静电场中的导体
合集下载
大学物理-第3章-静电场中的导体

R2 R1
在金属球壳与导体球之间(r0 < r < R1时):
q r0
作过 r 处的高斯面S1
q
S1 E2 dS 0
得
E2 r
q
40r 2
q
E2 40r 2 er
在金属球壳内(R1< r < R2时):电场 E3 0
在金属球壳外( r > R2时): 作过 r 处的高斯面 S 2
S2
E4
dS
在它形成的电场中平行放置一无限大金属平板。求:
金属板两个表面的电荷面密度?
解:带电平面面电荷密度0 ,导体两面感应电荷面密度分 别为1 和 2,由电荷守恒有
1 2 0 (1)
导体内场强为零(三层电荷产生)
σ0 σ1
σ2
E0 E1 E2 0
(2)
E0
0 1 2 0
(3)
20 20 20
导体表面任一点的电场强度都与导体表面垂 直。
20
2.导体在静电平衡状态下 的一些特殊性质
❖ 导体是等势体,导体表面是等势面。
在导体内部任取两点P和Q,它们之间的电势差可以表示为
VP VQ
Q
E
dl
0
P
❖ 导体表面的电场强度方向与导体的表面相垂直。
❖ 导体上感应电荷对原来的外加电场施加影响,改
Q1
Q2
0
q
q
0
得
E4r
q
4 0 r 2
E4
q
4 0 r 2
er
43
思考:(3)金属球壳和金属球的电势各 为多少?
解:设金属球壳的电势为U壳 ,则:
U壳
R2 E4 dl
1、静电场中的导体-13

1= 4
P
3S + 4S = QB
又电荷守恒,所以有: 1S + 2S = QA
Q A QB 联立得: 1 4 2S QB Q A Q A QB 3 2 2S 2S
两板中间的场强为:
1 2 3 4 E 2 0 2 0 2 0 2 0 2 0 B 2 Q A QB U AB E dl Ed d d A 0 2 0 S
U ab
b
a
E dl
0
导体整体是等势体 导体表面是等势面
E0
三、静电平衡时导体上电荷的分布
导体的静电平衡条件; 根据:
1 静电场的高斯定理: E dS S 0
q
S内
i
(1)导体内部无净电荷,电荷分布在导体表面; 在导体内任作一高斯面S ,则:
1 SE dS 0
球A与壳B之间的电势差为:
q3 q2
q1
R3 R1 R2
U AB
R2
R1
q1 1 1 q1 ( ) dr 2 4 π 0 R1 R2 4 π 0 r
q3 q2
q1
R3 R1 R2
q1 q 2 0 q2 - q1
由电荷守恒定律:
q3 q q2 q q1
考虑电荷分布的对称性,由高斯定理得:
E 0 r R1
q1 E 2 4π 0 r
R1 r R2
E 0 R3 r R2 q1 q E r R3 2 4π o r
S内
q
S内
i
=0
S
qi 0 不存在净电荷
(2)导体表面上各处的面电荷密度与该处表面外 附近的场强大小成正比;
P
3S + 4S = QB
又电荷守恒,所以有: 1S + 2S = QA
Q A QB 联立得: 1 4 2S QB Q A Q A QB 3 2 2S 2S
两板中间的场强为:
1 2 3 4 E 2 0 2 0 2 0 2 0 2 0 B 2 Q A QB U AB E dl Ed d d A 0 2 0 S
U ab
b
a
E dl
0
导体整体是等势体 导体表面是等势面
E0
三、静电平衡时导体上电荷的分布
导体的静电平衡条件; 根据:
1 静电场的高斯定理: E dS S 0
q
S内
i
(1)导体内部无净电荷,电荷分布在导体表面; 在导体内任作一高斯面S ,则:
1 SE dS 0
球A与壳B之间的电势差为:
q3 q2
q1
R3 R1 R2
U AB
R2
R1
q1 1 1 q1 ( ) dr 2 4 π 0 R1 R2 4 π 0 r
q3 q2
q1
R3 R1 R2
q1 q 2 0 q2 - q1
由电荷守恒定律:
q3 q q2 q q1
考虑电荷分布的对称性,由高斯定理得:
E 0 r R1
q1 E 2 4π 0 r
R1 r R2
E 0 R3 r R2 q1 q E r R3 2 4π o r
S内
q
S内
i
=0
S
qi 0 不存在净电荷
(2)导体表面上各处的面电荷密度与该处表面外 附近的场强大小成正比;
4静电场中的导体

3) 推论:处于静电平衡的导体是等势体 导体表面是等势面 导 体 是 等 势 体
en
E dl
E
+
+ + +
E dl 0
导体内部电势相等
dl
+
+
et
U AB E dl 0
AB
A
B
注意 当电势不同的导体相互接触或用另一导体(例如导 线)连接时,导体间将出现电势差,引起电荷宏观 的定向运动,使电荷重新分布而改变原有的电势差, 直至各个导体之间的电势相等、建立起新的静电平 衡状态为止。
各个分区的电场分布(电场方向以向右为正):
1 2 3 4 在Ⅰ区:E 2 0 2 0 2 0 2 0 1 Q 方向向左 0 2 0 S
Eint 0
◆ 导体表面紧邻处的场强必定和导体表面垂直。
E S 表面
证明(1):如果导体内部有一点场强不为零,该点的 自由电子就要在电场力作用下作定向运动,这就不 是静电平衡了。 证明(2):若导体表面紧邻处的场强不垂直于导体表 面,则场强将有沿表面的切向分量 Et,使自由电子 沿表面运动,整个导体仍无法维持静电平衡。
const .
E dS
S
q
i
i
0
E dl 0
L
3. 电荷守恒定律
讨论题:
1. 将一个带电+q、半径为 RB 的大导体球 B 移近一 个半径为 RA 而不带电的小导体球 A,试判断下列说 法是否正确。 +q B (1) B 球电势高于A球。 (2) 以无限远为电势零点,A球的电势 A 0 。 (3) 在距 B 球球心的距离为r ( r >> RB ) 处的一点P, q /(40。 r2) 该点处的场强等于 (4) 在 B 球表面附近任一点的场强等于 B / 0 ,
静电场中的导体

R2
R1
22
Vo
E dl
0 R3
0 R1
R2
E1 E3
dl
dl
R2
R3
E2
dl
R1 E4 dl
q (1 1 2)
4 π ε0 R3 R2 R1
2.31103 V
R1=10 cm,R2=7 cm R3=5 cm,q=10-8 C
2q
q
q
R3
R2 R1
23
S4
E4
dS
2q ε0
2q E4 4 π ε0r 2 (r R1)
S4
R1
2q
S3
qq
q
R33
rr
R2
R1111
R1
21
E1 0
(r R3 )
E2
4
q π ε0r 2
(R3 r R2 )
E3 0
(R1 r R2 )
E4
2q 4 π ε0r 2
(r R1)
2q
q
q
R3
电势也会受到影响 25
二 电介质的极化
电介质 无极分子:(氢、甲烷、石蜡等) 有极分子:(水、有机玻璃等)
26
电介质分子可分为有极和无极两类:
(1)分子中的正电荷等效中心 与负电荷等效
中心重合的称为无极分子(如H2、 CH4、CO2)
无极分子在电场中, 无极分子
E
正负电荷中心会被 拉开一段距离,产生 感应电偶极矩,这 称为位移极化。
1 CU 2 2
+++++++++
---------
+ dq
R1
22
Vo
E dl
0 R3
0 R1
R2
E1 E3
dl
dl
R2
R3
E2
dl
R1 E4 dl
q (1 1 2)
4 π ε0 R3 R2 R1
2.31103 V
R1=10 cm,R2=7 cm R3=5 cm,q=10-8 C
2q
q
q
R3
R2 R1
23
S4
E4
dS
2q ε0
2q E4 4 π ε0r 2 (r R1)
S4
R1
2q
S3
q
R33
rr
R2
R1111
R1
21
E1 0
(r R3 )
E2
4
q π ε0r 2
(R3 r R2 )
E3 0
(R1 r R2 )
E4
2q 4 π ε0r 2
(r R1)
2q
q
q
R3
电势也会受到影响 25
二 电介质的极化
电介质 无极分子:(氢、甲烷、石蜡等) 有极分子:(水、有机玻璃等)
26
电介质分子可分为有极和无极两类:
(1)分子中的正电荷等效中心 与负电荷等效
中心重合的称为无极分子(如H2、 CH4、CO2)
无极分子在电场中, 无极分子
E
正负电荷中心会被 拉开一段距离,产生 感应电偶极矩,这 称为位移极化。
1 CU 2 2
+++++++++
---------
+ dq
大学物理-静电场中的导体

E内= 0 等势体
静电平衡时的导体
接地 :取得与无限远相同的电势 通常取为零)。 (通常取为零)。
6
半径为R的金属球与地相连接 的金属球与地相连接, 例1. 半径为 的金属球与地相连接,在与球心 相距d=2R处有一点电荷 处有一点电荷q(>0),问球上的 相距 处有一点电荷 , 感应电荷 q'=? q'?q =
q3
q2 q1
B
R1 R2
A
R3
22
解: (1)当球体和球壳为一般带电体时 ) 用高斯定理可求得场强分布为
r −R E3 = (q1 + 3 Q) ( R2 ≤ r ≤ R3 ) 2 4πε0r R3 − R 1
3 3 2 3 2
4πε0 R q1 E2 = 2 4πε0r
E1 =
q1
3 1
r
(r ≤ R1 )
E = σ / εo
1 3.面电荷密度正比于表面曲率 σ ∝ R 面电荷密度正比于表面曲率
31
例4-2 (3)如果外壳接地,情况如何? )如果外壳接地,情况如何? (4)如果内球接地,情况又如何? )如果内球接地,情况又如何? (3)如果外壳接地 ) 则: 外壳电势= 外壳电势= 无穷远处电势 =0 外壳带电量= 外壳带电量=Q’
S
ε0 V
S 是任意的。 是任意的。 令S→ 0,则必有ρ 内 = 0。 。
8
必为零。 2.导体壳: 外可不为零,但σ内 和 E内必为零。 导体壳: 可不为零, 导体壳 σ
σ内 = 0
E内 = 0
S内
σ外
理由: 理由: 在导体中包围空腔选取 高斯面S 高斯面 , 则:
S
r r ∫ E导内 ⋅ d s = 0
静电场中的导体

分布在导体的表面上。
4、导体以外,靠近导体表面附近处的场强大小与导 体表面在该处的面电荷密度 的关系
E 0
二
静电平衡时导体上电荷的分布
1、 实心导体
+
+ + + +
E 0
+
S
+ + +
+
q E dS 0
S
0
q 0
结论: 导体内部无电荷,电荷只能分布
q
+
q
+
+
q
+
实验验证
外表面所带感应电荷全部入地
总结: 空腔导体(无论接地与否)将使腔内不
受外场影响。
接地空腔导体将使外部空间不受腔内电
场的影响。
四 有导体存在时场强和电势的计算
电荷守恒定律 电荷分布
静电平衡条件
E U
例1、有一外半径R1,内半径为R2的金属球壳。在球壳 中放一半径为R3的金属球,球壳和球均带有电量10-8C的 正电荷。问:(1)两球电荷分布。(2)球心的电势。 (3)球壳电势。 + + + 解:(1)、电荷+q分布在内球表面。 + - + 球壳内表面带电-q。
S A+ +
A
+
+
B+ B +
+ +
+
b、空腔内有带电体
E dS 0
S1
q
i
0
电荷分布在表面上
思考: 内表面上有电荷吗?
E dS 0 qi 0
5,静电场中的导体讲解
Q
i
i
const.
例1 无限大的带电平面的场中 平行 放置一无限大金属平板 。求:金属板 两面电荷面密度 解: 设金属板面电荷密度 1, 2
由对称性和电量守恒
1 2
P 2 0
1 2 0
1 2
导体体内任一点P场强为零 1 2 ( )0 2 0 2 0 2 0
即:B球外表面不带电,内表面均 匀分布感应电荷(-q)
B
A
o
q
S
R2 R1
R0
r R2
3 0
若内球接地:A=0
B
q
设内球带电量q’.则外球内表面 带电量 -q’;外表面(Q+q’)
R1 B A E dr E ( d r ) E d l B R0 B q 1 1 ( ) 40 R1 R0
i
高 面
i内
0
若内表面有净电荷,必有电力线,如图:
则 E dl 0
_
E dl 0
而静电平衡下导体为等势体
即内表面无净电荷 电荷集中于外表面
2)空腔内有电荷q,腔体带有Q
腔内表面将感应等量异号电荷-q 腔外表面将带有电荷(Q+q) 静电平衡下的导体特点: 1、E内=0 2、 E表面=En
q
+(q+Q)
-q
=C
e E s En 0
3、 电荷只分布在内外表面
d.孤立带电导体表面电荷分布
一般情况较复杂;孤立的带电导体,电荷分布由实验 作定性的分析: 在表面凸出的尖锐部分(曲率是正值且较大)电荷面密 度较大,
6.1.1静电场中的导体 - 静电场中的导体
q
Q
r
R
V
q
4 0r
Q
4 0 R
rr RR
4. 导体表面的电场和电荷 尖端放电及其应用: 尖端附近的强电场引起空气电离。
A. 电风实验 B. 避雷针的原理 C. 高压设备中的电极通常做成直径较大的 光滑球形
4. 导体表面的电场和电荷
电晕现象是强电场作用下导线周围空气产生的电离 现象。导体表面的电场强度超过某一定数值时,就 会产生电晕。
电介质:
半导体: 自由电子数密度较小,约为 1012~1019个/cm3
绝缘体: 基本上没有参与导电的自由电子
2. 导体的静电平衡条件
(1)物理图像
自由电荷 重新分布
(附加电场
E)
↑
导体(自由电荷)
相互 作用
静电场( E0)
↓
静电场重新分布
E E0 E
(2)静电平衡状态:
(2)导体是等势体,导体表面是等势面;
U ab
b
E
dl
0
a
E0 a
Uac
c
E dl 0
a
b
c
(3()因导为体电表场面线邻与近等处势的面场处强处必正定交和)导体表E面out垂直?。
4. 导体表面的电场和电荷
(1)
E
0
en
作扁圆柱形高斯面 S→ E
导体内部和表面无电荷的定向移动 (电荷分布不随时间变化)
2. 导体的静电平衡条件
(3)静电平衡条件:导体内部各点场 强为零 Ein E0 E' 0
3. 静电平衡时导体的基本性质
(1)导体内部各处无净电荷,电荷只分布在表面;
静电场中的导体
E2 4 0 r 2
R1 r R2
E3
1
4
0
Q q/ r2
U
R1
E.dr
R2 R1
E2.dr
R2 E3.dr 0
r R2
q/
4 0
1 R1
1 R2
1
4 0
Q q/ R2
0,
解得
q
R 1
Q
R
2
故外球壳外表面荷电 Q q/ Q R1 Q
R2
17
10
例8-14 如图所示,一带正电Q的点电荷离半径为R的金属球壳 外的距离为d,求金属球壳上的感应电荷在球心O处的场强。
q/
R
r
E0 0 E/ d
Q
解 以球心为坐标原点,球心指向点电荷的方向为矢径方向,则
点电荷在球心处的场强
Q
E0 4 0 (R d )2 r0
又
E E/ E 0
内
0
q
总之,导体壳内部电场不受壳外电荷的影响,接地导体使 得外部电场不受壳内电荷的影响。这种现象称为静电屏蔽。
12
2、尖端放电
在带电尖端附近,电离的分子与周围分子碰撞,使周围的 分子处于激发态发光而产生电晕现象。
+ +
++ +++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电晕, 故此,高压设备中的金属柄都做成光滑的球形。
△s面上σ均匀, E1=常矢 ,且垂直于导体表面,又E内=0
e
E表
E s1 1
0
ds
s
R1 r R2
E3
1
4
0
Q q/ r2
U
R1
E.dr
R2 R1
E2.dr
R2 E3.dr 0
r R2
q/
4 0
1 R1
1 R2
1
4 0
Q q/ R2
0,
解得
q
R 1
Q
R
2
故外球壳外表面荷电 Q q/ Q R1 Q
R2
17
10
例8-14 如图所示,一带正电Q的点电荷离半径为R的金属球壳 外的距离为d,求金属球壳上的感应电荷在球心O处的场强。
q/
R
r
E0 0 E/ d
Q
解 以球心为坐标原点,球心指向点电荷的方向为矢径方向,则
点电荷在球心处的场强
Q
E0 4 0 (R d )2 r0
又
E E/ E 0
内
0
q
总之,导体壳内部电场不受壳外电荷的影响,接地导体使 得外部电场不受壳内电荷的影响。这种现象称为静电屏蔽。
12
2、尖端放电
在带电尖端附近,电离的分子与周围分子碰撞,使周围的 分子处于激发态发光而产生电晕现象。
+ +
++ +++
+ +
+++
+
尖端效应在大多数情况下是有害的:如高压电线上的电晕, 故此,高压设备中的金属柄都做成光滑的球形。
△s面上σ均匀, E1=常矢 ,且垂直于导体表面,又E内=0
e
E表
E s1 1
0
ds
s
1.5 静电场中的导体
10
§5 静电场中的导体
5.2 导体上的电荷分布 尖端放电现象 尖端放电可以利用的一面——避雷针。 当带电的云层接近地表面时,由于静电感应使地面上 物体带异号电荷,这些电荷比较集中地分布在突出的 物体(如高大建筑物、烟囱、大树)上。当电荷积累 到一定程度,就会在云层和这些物体之间发生强大的 火花放电。这就是雷击现象。 为了避免雷击,如右图所示,可在高大建筑物上安装 尖端导体(避雷针),用粗铜缆将避雷针通地,通地 的一端埋在几尺深的潮湿泥土里或接到埋在地下的金 属板(或金属管)上,以保持避雷针与大地电接触良 好。当带电的云层接近时,放电就通过避雷针和通地 粗铜导体这条最易于导电的通路局部持续不断地进行 以免损坏建筑物。
2
§5 静电场中的导体
2.1.1 导体的静电平衡条件 导体从非平衡态趋于平衡态的过程:
把一个不带电的导体放在均匀电场中。在导体所占据的那部分空间 里本来是有电场的,各处电势不相等。在电场的作用下,导体中的自由 电荷将发生移动,结果使导体的一端带上正电,另一端带上负电,这就 是静电感应现象。 导体上的电荷达到什么程度时,电荷不再增加? 导体内部: E E0 E 0, 达到平衡
12
§5 静电场中的导体
5.3 导体壳(腔内无带电体情形) (2)法拉第圆筒 静电平衡时,导体壳内表面没有电荷的结论 可以通过如图所示的实验演示。
A、B是两个验电器,把一个差不多封闭的空心金 属圆筒C(圆筒内无带电体)固定在验电器B上。给圆 筒和验电器B以一定的电荷,则金箔张开。取一个装有 绝缘柄的小球D,使它和圆筒C外表面接触后再碰验电 器A(图a),则A上金箔张开,如果重复若干次,我们 就能使金属箔A张开的角度很显著,这证明圆筒C的外 表面是带上了电的。 如果把小球D插入圆筒上的小孔使之与圆筒的内 表面相接触后,再用验电器A检查(图b),则发现A的 金属箔总不张开。这表明圆筒C的内表面不带电。这 就从实验上证实了上述结论。这实验称为法拉第圆筒 实验,实验中的圆筒C称为法拉第圆筒。
§5 静电场中的导体
5.2 导体上的电荷分布 尖端放电现象 尖端放电可以利用的一面——避雷针。 当带电的云层接近地表面时,由于静电感应使地面上 物体带异号电荷,这些电荷比较集中地分布在突出的 物体(如高大建筑物、烟囱、大树)上。当电荷积累 到一定程度,就会在云层和这些物体之间发生强大的 火花放电。这就是雷击现象。 为了避免雷击,如右图所示,可在高大建筑物上安装 尖端导体(避雷针),用粗铜缆将避雷针通地,通地 的一端埋在几尺深的潮湿泥土里或接到埋在地下的金 属板(或金属管)上,以保持避雷针与大地电接触良 好。当带电的云层接近时,放电就通过避雷针和通地 粗铜导体这条最易于导电的通路局部持续不断地进行 以免损坏建筑物。
2
§5 静电场中的导体
2.1.1 导体的静电平衡条件 导体从非平衡态趋于平衡态的过程:
把一个不带电的导体放在均匀电场中。在导体所占据的那部分空间 里本来是有电场的,各处电势不相等。在电场的作用下,导体中的自由 电荷将发生移动,结果使导体的一端带上正电,另一端带上负电,这就 是静电感应现象。 导体上的电荷达到什么程度时,电荷不再增加? 导体内部: E E0 E 0, 达到平衡
12
§5 静电场中的导体
5.3 导体壳(腔内无带电体情形) (2)法拉第圆筒 静电平衡时,导体壳内表面没有电荷的结论 可以通过如图所示的实验演示。
A、B是两个验电器,把一个差不多封闭的空心金 属圆筒C(圆筒内无带电体)固定在验电器B上。给圆 筒和验电器B以一定的电荷,则金箔张开。取一个装有 绝缘柄的小球D,使它和圆筒C外表面接触后再碰验电 器A(图a),则A上金箔张开,如果重复若干次,我们 就能使金属箔A张开的角度很显著,这证明圆筒C的外 表面是带上了电的。 如果把小球D插入圆筒上的小孔使之与圆筒的内 表面相接触后,再用验电器A检查(图b),则发现A的 金属箔总不张开。这表明圆筒C的内表面不带电。这 就从实验上证实了上述结论。这实验称为法拉第圆筒 实验,实验中的圆筒C称为法拉第圆筒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、静电屏蔽
导体壳内部不受外部电场影响,场强处处为0的现象,叫做静电屏蔽现象。
演示:静电屏蔽现象(见课本p101)
(三)本课小结:静电平衡的实质,特点,静电屏蔽。
(四)布置作业:专用作业纸
教后记:
授课时间:
翔宇教育集团课时设计活页纸
主备人:刘益民
总课题
第十四章电场线
总课时
16
第5课时
课题
电场中的导体
课型
新授
教学目标
1、知道静电感应产生的原因,理解什么是静电平衡状态
2、理解静电平衡时,导体内部的场强处处为零,电荷只分布在导体的
外表面上,知道静电屏蔽的应用
教学重点
静电平衡状态及其特点
教学难点
同上
教学过程
教学内容
(1)处于静电平衡状态的导体,内部场强处处为零。
E合=E外+E感
附加电场的形成过程分析:
(2)处于静电平衡状态的导体,净电荷只分布在外表面上
(3)导体表面上任一点的场强方向跟该点表面垂直。
〖课堂练习〗
例1:长为L的导体棒原来不带电,现将一电荷量为+q的点电荷放在与棒的左端距离为R的地方,如图所示。达到静电平衡后,棒上的感应电荷在棒内中点产生的场强有多大?方向如何?
反证法
翔宇教育集团课时设计活页纸
教学过程
教学内容
教学札记
例2、一金属球,原来不带电,现沿球的直径的延长线放置一均匀带电的细杆MN,如图10-26所示.金属球上感应电荷产生的电场在球内直径上a、b、c三点的场强大小分别为Ea、Eb、Ec,三Ea=Eb=Ec
分析
例3:导体球壳B带有正电荷Q,其中放有导体球A,用细金属丝通过B上的小孔与地相连(细金属丝不与球壳B相碰),如图10-27所示.则导体球A[]
A.不带电B.带正电
C.带负电D.可能带正电,也可能带负电
例4:如图,在点电荷-Q的电场中,一金属圆盘处于静电平衡状态,若圆盘与点电荷在同一平面内,则请在盘上画出感应电荷产生的电场的任意三条电场线。
备课札记
(一)复习:电场的基本特点,电场的描述引入了场强与电场线。
引入:提出问题
(1)金属导体的微观结构怎样?
(2)将一块金属导体放入电场中将会出现什么现象?
(二)新课讲解
实验演示:法拉第圆筒实验(见课本p100)
1、静电平衡状态:导体中(包括表面)没有电荷的定向移动的状态,叫做静电平衡状态。
2、静电平衡状态的特点
导体壳内部不受外部电场影响,场强处处为0的现象,叫做静电屏蔽现象。
演示:静电屏蔽现象(见课本p101)
(三)本课小结:静电平衡的实质,特点,静电屏蔽。
(四)布置作业:专用作业纸
教后记:
授课时间:
翔宇教育集团课时设计活页纸
主备人:刘益民
总课题
第十四章电场线
总课时
16
第5课时
课题
电场中的导体
课型
新授
教学目标
1、知道静电感应产生的原因,理解什么是静电平衡状态
2、理解静电平衡时,导体内部的场强处处为零,电荷只分布在导体的
外表面上,知道静电屏蔽的应用
教学重点
静电平衡状态及其特点
教学难点
同上
教学过程
教学内容
(1)处于静电平衡状态的导体,内部场强处处为零。
E合=E外+E感
附加电场的形成过程分析:
(2)处于静电平衡状态的导体,净电荷只分布在外表面上
(3)导体表面上任一点的场强方向跟该点表面垂直。
〖课堂练习〗
例1:长为L的导体棒原来不带电,现将一电荷量为+q的点电荷放在与棒的左端距离为R的地方,如图所示。达到静电平衡后,棒上的感应电荷在棒内中点产生的场强有多大?方向如何?
反证法
翔宇教育集团课时设计活页纸
教学过程
教学内容
教学札记
例2、一金属球,原来不带电,现沿球的直径的延长线放置一均匀带电的细杆MN,如图10-26所示.金属球上感应电荷产生的电场在球内直径上a、b、c三点的场强大小分别为Ea、Eb、Ec,三Ea=Eb=Ec
分析
例3:导体球壳B带有正电荷Q,其中放有导体球A,用细金属丝通过B上的小孔与地相连(细金属丝不与球壳B相碰),如图10-27所示.则导体球A[]
A.不带电B.带正电
C.带负电D.可能带正电,也可能带负电
例4:如图,在点电荷-Q的电场中,一金属圆盘处于静电平衡状态,若圆盘与点电荷在同一平面内,则请在盘上画出感应电荷产生的电场的任意三条电场线。
备课札记
(一)复习:电场的基本特点,电场的描述引入了场强与电场线。
引入:提出问题
(1)金属导体的微观结构怎样?
(2)将一块金属导体放入电场中将会出现什么现象?
(二)新课讲解
实验演示:法拉第圆筒实验(见课本p100)
1、静电平衡状态:导体中(包括表面)没有电荷的定向移动的状态,叫做静电平衡状态。
2、静电平衡状态的特点