装方套。 5.安装时气缸要与阀门状态保持一致。(注意不能一个为开状态一个为关状态,否则阀门旋转方向会相反)。 阀门全关执行器全关状态 6. 安装状态:(客户无特殊要求外)蝶阀与执行器成90度安装。球阀与执行器安装为平行状态。 蝶阀安装状态球阀安装状态 第二步安装电磁阀:(根据客户需求) 1.在安装好气动执行器后如需要安装电磁阀,

注意电磁阀上O型圈是否完好。 2.安装好以后通气看阀门是否为全闭状态,否则把电磁阀拆下旋转180度重新安装。(无特殊要求安装后为全关状态)。 常闭状态常开状态 第三步安装回信器: 1. 首先要把气缸上端指示盖上螺丝拆下,回信器连接轴插入气缸中轴的凹槽内,然后固定好连接螺栓。

2. 打开回信器上盖,检查行程挡块是否与阀门开关相对应。阀门全开时黄色挡块压下开关,阀门全关时红色挡块压下开关。以及装上盖时,上盖上的指示也要与阀门开关一至。 全 关 全开位置全关位置 指 示 全开状态全关状态 第四步调试: 1.在没有电磁阀的情况下,首先从一端通气,看阀门开或关的位置是否到位。如果没有到位把相对应的限位螺丝向外放松一点,多少根据阀门位置相差多少来决定。一个是开限位,一个是关

双作用气缸的速度控制21页word文档

双作用气缸的速度控制 教学目标: 1、知识与技能 1)、掌握各元件的名称、符号、功用; 2)、读懂原理图,并利用原理图连接气路; 3)、通过气路连接、控制,了解元件的工作原理; 2、过程与方法: 首先讲解各元器件的名称、符号、功用和原理图;其次通过老师的连接演示,启发学生;然后由学生自己动手进行气路连接和操作,通过实验由学生自己分析实验现象,进行总结。 3、情感态度价值观: 培养学生分析问题,解决问题的能力。 教学重点: 1、各元器件的名称、符号、功用; 2、气路连接 3、现象分析 教学难点: 气路连接及现象分析 教学方法: 讲授、演示、实操 课时安排: 2课时

课前准备: 各实验实训用元件 教学过程: 课堂小结: 这一节主要实验了双作用气缸的速度控制,在这里要注意各元器件的

功用、符号、名称 作业: 实验报告一份 板书设计: 一、实验目的: 二、实验元件: 三、实验原理图: 四、实验步骤: 五、实验现象记录: 1、刚开始通气时,气缸如何动作? 2、分别按下按钮常闭阀1和2,气缸如何动作? 3、分别调节单向节流阀1和2,气缸动作有何变化? 六、现象分析: 双作用气缸的与逻辑功能控制 教学目标: 2、知识与技能 1)、掌握各元件的名称、符号、功用; 2)、读懂原理图,并利用原理图连接气路; 3)、理解与逻辑功能; 2、过程与方法: 首先讲解各元器件的名称、符号、功用和原理图;其次通过老师的连接演示,启发学生;然后由学生自己动手进行气路连接和操作,

通过实验由学生自己分析实验现象,进行总结。 4、情感态度价值观: 培养学生分析问题,解决问题的能力。 教学重点: 4、各元器件的名称、符号、功用; 5、气路连接 6、现象分析 教学难点: 气路连接及现象分析 教学方法: 讲授、演示、实操 课时安排: 2课时 课前准备: 各实验实训用元件 教学过程:

气缸控制回路

气动教程:电气动回路 1029人阅读| 0条评论发布于:2009-5-15 15:03:00 一、双作用气缸直接控制回路(单电控) 按下按钮开关,气缸的活塞杆向前伸出;松开按钮开关,活塞杆回复到气缸的末端。 二、双作用气缸间接控制回路(双电控) 按下按钮开关,气缸的活塞杆向前伸出;松开按钮开关,活塞杆回复到气缸的末端。 三、双作用气缸逻辑“与”控制回路(直接控制) 按下两个按钮开关,气缸活塞向前伸出;松开一个或两个按钮开关,活塞杆回复到气缸末端

四、双作用气缸逻辑“或”控制回路(间接控制) 任意按下一个按钮开关,气缸活塞向前伸出;松开这个按钮开关,活塞杆回复到气缸末端。 五、双作用气缸自锁回路(断开、导通优先) 按下一个按钮开关,气缸活塞向前伸出;按下另一个按钮开关,则气缸活塞杆回到初始位置。若同时按下两个按钮,气缸的活塞杆不动(断开优先)。若同时按下两个按钮,气缸的活塞杆仍向前伸出(导通优先)。

六、双作用气缸往返运动控制回路(行程开关) 按下控制开关,气缸活塞杆作往返运动;再按一次这个控制开关则停止运行。 七、双作用气缸往返运动控制回路(非接触) 按下一个按钮开关,气缸活塞杆往返运动;按下另一个开关则停止运行。

八、双气缸的顺序控制回路 1.按一下按钮开关S1,气缸1活塞杆向前伸出把盒子往前推至气缸2正下方; 2.当气缸1活塞杆到达1B2时,气缸2的活塞杆向下伸出,在盒子上盖章;同时气缸1回缩复位至1B1; 3.气缸2活塞杆到达2S2盖完章后,自动回缩复位。 九、双缸时间控制回路 1. 静止状态下,气缸1活塞杆回缩在末端,气缸2活塞杆伸出。 2. 按下一个按钮开关,气缸1活塞杆向前伸出,同时气缸2的活塞杆回缩复位;3s后,气缸1的活塞杆回缩复位,同时气缸2活塞杆向前伸出。2s后,气缸1活塞杆再次向前伸出,同时气缸2的活塞杆回缩复位,如此往复。 3. 再次按下按钮开关,气缸运动停止。

气缸常识

1.单作用与双作用气缸区别 双作用气缸的开关动作都通过气源来驱动执行的;通气开,通气关,断气保持原位; 单作用的开关动作只有开动作是气源驱动,而关动作是弹簧复位的;单作用分:常开型和常闭型。 常开型:(通气关,断气开); 常闭型:(通气开,断气关)。 单作用气缸与双作用气缸2009-09-04 12:25 A.M.单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输出力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 双作用气缸 双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。 1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。 缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。安装所占空间大,一般用于小型设备上。 活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。适用于中、大型设备。 2 双活塞杆气缸因两端活塞杆直径相等,故活塞两侧受力面积相等。当输入压力、流量相同时,其往返运动输出力及速度均相等。 2)缓冲气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能量)撞击端盖,引起振动和损坏机件。为了使活塞在行程末端运动平稳,不产生冲击现象。在气缸两端加设缓冲装置,一般称为缓冲气缸。缓冲气缸主要由活塞杆1、活塞、缓冲柱塞、单向阀、节流阀、端盖等组成。其工作原理是:当活塞在压缩空气推动下向右运动时,缸右腔的气体经柱塞孔及缸盖上的气孔排出。在活塞运动接近行程末端时,活塞右侧的缓冲柱塞将柱塞孔堵死、活塞继续向右运动时,封在气缸右腔内的剩余气体被压缩,缓慢地通过节流阀及气孔排出,被压缩的气体所产生的压力能如果与活塞运动所具有的全部能量相平衡,即会取得缓冲效果,使活塞在行程末端运动平稳,不产生冲击。调节节流阀阀口开度的大小,即可控制排气量的多少,从而决定了被压缩容积(称缓冲室)内压力的大小,以调节缓冲效果。若令活塞反向运动时,从气孔输入压缩空气,可直接顶开单向阀,推动活塞向左运动。如节流阀阀口开度固定,不可调节,即称为不可调缓冲气缸。 缓冲气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能

双气缸控制

双气缸控制 继电器逻辑电路系列文章(谨以此书献给广大的电工朋友 图1. 气缸和行程开关的分布 这个电路的要求: 当按下启动开关后,气缸A前进,压住行程开关K1后,气缸B前进,气缸B碰到K2后退,碰到K3后,气缸A退回,全过程结束. 气缸由二位四通电磁阀控制,常态下使气缸保持在后止点,得电后气缸前进. 象这样的电路说难不难,说易不易.关键在于对信号的认识和处理,时序图的绘制. 和我的另一篇文章<气缸的四行程控制>相比,这个电路要简单些,但是有共同之处. 对于信号的分类,可以分为 1.瞬时信号 2.持续信号 3.启动信号 4.停止信号 5.额外启动信号 6额外停止信号.在本例中,K1就是一个持续信号,它一直保持到过程的结束,如果有继电器以它为启动信号,而这个继电器并不工作到终点,就要考虑如何停止的问题. 根据信号的出现顺序和控制要求,画出以下时序图

从上图看得出:气缸A(YV1)实际上是全程通电,气缸B(YV2)是在K1到K2区间工作. K1是一个持续信号,一直保持到终点.K1和K2之间有一个额外信号K3,它是气缸B在前进过程中必须要碰到行 程开关K3所发出的. 现在我们按照一般思路来设计电路,给气缸A和B各分配一个继电器J1和J2,对应各自的工作区间.J1的启动由按钮发出,停止信号由K3发出. J 2由K1启动,K2停止.电路如下 上面的电路能达到控制要求吗?肯定不行

根据气缸布置图和时序图,很容易看出问题: 1.气缸A是保持不到终点的,因为气缸B开始向前运动时会碰到K3, 它会使气缸A(电磁阀YV1)提前断电. 这是因为继电器J1选择了以K3为停止信号,但是K3提前出现了一次,破坏了程序. 我们把K3称之为“额外停止信号”,想办法把它排除就可以了,这里我 们并联J2的触点来排除,如下图 我们在行程开关K3上并联2号继电器的常开触点,就解决了1号继电器提前停止的问题. 因为气缸B前进时要启动2号继电器, 它在K3上并联的常开触点闭合,然后K3再动作时1号继电器就不会 断电了. 2.我们发现气缸B(电磁阀YV2,继电器2)的动作也不对,它由K1启动 向前运动,然后压下K2,断电后退,工作过程完成.但气缸B后退会让 K2复位,气缸又向前运动-------如此反复不止,出现振荡现 象. 原因就在于K1是一个持续信号,虽然K2想让它停下来,但只要 K2不被压住,这个支路又通电了,如下图

气缸控制原理及设置

气缸控制原理及设置 表格程序控制器是一种采用表格设置汉字显示的可设置控制器,基本型的JK-TPC 8-8 TD型具有8路输入和8路输出控制端,能够方便地迅速实现设备控制。该控制器适合用于设备的开关量控制,可以控制单个电磁阀或多个电磁阀的启动、停止及程序运行等功能。无需编程,采用表格设置方式快速实现所需的定时和程序控制功能。简单易用,非常适合不熟悉编程的人员使用。因此,采用精控定时程序控制器来实现电磁阀的控制十分方便、实用。 基本功能: 通过设置能够实现:程序控制定时器、顺序定时控制、逻辑控制、点动继电器、锁存继电器、点动开关、软启动开关、自锁开关、延时开关等功能。 应用领域: 各行业工业自动化控制,例如:机械自动化控制、服装机械控制、纺织机械控制、食品机械控制、电器控制、家电控制、机械手、灯光控制、节能控制、交通控制、喷泉控制、液位控制、电机控制、注塑机控制、电机控制、大中小学科普及应用等自动化控制普及领域。 工作原理及设置(8路气缸控制的示例): 气缸控制所实现的功能主要分为启动、停止及程序运行控制,下面以8路气缸控制为例加以说明:本例是最简单的顺序驱动功能的示例,对8个电磁阀进行顺序启动,每路气缸定时不同。为使控制简单化,采用同时启动、不同延时、各自定时的方法实现,8个电磁阀分别由输出端Y1-Y8驱动,数行设置数据解决实际问题。具体设置方法请参见下图,下图是设置好的功能设置表:

1、设置每行程序均由X1与X2同时动作时启动,将他们之间的逻辑关系设为“与”“AND”的逻辑。 2、设置设置每行程序都由X3停止。 3、设置每行程序分别连接输出端Y1-Y8。 4、设置行程序的延时定时及输出定时时间,延时定时时间为X2、X3启动后该行程序需要的延时,输出定时是每行程序的实际工作时间。 5、运行时,X1与X2同时动作时启动8行程序同步工作,各行程序进入本行程序的延时,然后分别进入各自的输出定时而使输出端有效,驱动各自电磁阀按设定的定时工作。只有第一行程序没有设置延时定时的时间,因此启动后直接进入输出定时阶段驱动Y1电磁阀工作17秒钟,此时正好是第8个气缸工作结束延时一秒钟的时刻,此时全部气缸也分别完成各自工作。 控制8个气缸的运行,每个气缸由一个电磁阀控制,有两个按钮开关同时按下设备开始运行,运行过程中按停止开关全部气缸停止运行。 启动后第1个气缸开始工作,1秒钟后第2个气缸工作1秒,然后第3个气缸工作1秒时第4个气缸工作2秒,第3个气缸共工作4秒,第5个气缸工作1秒,第6个气缸工作2秒,第7个气缸工作1秒,第8个气缸工作1秒,延时一秒后第1个气缸停止运行,此时全部气缸工作完毕。再次启动后如此循环工作。 参见下图:定时程序控制器接线端子示意图:

气动换向回路

一、基本换向回路 1.单作用气缸控制回路 气缸活塞杆运动的一个方向靠压缩空气驱动,另一个方向靠外力(重力、弹簧力等)驱动。回路简单,常用二位三通阀控制。 (1)二位三通阀 (2)二位二通阀 2.双作用气缸控制回路 气缸活塞杆伸出和缩回两个方向均靠压缩空气驱动,常用二位五通阀(或三位五通阀)控制。 (1)单控

(2)双控 换向电信号可为短脉冲信号,电磁铁发热少,具有断电保持功能。 (3)三位五通阀换向 (a )中间封闭 (b )中间排气 (a )中间封闭:活塞可在任意位置停留,但定位精度不高。 (b )中间排气:中间位置时,活塞处于自由状态,可由其他机构驱动。 (c )中间加压(单活塞杆) (d )中间加压(双活塞杆) (c )中间加压(单活塞缸):采用一个减压阀调节无杆腔的压力,使得在活塞双向加压时,保持力平衡。 (d )中间加压(双活塞杆):活塞两端受力面积相等,故无需压力控制阀即可保持力的平衡。

补充:如果没有合适的三位阀,想让气缸在任意位置停留,用以下方法试试。 Y3 (4)电磁远程控制 可用于有防爆等要求的特殊场合。 Y1 (5)双气控阀控制 主控阀为双气控二位五通阀,用两个二位三通阀作为先导阀,可进行远程控制。 (6)带有自保回路的气动控制回路

手动1手动2 两个手动二位二通阀分别控制气缸运动的两个方向,如果将手动阀1按下,则二位五通阀上腔进气切换,气缸左腔进气,右腔排气,同时自保持回路abc也从阀的上腔进气,以防止中途手动阀1失灵,造成误动作。手动阀1复位,手动阀2按下,主控阀复位,气缸缩回,开始下一循环。

气动阀门气缸说明书

气动阀门气缸分类 中旭达气动阀门气缸主要分为2大类。 第一类:角行程气缸,适用于球阀,蝶阀等阀门...... 角行程气缸有AT气缸,AW气缸! AT气缸说明书: 1.缸体为挤压铝合金,经硬质阳极氧化处理,内表面坚硬采用低摩擦材料制成滑动轴承避免了金属间 的直接接触,转动灵活,摩擦系数低,使用寿命长。 2.紧凑的双活塞齿轮齿条式结构,啮合精确输出扭力恒定。 3.执行器的底部输出轴,装配孔有圆形或双四方形(符合ISO.5211标准)用户可根据需要选择,我们也可以按要求定做。输出轴的顶部和顶部孔及气源孔符合NAMUR或VDI/VDE 3845标准。 4.根据用户需要提供安装电磁阀、定位器、回信器等各种装置和配置接口均符合VDI/VDE 3845的标准。 5.相同的规格有双作用式、单作用式(弹簧复位)每种形式有多种规格,每种规格有多种型号,如:常开型、常闭型、单电控、双电控、普通型、防暴型等;本公司的产品适用于管道阀门的给排水、供热、石油、化工、冶炼、造纸、电力、制药、食品加工、船舶、煤炭、楼宇自控等多种工况领域。 6. 标准执行器旋转角度从气缸两端可调节-5 ~+5 °。 7. AT型使用空气压力4~7bar 执行器选用与安装: 使用气动执行器时,先确定阀门的扭矩,考虑管道介质;水蒸气或非润滑的介质增加25% 安全值;非润滑的干气介质增加60%安全值;非润滑用气体输送的颗粒粉料介质增加1 00% 安全值;对于清洁、无摩擦的润滑介质增加20%安全值,然后根据气源工作压力,查找双 作用式或单作用式扭矩表,可得到准确的执行器型号。 气动执行器与阀门安装精度是否正确,直接影响执行器安全操作和使用寿命。合理安装是将 执行器中心轴与阀杆必须绝对同轴,合理连接安装。执行器与阀门装配之前,应对阀门扭矩

1单作用气缸的换向回路

1单作用气缸的换向回路 1、单作用气缸的换向回路 实验所需元件: 单作用气缸,单向节流阀,二位三通单气控换向阀,手动换向阀。 实验内容: 图2-1(a)是采用一个二位三通单气控阀控制单作用弹簧气缸伸缩的回路。在图中当有气控制信号时,换向阀右位接通,气缸活塞杆伸出工作,一旦气控信号消失,换向阀则自动复位,活塞杆在弹簧力的作用下缩回。 实验注意事项: *)实验时,二位三通气控阀可由单气控二位五通阀用气孔塞头塞位B孔得到,其气控信号由手动换向阀控制(气动B用气孔塞头塞住)。 *)实际实验中,在气缸进气孔处装有一个单向节流阀,以调节气缸的动作速度。 *)实验时,所加气压信号或气压源的压力不要过大,一般以0.4MPa压力为宜。 2、三位五通控制回路 实验所需元件: 单作用气缸,单向节流阀,三位五通电磁阀(中位封闭式)。 实验内容: 图2-1(b)是用三位五通电磁阀(中位封闭式)控制单作用气缸的伸、缩、任意位置停止的回路。 实验注意事项: *)实际实验中,在气缸进气孔处装有一个单向节流阀,以调节气缸的动作速度。为了使气缸的运作现象明显,应使气缸的运动速度较为缓慢、平稳(通过调节单向节流阀实现)。 *)电气控制部分,可采用PLC可编程序控制器控制或是继电器控制,两者所实现的功能相同(使用时应注意各接口的连线要正确,控制电源为直流24V)。 *)电磁阀两端不允许同时加上电气控制信号。

图(b)电路控制原理图:

2双作用气缸的换向回路 1、手动换向阀控制回路 实验所需元件: 双作用气缸,单向节流阀,二位五通双气控换向阀,手动换向阀。 实验内容: 图2-2(a)是用双气控二位五通换向阀控制双作用气缸伸、缩的回路。在回路中,通过对换向阀左右两侧分别加入输入控制信号,使气缸活塞杆伸出和缩回。 实验注意事项: *)此回路中,不允许双气控换向阀两边同时加等压控制信号。 *)实际实验中,通过调节装在气缸进出气孔处的单向节流阀,以调节气缸的动作速度使气缸动作平缓,实验现象明显。 *)实验时,所加气压信号或气压的压力不要过大,一般以0.4MPa压力为宜。 2、三位五通电磁换向阀控制回路 实验所需元件: 双作用气缸,单向节流阀,三位五通电磁换向阀(中位封闭式)。 实验内容: 图2-2(b)是三位五通电磁换向阀(中位封闭式)控制的回路。实验时,对换向阀的两侧分别加上电气控制信号,气缸活塞杆可输出及缩回。当电磁阀两侧都无控制信号时,电磁换向阀处于中位封闭位置,使活塞在行程中停止。 实验注意事项: *)实际实验中,在气缸进气孔处装有一个单向节流阀,以调节气缸的动作速度。为了使气缸的动作现象明显,应使气缸的运动速度较为缓慢、平稳(通过调节单向节流阀实现)。 *)电气控制部分,可采用PLC可编程序控制器控制或是继电器控制,两者所实现的功能相同(使用时应注意各接口的连线要正确,控制电器为直流24V)。 *)电磁阀两端不允许同时加上电气控制信号。 图2-2双作用气缸换向回路

气缸顺序控制的实现方法2例

气缸顺序控制的实现方法 在工业设备的控制中,顺序控制的功能非常普遍,“定时程序控制器”非常适合实现顺序控制的功能,应用十分简单。可以采用延时设置方法或者顺序执行方法实现。下面举例说明: 一、实现的功能: 有5个气缸由5个电磁阀控制,开机后1号气缸工作5秒后,2号气缸工作5秒后,3号气缸、4号气缸工作5秒后,5号气缸工作5秒,一个顺序工作过程结束,然后重新自动进入下一个循环工作,周而复始。 设有一个停止开关和一个启动开关。 二、控制器的选型: 采用TPC8-8TD型定时程序控制器(以下简称:控制器)来实现,该控制器是基本型,具有8路输入端X1-X8和8路输出控制端Y1-Y8,8路输出可以控制最多8路气缸的电磁阀,8路输入端可以作为8个控制端,连接开关、接点、接近开关及开关量传感器等开关量信号,作为手动控制和自动控制信号的输入控制。 根据本示例要求实现的功能,输入端和输出端的安排如下: Y1控制1号气缸; Y2控制2号气缸; Y3控制3号气缸; Y4控制4号气缸; Y5控制5号气缸; X1作为启动开关; X2作为停止开关。 三、设置方法: 采用延时设置方法和顺序执行方法分别设置: 延时设置方法: 延时设置方法实现顺序控制的方法是:各行程序同时启动,每行程序延时不同,下一行或者后执行的程序行设置的延时时间大于、等于或小于上一行的延时时间+输出定时时间,各行程序执行不同延时后,再执行本行的输出定时时间,从而控制气缸工作。因此,利用各行延时时间的不同,达到控制气缸顺序工作的目的,此方法简单易用,设置、调试简单,易于理解,适合具有固定启动时间和工作时间的顺序控制的场合。 各行工作原理参见下表:

双作用气缸工作原理【完整解析】

双作用气缸工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 双作用气缸的活塞前进或后退都能输出力(推力或拉力)。结构简单,行程可根据需要选择。 1、缸筒: 缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8μm。 2、端盖: 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3、活塞: 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。 4、活塞杆: 活塞杆是气缸中最重要的受力零件。通常使用高碳钢、表面经镀硬铬处理、或使用不锈钢、以防腐蚀,并提高密封圈的耐磨性。 5、密封圈 双作用气缸----剖面图

气动阀门气缸说明书

气动阀门气缸说明书-CAL-FENGHAI.-(YICAI)-Company One1

气动阀门气缸分类 中旭达气动阀门气缸主要分为2大类。 第一类:角行程气缸,适用于球阀,蝶阀等阀门...... 角行程气缸有AT气缸,AW气缸! AT气缸说明书: 1.缸体为挤压铝合金,经硬质阳极氧化处理,内表面坚硬采用低摩擦材料制成滑动轴承避免了金属间 的直接接触,转动灵活,摩擦系数低,使用寿命长。 2.紧凑的双活塞齿轮齿条式结构,啮合精确输出扭力恒定。 3.执行器的底部输出轴,装配孔有圆形或双四方形(符合标准)用户可根据需要选择,我们也可以按要求定做。输出轴的顶部和顶部孔及气源孔符合NAMUR或VDI/VDE 3845标准。 4.根据用户需要提供安装电磁阀、定位器、回信器等各种装置和配置接口均符合VDI/VDE 3845的标准。 5.相同的规格有双作用式、单作用式(弹簧复位)每种形式有多种规格,每种规格有多种型号,如:常开型、常闭型、单电控、双电控、普通型、防暴型等;本公司的产品适用于管道阀门的给排水、供热、石油、化工、冶炼、造纸、电力、制药、食品加工、船舶、煤炭、楼宇自控等多种工况领域。 6. 标准执行器旋转角度从气缸两端可调节 -5 ~ +5 °。 7. AT型使用空气压力4~ 7bar 执行器选用与安装: 使用气动执行器时,先确定阀门的扭矩,考虑管道介质;水蒸气或非润滑的介质增加25%安全值;非润滑的干气介质增加60%安全值;非润滑用气体输送的颗粒粉料介质增加1 00%安全值;对于清洁、无摩擦的润滑介质增加20%安全值,然后根据气源工作压力,查找双作用式或单作用式扭矩表,可得到准确的执行器型号。

气缸控制方案

气缸控制方案 在工业自动化控制中,气缸的应用非常普遍,因此,设备控制中气缸控制的作用不可忽视。气缸直接由电磁阀控制,具有机械结构简单易用,安装方便、反应速度快、易于实施等诸多优点。气缸电磁阀的控制可以采用可编程控制器PLC、单片机系列及工控机等多种控制方式。下面对以上三种控制方式做一简单对比。 一、控制方式对比 1、可编程控制器PLC具有功能完善、可靠性高、结构紧凑的特点,需要通过编制梯形图等编程方式实现所需功能。价格适中。 2、单片机系列具有应用灵活、经济实用等特点,但需要专门设计,周期较长,可靠性及抗干扰性能需要有个成熟的过程。价格低。 3、工控机组配灵活、功能强大,具有众多的控制板卡和组态软件的支持,适合组成规模较大的控制系统。价格较高。 以上三种控制方式各有所长,但是都必须采用编程或组态的方式实现最终的控制功能,比较适合专业人员使用。 二、使用表控 近年来气缸控制普遍使用一种操作便捷的表格程序控制器,简称表控,采用表格设置汉字显示设置功能的方法设置所需功能,非常适合作为气缸电磁阀等设备的自动控制。无需专业技术,不熟悉编程的人员也能够轻松操作使用。具有如下特点: 1、直流24V供电可以直接驱动24V电磁阀,接线简单实用。 2、表控具有多路输入与输出,根据路数不同分为多种型号,基本型的TPC8-8TD型具有8路输入和8路输出,输入可以直接连接开关及各种感应开关。 3、定时控制功能强,无需编程实现程序控制。应用于气缸动作的自动控制,更能体现其方便、灵活的特点。 4、应用表控组成的控制系统,调试方便、可以在很短的时间完成设备控制。 三、基本功能: 表控内部采用先进的微处理器为核心,具有多路开关量输入和多路开关量输出控制端,多重光电隔离和电磁隔离技术,使核心智能电路工作稳定,抗干扰能力强。 定时控制:方便灵活是表控的主要特点之一,以定时器为基本控制单元,充分发挥定时器的特长,每个数据行设计有延时定时器和输出定时器两个定时器,可以方便地对每个动作设定延时时间和输出的工作时间。 感应开关控制:检测感应开关状态,实现位置控制、到位停止、到位启动、超时报警等实现各种自动控制功能,可以灵活设置实现顺序控制、连续控制、循环控制等诸多功能,对气缸的运行实现全方位的控制。 工作模式选择:控制器设有脉冲输出、时钟控制、计数、全停、暂停、单步、手动、循环次数等使用便捷的专用工作模式,在应用中根据实际需要选择需要的工作模式选项。

双作用气缸换向回路

双作用气缸换向回路 一、实验目的 理解气动系统中换向阀的作用及气动换向阀、电磁换向阀的动作条件,掌握 双作用气缸伸出与返回的条件。 二、实验设备 1、模块化创意气动实验台(配相应空压机一台); 2、PC机或编程器一台; 3、通讯电缆一根 4、Automation Studio仿真软件 三、实验内容 1、参考气动原理 1.1双作用气缸换向回路原理图 ? ? 0 MPa 1.2系统所用元件 空压机1台; 过滤器1个; 三位五通电磁换向阀1个; 单向节流阀2个;

双作用气缸1个; 连接管道5根 2、控制要求 2.1按下S2按钮,气缸向前伸出; 2.2按下S4按钮,气缸向后退回; 2.3按下S6按钮,气缸任意位置停止; 2.4气缸在前进和后退过程中有相应指示灯显示。 3、I/O口分配及电磁铁动作顺序表 输入按钮状态 X000 S2 前进 X002 S4 后退 X004 S6 停止 输出状态 Y002 前进灯亮 Y002 前进1YA+ Y003 后退2YA+ Y003 后退灯亮 Y004 停止灯亮 其中1YA、2YA互锁 4.PLC连接关系图

1-1IC1IN0X 000IN1X 001IN2X 002IN3X 003IN4X 004IN5X 005IN6X 006IN7X 007 COM 1-1OC1OUT0Y 000OUT1Y 001OUT2Y 002OUT3Y 003OUT4Y 004OUT5Y 005OUT6Y 006OUT7 Y 007 COM 1YA+2YA+ FL BL SL 5.实物动画模拟 S2 S4 S6 ? ? ? 四、 PLC 参考程序 梯形图:

气动阀门解析和工艺流程

气动阀门解析和工艺流程 气动阀门就是借助压缩空气驱动的阀门。气动阀采购时只明确规格、类别、工压就满足采购要求的作法,在当前市场经济环境里是不完善的。因为气动阀制造厂家为了产品的竞争,各自均在气动阀统一设计的构思下,进行不同的创新,形成了各自的企业标准及产品个性。因此在气动阀采购时较详尽的提出技术要求,与厂家协调取得共识,作为气动阀采购合同的附件是十分必要的。本类阀门在管道中一般应当水平安装。 通用要求 1、生产的气动阀规格及类别,应符合管道设计文件的要求。 2、气动阀的型号应注明依据的国标编号要求。若是企业标准,应注明型号的相关说明。 3、气动阀工作压力,要求≥管道的工作压力,在不影响价格的前提下,阀门可承受的工压应大于管道实际的工压;气动阀关闭状况下的任何一侧应能承受1.1倍阀门工压值而不渗漏;阀门开启状况下,阀体应能承受二倍阀门工压的要求。 4、气动阀制造标准,应说明依据的国标编号,若是企业标准,采购合同上

应附企业文件 气动阀门材质 1、阀体材质,应以球墨铸铁为主,并注明牌号及铸铁实际的物理化学检测数据。 2、阀杆材质,力求不锈钢阀杆(2CR13),大口径阀门也应是不锈钢嵌包的阀杆。 3、螺母材质,采用铸铝黄铜或铸铝青铜,且硬度与强度均大于阀杆。 4、阀杆衬套材质,其硬度与强度均应不大于阀杆,且在水浸泡状况下与阀杆、阀体不形成电化学腐蚀。 5、密封面的材质: ①气动阀门类别不一,密封方式及材质要求不一; ②普通楔式闸阀,铜环的材质、固定方式、研磨方式均应说明; ③软密封闸阀,阀板衬胶材料的物理化学及卫生检测数据;

④蝶阀应标明阀体上密封面材质及蝶板上密封面材质;它们的物理化学检测数据,特别是橡胶的卫生要求、抗老化性能、耐磨性能;通常采用丁腈橡胶及三元乙丙橡胶等,严禁掺用再生胶。 6、阀轴填料: ①由于管网中的气动阀,通常是启闭不频繁的,要求填料在数年内不活动,填料亦不老化,长期保持密封效果; ②阀轴填料亦应在承受频繁启闭时,密封效果的良好性; ③鉴于上述要求,阀轴填料力求终身不换或十多年不更换; ④填料若需更换,气动阀设计应考虑能有水压的状况下更换的措施。 变速传动箱 1、箱体材质及内外防腐要求与阀体原则一致。 2、箱体应有密封措施,箱体组装后能承受3米水柱状况的浸泡。 3、箱体上的启闭限位装置,其调节螺帽应在箱体内或设在箱外,但需专用

气缸的工作运行速度与控制阀选用技巧

气缸的工作运行速度与控制阀选用技巧 无杆气缸分为高速运作气缸与低速运作气缸,这两种气缸的运用场合也不同,气缸在运动过程中需要对速度进行准确控制。下面就简单介绍下气缸的工作运行速度和控制阀选用注意事项。 汽缸的的工作运行速度: 对高速运动的气缸,应选择内径大的进气管道,对于负载有变化的场合,可选用速度控制阀或气液阻尼缸,实现缓慢而平稳的速度控制。气缸工作运行速度一般为50~500mm/s。 气缸控制阀选用的注意事项: 要求行程末端运动平稳避免冲击时,应选用带缓沖装置的气缸;对大惯性负载,在气缸行程末端另外安装液压缓冲器或设计减速回路。水平安装的气缸推动负载时,推荐用排气节流调速;垂直安装的气缸举升负载时,推荐用进气节流调速。使用中应定期检查气缸各部位有无异常现象,各连接部位有无松动等,轴 销式安装的气缸的活动部位应定期加润滑油。 活塞的工作运行速度主要取决于气缸输入压缩空气流量、气缸进排气口大小及导管内径的大小。 根据工作要求和条件,正确选择气缸的类型。 1、要求气缸到达行程终端无冲击现象和撞击噪声应选择缓冲气缸; 2、要求重量轻,应选轻型缸;要求安装空间窄且行程短,可选薄型缸; 3、有横向负载,可选带导杆气缸;要求制动精度高,应选锁紧气缸; 4、不允许活塞杆旋转,可选具有杆不回转功能气缸;高温环境下需选用耐热缸; 5、在有腐蚀环境下,需选用耐腐蚀气缸。在有灰尘等恶劣环境下,需要活塞杆伸出端安装防尘罩。

45#碳结钢与碳结钢与碳结钢与碳结钢与Q235钢比较钢比较钢比较钢比较45#钢是含炭量在0.45%的碳素结构钢,属于高碳钢,强度高,但韧性差45#是不规范的,GB标准是45 归属优质碳素结构钢这类钢中有害杂质及非金属夹杂物含量较少,化学成分控制得也较严格,塑性、韧性较好,运用于制造较重要的机械零件。这类钢的牌号用两位数字表示平均含碳量的万分数,如45钢即表示C=0.45%的优质碳素结构钢。根据含锰量的不同,将含锰量为(0.25~0.80)%的优质碳素结构钢称为普通含锰钢,将含锰量为(0.70~1.20)%的优质碳素结构钢称为较高含锰量钢(标出锰元素),优质碳素结构钢的牌号及化学成分、机械性能见表18-6。08钢是冷变形钢,15、20钢是一般的表面渗碳钢,用于制造导套、挡块、磨擦片等耐磨零

气动阀门故障解决方法

二气动阀门 1 气动阀门气缸开关行程的调整 气动阀气缸为拨叉式结构,出厂设定为阀门关到位时气缸内两拨叉片顶住气缸两端盖,即两侧,如阀门因气源压力低和关过头等情况此时应先将气源断开,可通过拆开气缸一侧端盖,将拆开一侧处的限位螺丝顺时针转动,直到阀门有明显向开方位转动,再松开限位螺丝,盖上端盖,打开气源,阀门打不开情况可解除。 2 气动阀开关速度的调整 通过阀门气缸上电磁阀的两个进出气孔消音器可调整阀门的开关速度,遵循左关右开,即左边消音器可设定关方向速度,右则为开方向速度 3 气动蝶阀如出现阀体损坏气缸正常,需更换阀体此类情况时,需注意以下: 1)拆气缸之前先检查气缸位置,若气缸上限位开关显示关位(CLOSE)。首先拆下故障阀门,取下气缸,检查故障阀门阀瓣位置,如阀瓣处于关到位,此时检查用于更换新阀体阀瓣位置,若新阀体阀瓣已处于关到位,可将新阀体直接装在管道上套上气缸(套上气缸后不可将气缸转动位置)装上螺丝就可正常使用;如用于更换的新阀体不在关位置或在开位置,可用工具套住新阀体中轴按顺时针方向转动,转到阀瓣和橡胶阀座接触后即可(不可转过头,如转过头,则需再次按顺时针方向转动,转到阀瓣接触到橡胶阀座为止),这时再将用于更换的新阀体装到管道上装上气缸。 2)拆气缸之前检查气缸位置,若气缸限位开关上显示开位(OPEN),则需使用故障阀门电磁阀上关方向按钮,使故障阀门本身恢复到关位置(由于阀门自身处于开位时管道空间有限会导致装不上去),然后按照上述1)之方法来安装新阀体。 三手动阀门 手动蝶阀开关限位的调整 1 手动阀门涡轮操作机分别设有开关两个限位螺丝 通过两个限位螺丝来定位阀门开到位和关到位,对于两个限位螺丝的设定,遵循左开右关原则,可在现场具体演示 2 由于手动蝶阀密封面接触面积较大,手动蝶阀阀瓣位置出厂设定为89度左右即可关闭不泄露,这样使阀门密封面摩擦减小很多,阀门使用到一定年限后,再通过限位螺丝将阀瓣位置调整到90度,使用寿命会加长。

气缸控制方案的选择

设备控制中气缸控制的作用不可忽视,气缸直接由电磁阀控制,具有机械结构简单易用,安装方便、反应速度快、易于实施等诸多优点。气缸电磁阀的控制可以采用可编程控制器PLC、单片机系列及工控机等多种控制方式。下面对以上三种控制方式做一简单对比。 一、控制方式对比 1、可编程控制器PLC具有功能完善、可靠性高、结构紧凑的特点,需要通过编制梯形图 等编程方式实现所需功能。价格适中。 2、单片机系列具有应用灵活、经济实用等特点,但需要专门设计,周期较长,可靠性及 抗干扰性能需要有个成熟的过程。价格低。 3、工控机组配灵活、功能强大,具有众多的控制板卡和组态软件的支持,适合组成规模 较大的控制系统。价格较高。 以上三种控制方式各有所长,但是都必须采用编程或组态的方式实现最终的控制功能,比 较适合专业人员使用。 二、使用表控 近年来气缸控制普遍使用一种操作便捷的表格程序控制器,简称表控,采用表格设置汉 字显示设置功能的方法设置所需功能,非常适合作为气缸电磁阀等设备的自动控制。无需专 业技术,不熟悉编程的人员也能够轻松操作使用。具有如下特点: 1、直流24V供电可以直接驱动24V电磁阀,接线简单实用。 2、表控具有多路输入与输出,根据路数不同分为多种型号,基本型的TPC8-8TD型具有8路输入和8路输出,输入可以直接连接开关及各种感应开关。 3、定时控制功能强,无需编程实现程序控制。应用于气缸动作的自动控制,更能体现其 方便、灵活的特点。 4、应用表控组成的控制系统,调试方便、可以在很短的时间完成设备控制。 三、基本功能: 表控内部采用先进的微处理器为核心,具有多路开关量输入和多路开关量输出控制端,多 重光电隔离和电磁隔离技术,使核心智能电路工作稳定,抗干扰能力强。 定时控制:方便灵活是表控的主要特点之一,以定时器为基本控制单元,充分发挥定时器的 特长,每个数据行设计有延时定时器和输出定时器两个定时器,可以方便地对每个动作设定 延时时间和输出的工作时间。 感应开关控制:检测感应开关状态,实现位置控制、到位停止、到位启动、超时报警等实现 各种自动控制功能,可以灵活设置实现顺序控制、连续控制、循环控制等诸多功能,对气缸 的运行实现全方位的控制。 工作模式选择:控制器设有脉冲输出、时钟控制、计数、全停、暂停、单步、手动、循环次 数等使用便捷的专用工作模式,在应用中根据实际需要选择需要的工作模式选项。 功能设置表是表控专用的功能设置工具软件,在电脑上安装功能设置表软件,在功能设 置表上选择与设置所需功能,以表格设置的方法实现程序控制。设置的功能数据下载到表控中,就可以脱离电脑独立运行,可以方便、快速实现所需要的控制功能。 下图是功能设置表:

PLC控制气缸回路

PLC連結雙氣壓缸來回作迴路 實習目的 瞭解如何利用PLC來做複雜的氣壓缸控制。 瞭解PLC和傳統使用繼電器及相關電氣式元件來控制氣壓缸之差別。 實習器材 雙動氣壓缸 2支 5/2位雙綠圈電磁換向閥(含導線) 2個 空氣式極限開關 4個 三點組合氣壓源 1組 直流電源供應器 1組 氣壓源分歧接頭 1個 FP1(或A1)type可程式控制器 1台 實習原理 今考慮如下的控制迴路,其位移步驟之迴路圖如圖9-1(a)所示,其氣壓迴路圖如圖9-1(b)所示,透過圖9-1(c)我們可以清楚地了解整個原始的電氣控制迴路圖,接著我們只需將9-1(c)化成可程式控制器的內部繼電器接點,即可達成以可程式控制器控制兩個雙動仔壓缸的目的。其程式語言階梯圖如圖9-1(d)所示。

接線方式 由於我們有使用到X1、X2、X3、X4來做為極限開關的接點,在FP1的做法是: 1.原來的指揆開關X9~X7卸下。(鬆開螺絲即可) 2.依照螺絲上方面板所示,將C34+與COM(+)以導線連接。 3.將極限開關的a(或b)和COM,與PLC上的DC24-和0(~7)連接。 4.壓接極限開關並觀察X0(~7)是否有亮滅情形,若有則表示接線正確。 5.請在接線時拔除PLC電源,詳見圖9-1(c)所示。

同理,今若改為使用A1-type的PLC部分之導線則較簡單,如圖9-1(f)所示,僅需連接二組接點。 相關範例示範 例題一 現有AB兩氣壓缸,請依位移步驟圖設計控制迴路。位移步驟圖如圖9-2(a)所示: 使用5/2雙線圖電磁閥來設計。 氣壓迴路圖如圖9-2(b)所示。 程式階梯圖如圖9-2(c)所不。 啟動時請將氣缸放至初始位置。

控制气缸动作程序

本程序用于控制气缸动作 首先是三个气缸(A,B,C)同时下压,并下压保持. 然后另外两个(D,E)同步动作,动作后收回, 另外还有两个(F.G)依次动作. 在时间上,下压动作(A,B,C)完成,时间延迟1S后D,E开始动作;动作后收回. D,E动作后0.1S后F动作,动作后收回, 再0.1S后G 动作,G动作的同时还输出一个信号用于驱动电机转动,动作后收回. 最后A,B,C在G动作完成后延迟2S收回.形成一个循环工作的程序 这是一个顺控程序。暂且把ABCDEFG分配为Y0,Y1,Y2,Y3,Y4,Y5,Y6,驱动电机为Y7.清单如下: LD M8001 OR X1 //X1为停止按钮 ZRST S0 S100 SET S0 //程序初始化 STL S0 LD X0 //X0为启动按钮 SET S20 STL S20 SET Y0 SET Y1 SET Y2 OUT T0 K20 //动作时间加上延迟时间 LD T0 SET S21 STL S21 OUT Y3 //D动作 OUT Y4 //E动作 LD X2 //X2为D到位行程开关 AND X3 //X3为E到位行程开关 SET S22 STL S22 OUT T1 K11 //K11为D,E 退后动作时间加延迟时间0.1秒//0.1秒 LD T1 SET S23 STL S23 OUT Y5 //F动作 LD X4 //X4为F到位行程开关 SET S24

STL S24 OUT T2 K11 //T2 为F后退时间加上延迟0.1秒LD T2 SET S25 STL S25 OUT Y6 OUT Y7 LD X5 //X5为电机完成任务行程开关 SET S26 STL S26 OUT T4 K20 LD T4 SET S26 STL S26 LD M8000 ZRST Y0 Y2 OUT S0 //返回初始状态。一个循环结束 RET // END

相关文档
最新文档