LacS基因原核表达载体构建及重组蛋白表达

合集下载

细菌的重组蛋白质表达系统

细菌的重组蛋白质表达系统

细菌的重组蛋白质表达系统蛋白质是构成生物体及细胞的重要组成部分,也是细胞功能的核心执行者。

为了研究和应用不同类型的蛋白质,科学家发展出了各种蛋白质表达系统。

其中,细菌的重组蛋白质表达系统是最常用的一种方法之一。

本文将详细介绍细菌重组蛋白质表达系统的原理、优势和应用。

一、原理细菌重组蛋白质表达系统利用细菌作为宿主来表达外源蛋白质。

这个系统主要包括以下几个重要组成部分:表达载体、宿主菌株、诱导系统和纯化方法。

1. 表达载体表达载体是指带有外源蛋白质编码序列的质粒。

这些质粒通常包括启动子、反义密码子和终止子等参与蛋白质表达的元件。

其中,启动子通过结合转录因子来启动蛋白质合成的过程。

反义密码子则能够增强蛋白质的长效稳定性,并促进其在细菌中的高效表达。

2. 宿主菌株宿主菌株在蛋白质表达系统中起到重要的作用,通常选择大肠杆菌作为宿主,主要因为大肠杆菌具有较高的生长速度、易于培养和常用的遗传工具。

此外,大肠杆菌本身产生的内切酶活性较低,有利于保护外源蛋白质的稳定性。

3. 诱导系统诱导系统是细菌重组蛋白质表达系统中的一个重要组成部分。

通常使用化学诱导或者温度诱导来启动表达载体中蛋白质编码序列的转录和翻译。

化学诱导通常通过添加一种诱导剂,如异丙基-β-D-硫代半乳糖苷(IPTG),来激活载体中的启动子。

温度诱导则是通过改变培养温度来调节蛋白质表达。

4. 纯化方法纯化是细菌重组蛋白质表达系统中最关键的环节之一。

常用的纯化方法包括亲和纯化、碳水化合物基负载层析和凝胶过滤等。

这些方法能够根据蛋白质的特性和亲和性实现高效纯化。

二、优势与其他蛋白质表达系统相比,细菌重组蛋白质表达系统具有以下优势:1. 高效性细菌重组蛋白质表达系统是目前各种表达系统中最高效的一种方法之一。

通过优化表达条件和使用高效的诱导系统,可以实现高产量的蛋白质表达。

此外,细菌本身的生长速度也有助于高效表达。

2. 便捷性相比其他表达系统,细菌重组蛋白质表达系统的操作更为简便。

重组蛋白质的表达与纯化

重组蛋白质的表达与纯化

重组蛋白质的表达与纯化重组蛋白质是指通过基因工程技术将目标蛋白的基因导入到宿主细胞中,使其在宿主中表达并纯化得到的蛋白质。

这项技术应用广泛,被广泛用于生物制药、医学研究以及工业生产等领域。

下面将详细介绍重组蛋白质的表达与纯化过程。

一、重组蛋白质表达过程1. 选择表达宿主重组蛋白质表达宿主的选择十分重要。

常用的表达宿主包括大肠杆菌(E. coli)、酵母(yeast)、哺乳动物细胞等。

不同的表达宿主具有不同的特点和适用范围。

例如,大肠杆菌是最常用的表达宿主之一,具有高表达水平、易操作、成本低等特点。

2.构建表达载体表达载体是将目标基因导入宿主细胞的载体。

常用的表达载体有质粒、病毒载体等。

质粒是最常用的表达载体,它可轻松被细菌胞内扩增,并在细胞内产生大量目标蛋白。

3.转染和表达将构建好的表达载体导入到宿主细胞中,实现转染。

转染有多种方法,如电穿孔法、化学法、微粒子轰击法等。

转染后,宿主细胞会开始表达目标基因,合成目标蛋白。

4.优化表达条件为了提高重组蛋白质的产量和纯度,需要对表达条件进行优化。

常见的优化方法包括调节培养基成分、改变培养条件、优化诱导剂浓度等。

二、重组蛋白质的纯化过程1.细胞破碎与分离表达宿主中产生的重组蛋白质往往与其他细胞组分混合在一起,需要通过细胞破碎与分离来获取目标蛋白。

细胞破碎方法包括机械法、超声法、高压法等。

分离方法包括离心、电泳、柱层析等。

2.柱层析柱层析是常用的蛋白质纯化方法之一,它基于蛋白质在柱中不同吸附剂上的亲和力差异来实现分离纯化。

常用的柱层析方法有离子交换层析、亲和层析、凝胶过滤层析等。

3.其他纯化方法除了柱层析外,还有许多其他的纯化方法可供选择。

例如,凝胶电泳、过滤、冷冻干燥等。

这些方法通常用于进一步提纯和去除杂质,以获得纯度更高的重组蛋白质。

三、重组蛋白质应用与挑战重组蛋白质的应用广泛,涉及到生物制药、医学研究、农业等领域。

例如,通过重组蛋白质技术,可以生产用于治疗疾病的药物,如人胰岛素、白介素等。

大规模蛋白质表达研究的方法和技术

大规模蛋白质表达研究的方法和技术

大规模蛋白质表达研究的方法和技术随着生物医学研究的不断深入,对蛋白质的兴趣也越来越浓厚。

蛋白质的表达研究成为了近年来热门的研究领域之一。

本文将重点介绍大规模蛋白质表达研究的方法和技术,以帮助读者更好地了解和应用于实际研究。

一、重组蛋白质表达系统重组蛋白质表达系统是大规模蛋白质表达研究中最常用的方法之一。

该系统利用真核或原核细胞来表达目标蛋白质,通过转染、转化等方式将外源基因导入细胞中,从而实现大量蛋白质的表达和纯化。

常见的重组蛋白质表达系统包括大肠杆菌、酵母等。

大肠杆菌表达系统具有高表达效率、操作简便等优点,适合于大规模表达和纯化蛋白质。

而酵母表达系统则适用于复杂蛋白质的表达和折叠,因其能够实现真核细胞级别的蛋白质表达。

二、蛋白质结构预测和模拟技术蛋白质结构的预测和模拟是大规模蛋白质表达研究中必不可少的一步。

通过结构预测和模拟技术,研究人员可以了解蛋白质的三维结构、功能以及相互作用方式,为后续的功能研究和药物研发提供重要参考。

常用的蛋白质结构预测和模拟技术包括蛋白质同源建模、分子动力学模拟等。

蛋白质同源建模通过比对已知结构蛋白质与目标蛋白质的序列相似性,用已知结构蛋白质的结构模板来推测目标蛋白质的结构。

而分子动力学模拟则通过模拟蛋白质分子的运动行为,从而研究蛋白质的结构和性质。

三、蛋白质相互作用研究技术蛋白质相互作用是蛋白质功能调控的关键环节,研究蛋白质相互作用可以揭示蛋白质的功能机制和信号传递网络。

随着研究技术的不断发展,越来越多的方法被应用于蛋白质相互作用的研究。

蛋白质亲和纯化技术是蛋白质相互作用研究中常用的一种方法。

该方法通过蛋白质之间的特异性结合来分离纯化目标蛋白质及其相互作用蛋白质。

常用的蛋白质亲和纯化技术包括免疫共沉淀、亲和色谱等。

另外,蛋白质结构冷冻电镜技术也成为研究蛋白质相互作用的重要工具。

该技术能够在近原子分辨率下探究蛋白质复合物的结构,揭示蛋白质相互作用的机制。

四、蛋白质组学研究技术蛋白质组学研究技术是大规模蛋白质表达研究中的新兴领域。

重组蛋白的表达系统(详细版)

重组蛋白的表达系统(详细版)

终止子:转录终止子按照是否依赖和不依赖ρ因子的作用分为两类,这两类终止子均在终止点前含有一段7-20bp的回文序列。终止子可以保护mRNA在核外不被降解,显著延长mRNA的寿命,由此提高重组蛋白的表达量。但是对于T7系统来说,由于T7 RNA聚合酶效率极高,宿主中随时都有充足的mRNA以供翻译,因此大部分在T7系统中表达的重组蛋白并不在意质粒上是否有终止子,只有一些自身带有翻译起始信号的外源基因需要终止子。启动子受细胞类型的限制,在不同的细胞系中有很大不同,因此需根据宿主细胞(尤其是真核宿主)的类型选择不同的启动子以便于目的基因的高效表达。
表4:常用原核表达载体质粒
1.3 优化表达条件
重组蛋白的表达流程很少有一次成形的,为了提高蛋白表达量、改善蛋白质量,表达条件和白不表达时:
2
如果重组蛋白不表达(包含体和可溶蛋白都没有),首先检查cDNA和质粒是否正确,蛋白对宿主菌是否有很大毒性,然后尝试更换菌株、质粒载体和融合标签。原核蛋白在大肠杆菌中不能表达的情况很少见,通常是真核蛋白不能表达。不能表达的重组蛋白,即使在更换了宿主、载体后可以表达,表达量也不会很高,如果需要大规模生产,最好尝试酵母和昆虫细胞表达系统。
融合标签:融合标签是与目的蛋白共表达的一段多肽,方便重组蛋白的纯化、固定和检测,表3给出了常用的重组标签。如果不需要对重组蛋白进行纯化,尽量不要引入融合标签,以免影响蛋白性质;如果重组蛋白本身能够结合某种亲和柱,如某些金属结合蛋白可以结合Ni-NTA,某些糖结合蛋白能够特异识别糖类,也不必引入标签。融合标签的引入能够大大简化重组蛋白的纯化流程,并提高蛋白溶解度。商业化表达质粒,如pET、pGEX等提供了各种纯化标签和融合蛋白供选,应根据蛋白具体情况进行选择。His-tag是最常用的纯化标签,它具有很多优点:标签较短(10-20个氨基酸残基),不带电(pH8.0),免疫原性差,通常不影响重组蛋白的结构和功能,Ni2+亲和力高,能够通过一步纯化达到60%-90%的纯度。如果蛋白质溶解度不高,导致折叠困难、表达量低,可以选择较大的融合标签(GST、MBP、Trx等)帮助重组蛋白表达和折叠,提高重组蛋白溶解度,从而提高表达量。较大的融合标签有时也会导致翻译困难甚至提前中止,纯化后发现大部分都是标签蛋白也是常见现象。翻译的提前中止会大大影响重组蛋白产率和后续纯化,所以在短标签能够达到目的的时候,尽量不要选择大的融合标签。标签位置的选择也很重要:N端标签(短的或长的)自身带有启动子和适应宿主偏好的密码子,可以帮助目的蛋白表达,提高表达量,但是提前中止翻译的蛋白片段也会被一并纯化出来,降低重组蛋白纯度,对蛋白酶敏感的、自身容易降解的以及一级序列中有集中的疏水残基区的蛋白尤其要避免使用N端标签;C端标签则可以保证只有完整蛋白得到纯化。另外,如果蛋白的近N端或近C端有重要功能区,如酶活中心、配体结合位点、二硫键、多聚体稳定界面、相互作用界面等,则要避免纯化标签位于该末端,以免影响重组蛋白的结构和功能。如果融合标签对蛋白性质有较大影响,但又是纯化所必须的,就可以考虑在纯化过程中去除标签。主要有三种方法:化学裂解,如溴化氰(CNBr)、羟胺(NH2OH)等,能够简单有效地去除标签,但反应条件苛刻(羟胺需要在pH9.0下反应),特异性较差,而且会引入不必要的修饰,除包含体蛋白的处理外已经很少使用了;酶解,如PPase等,其底物一般是一段比较长的肽链,特异性强,是目前比较常用的方法,缺点是酶切反应需要较长的时间,也增加了蛋白纯化的步骤,使纯化变得繁琐;IMPACT质粒,该质粒在纯化标签和目的蛋白之间插入了一个蛋白质内含子(intein),intein具有可诱导的自切割活性,使用IMPACT质粒表达的重组蛋白,只需要改变缓冲液的pH和温度,即可切掉融合标签。

重组蛋白诱导表达方法

重组蛋白诱导表达方法

重组蛋白诱导表达方法一、基因克隆和表达载体构建基因克隆是重组蛋白诱导表达的第一步,包括基因的获取、基因的剪切和拼接等步骤。

在获取基因时,可以通过基因文库筛选、PCR 扩增、人工合成等方法。

剪切和拼接基因时,需要选择合适的限制性内切酶和连接酶,以确保基因的准确拼接。

表达载体的构建是将克隆的基因插入到载体中,以使基因在宿主细胞中表达。

常见的载体包括质粒、噬菌体、病毒等,根据基因的大小和表达需求选择合适的载体。

二、宿主菌的选择和转化宿主菌是用于表达重组蛋白的微生物细胞,根据基因的表达需求选择适合的宿主菌。

将构建好的表达载体导入宿主菌中,使基因在宿主菌中表达。

转化方法包括电转化、化学转化、显微注射等。

三、重组蛋白的表达诱导将转化后的宿主菌进行培养,在适当的温度、pH、营养等条件下,诱导重组蛋白的表达。

根据不同的宿主菌和载体,选择合适的诱导剂和诱导条件。

四、重组蛋白的分离和纯化重组蛋白在宿主菌中表达后,需要进行分离和纯化,以获得高纯度的蛋白质。

分离和纯化方法包括离心、沉淀、过滤、离子交换、亲和层析等。

五、重组蛋白的检测和鉴定通过电泳、免疫学、质谱等技术对重组蛋白进行检测和鉴定,以确定蛋白质的分子量、等电点、抗原性等性质。

六、重组蛋白的应用和功能研究重组蛋白具有广泛的应用价值,可用于制备抗体、研究蛋白质的结构和功能、开发新药等。

同时,通过对其功能的研究,可以深入了解蛋白质的作用机制和生物学过程。

七、重组蛋白的表达优化为了提高重组蛋白的表达量和纯度,需要进行表达优化。

包括选择适合的宿主菌和载体、调整培养条件、优化诱导条件等。

同时,可以通过蛋白质工程手段对蛋白质进行改造,以提高其表达量和稳定性。

在大肠杆菌中表达重组蛋白的流程

在大肠杆菌中表达重组蛋白的流程

在大肠杆菌中表达重组蛋白的流程
在大肠杆菌中表达重组蛋白的流程通常包括以下步骤:
1. 克隆:首先需要将目标基因克隆到适当的表达载体中。

这可以通过PCR扩增目标基因,然后将其与表达载体连接,形成重组质粒。

2. 转化:将重组质粒转化到大肠杆菌细胞中。

可以使用化学方法(如热冲击法)或电穿孔法将质粒导入细胞。

3. 选择:转化后,将细胞分散在含有适当抗生素的琼脂平板上培养。

只有带有重组质粒的细胞能够存活并形成菌落。

4. 培养:将含有重组细胞的培养液转移到适当的培养基中,并在适当的条件下培养。

这可能包括调节温度、pH值和搅拌速度等。

5. 表达:在培养期间,目标基因会被大肠杆菌细胞转录和翻译为蛋白质。

使用适当的启动子和调控序列,可实现目标蛋白的高效表达。

6. 细胞破碎:一旦细胞达到最佳表达水平,就需要破碎细胞以释放目标蛋白。

这可以通过多种方法实现,如超声波、高压破碎或化学方法。

7. 纯化:通过使用各种分离和纯化技术(如亲和层析、凝胶过滤、离子交换层析等),从细胞裂解液中纯化目标蛋白。

以上是在大肠杆菌中表达重组蛋白的一般流程。

具体的步骤和条件可能因实验设计和目标蛋白的特性而有所不同。

各种表达载体

各种表达载体

表达载体一、原核细胞表达载体1. pBAD载体:特点; 该表达质粒含有araBAD(arabinose)操纵子的P BAD启动子和编码该启动子的正负调控子基因araC,具有紧密调控功能和高水平表达外源蛋白质的原核细胞表达载体。

请注意:1. 当要扦入其他信号肽片段,改建此载体时,请不要利用该载体上的Nde1 EcoR1 BamH1 Kpn1和Pst1位点,以免造成重组困难,因为前述内切酶在此载体上均有二个位点,最好使用只有一个酶切位点的Sac1和Hind111位点。

同时记住,如在不含任何信号肽的P BAD表达质粒扦入信号肽,其非编码N-末端要包含核糖体结合位点(RBS)核苷酸序列。

2在使用含Omp A分泌信号肽的P BAD表达质粒时,请应用Omp A分泌信号肽上的Sac1以及载体Hind111酶切位点,这些在载体序列上都是单个酶切位点。

本公司目前有含Omp A分泌信号肽和不含任何信号肽的二种P BAD表达质粒,其多克隆位点区域图谱如下:(a)、含Omp A分泌信号肽的P BAD表达质粒多克隆区域SDP BAD….TACCCGTTTTTTTCC….GCTAGCAGGAGGAAACG ATG AAA AAG ACA GCT ATC GCG ATT GCA GTG GCA CTG GCT GGTA M ATTC GCT ACC GTA GCC ATG GCC GAG CTC GGTACCCGGGGATCCTCTAGAGTCGCCTGCAGGCATCCAAGCTTNco1 Pst1 Hind111 (b)、不含分泌信号肽的P BAD表达质粒多克隆区域EcoR1 Kpn1 BamH1 Pst1P BAD….TACCCGTTTTTTTGG.GCTAGCGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGCCTGCAGGCATCCAAGCTTNde1 Sac1 Smal 1 Hind111下图显示本公司应用pBAD表达载体完成的实验结果:pBAD载体驱动大分子蛋白质在原核细胞Origami(DE3)内高效表达2. pCAl-n & pCAl-pelB载体特点: 该原核细胞表达载体是来源于以T7 RNA聚合酶为基础的pET载体,含有T7/LacO启动子、编码钙调素结合多肽标鉴和凝血酶切点的核苷酸序列。

大肠杆菌重组蛋白表达流程

大肠杆菌重组蛋白表达流程

大肠杆菌重组蛋白表达流程大肠杆菌重组蛋白表达流程主要包括以下几个步骤:1. 选择合适的表达载体:通常选择含有启动子、转录终止子、选择标记和适当的表达调控元件的表达载体。

启动子用于驱动基因转录,转录终止子用于确定转录产物的结束位置,选择标记有助于筛选含有目的基因的转化子,而表达调控元件可以调节基因的表达水平。

2. 构建表达载体:将目的基因插入表达载体中,构建成重组表达载体。

在此过程中,需要考虑目的基因的orientation(方向)、阅读框(ORF)以及表达调控元件的活性等因素。

3. 转化大肠杆菌:将构建好的重组表达载体转化到大肠杆菌中。

转化方法有多种,如化学法(如CaCl2法)、电转化、热激转化等。

转化后,大肠杆菌吸收了外源DNA,成为重组菌株。

4. 筛选重组菌株:在含有选择性抗生素的培养基上培养转化后的菌落,筛选出含有目的基因的重组菌株。

此外,可以通过鉴定菌落的形态、颜色等特征进行初步筛选。

5. 诱导表达:将筛选出的重组菌株接种到含有诱导剂(如IPTG)的培养基中,诱导目的基因的表达。

诱导剂IPTG可以与表达载体中的启动子结合,增强基因转录和翻译的效率。

6. 收集和纯化重组蛋白:诱导表达后,菌体中会含有目的蛋白。

可以通过离心、破碎细胞、柱层析等方法分离和纯化重组蛋白。

常用的纯化标签有His标签、GST标签等,这些标签可以帮助分离和纯化目的蛋白。

7. 蛋白活性检测和应用:对纯化的重组蛋白进行活性检测,如酶活测定、蛋白互作实验等。

确认蛋白活性后,可应用于生物学研究、药物研发等领域。

需要注意的是,大肠杆菌重组蛋白表达过程中可能会遇到表达量低、蛋白包涵体等问题。

为了解决这些问题,可以尝试优化表达载体、改变诱导条件、使用融合标签等策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一一。 母鸡
1 2
1 0

-7

Hale Waihona Puke 8 6 4 2

0 0 ) 低 蛋 白质 水 平 时 , 加 能 量 对 增 重 不 会 产 生 促 进 作 .5 。 增 用 , 而 有 一 定 的 抑 制 作 用 。能 量 和 粗 蛋 白 质 平衡 对 日增 重 反 影 响 显 著 ( <0 0 )在 各 个 阶 段 无 论 是 低 能 组 还 是 高 能 组 , P .5 , 只要 有适 宜 的 蛋 能 比 , 能 表 现 出 较 好 的 生 长 性 能 , 只有 都 但 在 最 佳 蛋 能 比时 , 能 表 现 出最 佳 的 阶段 体 重 和 日增 重 。 才 2 2 3 料 肉 比 分 析 : 果 显 示 , 着 日粮 能量 的 提 高 , . . 结 随 公母 鸡 的料 肉 比下 降 , 并 不 都 是 以 高 能 高 蛋 白质 组 为 最 好 , 但 适 宜 的 能 量 与 蛋 白 质 平 衡 对 料 肉 比影 响 显著 ( <0 0 ) 营养 P .5 。 水 平 对 料 肉比 的影 响 主 要 表 现 在 快 速 生 长期 。 22 4 每 克 增 重 所 消 耗 的 能 量 与 蛋 白 质 情 况 : 表 3可看 .. 从
化 大肠 杆 菌 R  ̄ea 去 水四 环 素 诱 导 后 , 液 裂 解 离心 亲 和 层 析 获得 重 组 蛋 白 , sen bo 证 实 LaS在 大 肠 杆 菌 o t, 菌 wetr lt c
R se os t 高效 表 达 。 a能 关键 词 : aS 克 隆 ; 核表 达 载 体 ; 组 蛋 白 Lc ; 原 重

图 1 日增 重 模 拟 曲 线
2 2 能 量 和 粗 蛋 白 质 水 平 对 生 产 性 能 的 影 响 .
各 阶 段 日粮 能 量 和 粗 蛋 白质 水 平 对 宁 海 土鸡 生 产 性 能 的影 响 如 表 3所 示 。 在 第 一 阶 段 , 公 鸡 日粮 能 量 水 平 为 当 1 . 5 MJ k , 蛋 白含 量 为 2 .3 2 2 / g粗 O O %时 , 鸡 日采 食 量 最 大 , 公 E增 重 最快 , 末体 重 也 为 最 大 , 同 一 能 量 水 平 下 , 鸡 的 t 期 且 公 生 长 性 能并 不 是 随 着 粗 蛋 白含 量 的 增 加 而增 强 ; 当母 鸡 饲 喂 相 同 日粮 时 , 出现 类 似 的生 长 现 象 。在 第 二 阶 段 当公 鸡 日 也 粮 能 量 水平 为 1 . 1MJ k , 蛋 白含 量 为 1 . 9 时 , 鸡 2 7 / g 粗 94 % 公
【 要 】克 隆得 到硫 矿硫 化 叶 茵 中的糖 苷酶 基 因 L c , 用 原 核 表 达 载 体 p S —IA 2构 建 重 组质 粒 p K 摘 aS 利 AK B AS

1 A一2 L c 酶 切 和 测 序 鉴 定 证 实 L c B aS, a S基 因 成 功插 入 且 基 因 阅读 框 正确 。 重 组 质 粒 p K—I A一2一L c AS B a S转

4・
《 海 畜 牧 兽 医通 讯 》 2 1 上 0 0年 第 4期
Lc aS基 因原核 表 达载 体构 建 及 重 组 蛋 白表达
白 俊 张 东 刘 羿 羿 李 璐 杨 杰 周 欢 敏 ( 蒙 古 农 业 大 学 动 物 遗 传 育种 重 点 实 验 室 内蒙 古 呼 和 浩 特 0 0 1 ) 内 10 8
出 , 第 一 、 阶段 随着 日粮 能量 和 粗 蛋 白质 水 平 的 上 升 , 在 二 公 母 鸡 每 克 增 重 所 消耗 的 蛋 白质逐 步 增 加 , 所 消耗 的 能量 呈 而 下 降 趋 势 ; 第 三 阶段 , 着 日粮 能 量 水 平 的提 高 , 克 增 重 在 随 每 所 消 耗 的 能 量 在 增 加 且 所 消 耗 的 蛋 白质 也 有增 加 的 趋 势 。
乳 糖 lco e是 哺乳 动物 乳 汁 中特 有 的一 种 双 糖 , 牛乳 a ts 在
于 肠 道 内缺 乏 所 需 的 乳 糖 酶 , 者是 由 于 乳糖 酶 的 活 性 已 减 或 弱 而 造 成 的 。 据估 计 , 球 约 7 % 的成 年 人 体 内乳 糖 酶 的 活 全 5 性 有 减 弱 的 迹 象 。 该 症 状 发 生 的 概 率 在 北 欧 约 5 , 在 一 % 而 些 亚 洲 及 非 洲 国 家 则 超 过 9 %。 简 单 的 说 , O 乳糖 不 耐 症 就是 缺 乏 乳 糖 酶或 其 活 性 不 足所 造 成 的状 况 , 种 酶是 用 来 消化 这
* 为通 讯 作 者 。 基 金项 目 : 内蒙 古 自然 科 学 基金 项 目。
中含 乳 糖 为 4 6 ~4 7 , 乳 中 含 乳 糖 为 6 ~8 。乳 % .% 人 % % 糖 不耐 症 L coeitl a c 指 人 体 不 能 分 解 并 代 谢 乳 糖 ats noe n e是 r ( 见 于 牛奶 及 其 他 奶 制 品 中 ) 饮 用 牛 奶 等奶 类 后 乳 糖 不 能 常 , 被 分解 吸 收 , 糖 进 入 结 肠 后 , 肠 道 细 菌 分 解 , 生 大 量 乳 乳 被 产 酸、 甲酸 等短 链 脂 肪 酸 和 氢 气 . 成 渗 透 压 升 高 , 肠 腔 中 的 造 使
水 分增 多 , 起腹 胀 、 呜 、 绞 痛 直 至 腹 泻等 现 象 。这 是 由 引 肠 肠
2O l 8 l 6 l 4

公鸡
2. 2 对 体 重 和 日增 重 的 影 响 : 验 结 果 表 明 , 2. 试 日粮 能量 和 粗 蛋 白质 水 平 对公 母 鸡 期 末 体 重 和 日增 重 有 显 著 影 响 ( P<
相关文档
最新文档