一种新型重金属螯合剂处理垃圾焚烧飞灰的浸出毒性安全性研究

合集下载

针铁矿对垃圾焚烧飞灰中重金属离子的固化作用及机理分析

针铁矿对垃圾焚烧飞灰中重金属离子的固化作用及机理分析

针铁矿对垃圾焚烧飞灰中重金属离子的固化作用及机理分析佚名【摘要】垃圾焚烧飞灰是一种危险固体废弃物,必须经过固化稳定化,满足《生活垃圾填埋场污染控制标准》后方能填埋.针铁矿是一种表面带有丰富羟基功能基的固体表面活性剂,利用其表面羟基对金属离子的络合作用能够对垃圾焚烧飞灰进行固化.本论文探讨了工艺参数对针铁矿固化飞灰毒性浸出效果的影响;又利用酸碱滴定表征了针铁矿表面羟基化特性;用格氏图处理酸碱滴定数据,计算出针铁矿表面羟基活性位点密度.结果表明:在针铁矿添加量为15%、液固比为0.4、固化时间为3 d 的条件下,固化后的飞灰能够满足生活垃圾填埋场进场要求;金属离子能够进入针铁矿表面stern层被紧密吸附,碱性条件下则更加有利于离子在针铁矿双电层的扩散层中吸附.【期刊名称】《矿产保护与利用》【年(卷),期】2018(000)006【总页数】7页(P87-93)【关键词】垃圾焚烧飞灰;重金属离子吸附;针铁矿表面活性;浸出毒性;固化【正文语种】中文【中图分类】X705前言焚烧处理因减容效果良好、消毒彻底、有利于实现城市垃圾资源化,而成为全世界垃圾处理的最主要模式。

我国的城市垃圾焚烧处理率也在逐年升高,预计到2020年,我国垃圾焚烧处理率将达到50%。

但生活垃圾焚烧后会产生大量的固体残渣,主要包括底灰和飞灰。

飞灰是指在烟气净化系统和热回收系统中收集得到的残留物,占焚烧灰渣总量的10%~20%左右。

通过焚烧,生活垃圾中33%的Pb、92%的Cd以及45%的Sb都迁移到了飞灰之中,因此垃圾焚烧飞灰中富集了大量的重金属。

垃圾焚烧飞灰若不经过妥善处理处置,而直接填埋、堆存,会浸入土壤和水体,造成重金属污染,重金属在环境中不能降解,只能迁移,无法通过土壤和水体的自身净化作用消除。

我国将固体废物焚烧飞灰列入《国家危险废物名录》(编号HW18),要求必须预处理后才能进入危险废物填埋场,不得进行简易处置及排放。

根据2008年制定的GB 16889—2008《生活垃圾填埋场污染控制标准》,生活垃圾焚烧飞灰经处理后,按照HJ/T 300—2007制备的浸出液中危害成分质量浓度低于规定的限值,可以进入生活垃圾填埋场处置。

生活垃圾焚烧飞灰处置及资源化利用研究

生活垃圾焚烧飞灰处置及资源化利用研究

研 究·RESEARCH84生活垃圾焚烧飞灰处置及资源化利用研究文_庞俊峰1 张建平1 秦淼1 李强1 黄亚继21.光大环保固废处置(苏州)有限公司;2.东南大学能源与环境学院,能源热转换及其过程测控教育部重点实验室摘要:本文对垃圾焚烧发电产生的焚烧飞灰与化学成分、水洗脱盐、重金属去除、处置方式及再生利用等进行了综述,分析了发展趋势,为焚烧飞灰再生利用做好理论参考。

关键词:焚烧飞灰;水洗脱盐;重金属去除;再生利用Research on Disposal and Resource Utilization of Domestic Waste Incineration Fly Ash Pang Jun-feng Zhang Jian-ping Qin Miao Li Qiang Huang Ya-ji[ Abstract ] This article summarizes the incineration fly ash and chemical composition, water elution salt, heavy metal removal, disposal methods and recycling, etc. generated by the incineration of domestic waste incineration and power generation, analyzes the development trend, and provides a theoretical reference for the recycling of incineration fly ash.[ Key words ] incineration fly ash; water washing desalination; heavy metal removal; recycling我国城市生活垃圾的产量持续走高,随着焚烧发电产业迅速发展,垃圾焚烧项目已成为环境基础设置领域的重点。

有机螯合剂对城市生活垃圾焚烧飞灰中重金属的稳定化试验研究

有机螯合剂对城市生活垃圾焚烧飞灰中重金属的稳定化试验研究

有机螯合剂对城市生活垃圾焚烧飞灰中重金属的稳定化试验研究罗伟;李颖【摘要】选取乙二胺四乙酸二钠(EDTA)和亚硫基二乙酸(TDGA)两种有机稳定剂药剂,研究其对焚烧飞灰重金属的稳定化效果.实验表明,焚烧飞灰浸取液中重金属浓度依次为:Zn (124.2mg/L) >Pb (27.98mg/L)>Cu(15.29mg/L) >Cd (7.68mg/L) >TCr (1.16mg/L),重金属Pb、Cd、Cu超出标准;在用EDTA和TDGA处理的稳定化样品浸出液中Pb、Cd、Cu、TCr的浓度随着有机螯合剂投加量的增加而减小,并且TDGA的处理效果优于EDTA;在TDGA投加量相同,且浸取剂pH在3到9的范围内时,随着pH的升高,Pb、Zn、Cu、TCr的浸出浓度逐渐减小,其中pH升高对Cd的浸出浓度影响较小;若有机螯合剂溶液与飞灰搅拌均匀,液固比的增加对螯合反应没有产生影响.【期刊名称】《四川环境》【年(卷),期】2018(037)005【总页数】6页(P19-24)【关键词】飞灰;重金属;有机螯合剂;稳定化【作者】罗伟;李颖【作者单位】四川省环境保护科学研究院,成都610041;四川省环境保护科学研究院,成都610041;四川省科院科技咨询有限责任公司,成都610041【正文语种】中文【中图分类】X7051 前言城市生活垃圾焚烧飞灰(MSWI fly ash)是在生活垃圾焚烧后,被烟气净化系统和热回收系统(如锅炉、节热器等)收集到的颗粒物[1]。

产生的飞灰约占原焚烧垃圾总量的3%~5%[2]。

2014年我国各类危险废物产生总量为3 634万t,其中焚烧飞灰产量为400万t,占比达到了11%。

飞灰中可能含有大量的重金属、二噁英等有毒有害物质,这些物质可能会从飞灰中浸出,在环境中迁移转化,即使浓度较低也会对环境造成严重污染[3]。

由于重金属难以在自然条件下降解,且可通过生物放大转移至生物体内,对人体及其他生物造成伤害[4]。

高分子螯合剂和垃圾焚烧飞灰中重金属的稳定化技术

高分子螯合剂和垃圾焚烧飞灰中重金属的稳定化技术

高分子螯合剂和垃圾焚烧飞灰中重金属的稳定化技术何其伟;王明芳;王陆游【摘要】简单介绍了垃圾焚烧飞灰的理化特性和垃圾焚烧飞灰中重金属稳定化技术.依据螯合剂的结构特点及分类,结合高分子螯合剂合成方法,简述了高分子螯合剂稳定重金属的原理.认为高分子螯合剂处理垃圾焚烧飞灰后短期内是有效的.但是,螯合剂与重金属形成的螯合物的长期稳定性有待进一步的实验验证.二硫代羧酸盐类高分子螯合剂研究较多,含其他配位基团的螯合剂有待研究.【期刊名称】《广州化学》【年(卷),期】2016(041)006【总页数】4页(P70-73)【关键词】高分子螯合剂;重金属;稳定化;垃圾焚烧;飞灰【作者】何其伟;王明芳;王陆游【作者单位】嘉兴中科检测技术服务有限公司,浙江嘉兴314022;嘉兴中科检测技术服务有限公司,浙江嘉兴314022;嘉兴中科检测技术服务有限公司,浙江嘉兴314022【正文语种】中文【中图分类】X705随着我国经济高速发展和城镇人口的快速增长,我国形成了很多大城市和特大城市(甚至超大城市),城市面临的生活垃圾问题显得愈来愈加严峻。

根据《2015年城乡建设统计公报》,2015年我国城市生活垃圾产量超过2亿吨。

目前,我国生活垃圾的主要处置方式为填埋,需占用大量土地,并且对土壤和水质造成污染。

焚烧处置是日本和欧洲发达国家的主流方向,我国从八十年代中后期开始发展生活垃圾焚烧厂。

焚烧可杀灭垃圾中的细菌达到无害化,同时减容(体积减少90%)、减量,余热可用来发电达到资源化的目的。

但是,垃圾焚烧过程中产生的飞灰(约为垃圾量的3%~5%),富集了大量的重金属和二噁英,会对环境造成危害。

《国家危险废物名录》(2016)将垃圾焚烧飞灰列为危险废物,在安全填埋前必须进行无害化处置。

如何有效处理垃圾焚烧飞灰中的重金属和二噁英是当前急需解决的环保问题。

垃圾焚烧飞灰是一种灰白色或深灰色的细微粉末。

飞灰中90%的颗粒粒径小于300微米。

飞灰的成分和垃圾组成、焚烧方式等有关,各地有差异。

重金属螯合剂处理焚烧飞灰的稳定化技术研究

重金属螯合剂处理焚烧飞灰的稳定化技术研究

1999年5月ENV I RONM EN TAL SC IEN CEM ay,1999重金属螯合剂处理焚烧飞灰的稳定化技术研究蒋建国 王 伟 李国鼎 那崇铮 甑晓月 赵翔龙(清华大学环境科学与工程系,北京 100084,E 2m ail :jianguo j @ho tm ail.com )摘要 进行了垃圾焚烧飞灰的新型稳定化药剂——重金属螯合剂的实验室研究,探讨了本螯合剂处理焚烧飞灰的稳定化工艺流程及处理效果.结果表明,本螯合剂对飞灰中重金属的总捕集效率高达97%以上,其效果显著优于无机稳定化药剂N a 2S 和石灰,且处理后的飞灰能达到重金属废物的填埋控制标准,同时,其处理后的飞灰的最大浸出量远低于无机稳定化药剂处理后的飞灰,且能在较宽的pH 范围内都具有好的稳定化效果,减少了稳定化产物在环境条件变化下二次污染的风险.关键词 重金属螯合剂,稳定化技术,垃圾焚烧飞灰,重金属废物,固体废弃物处理.3 蒋建国:男,28岁,博士收稿日期:1998209214Exper i m en ta l Study on the Chem ica l Stab il iza tion Technology i nTrea ti ng w ith Fly A sh Usi ng Heavy M eta l Chela ti ng Agen tJ iang J ianguo W ang W ei L i Guoding N a Chongzheng Zeng X iaoyue Zhao X ianglong(D ep t .of Environ .Science and Engineering ,T singhua U niversity ,Beijing 100084,Ch ina E 2m ail :jianguo j @ho tm ail.com )Abstract T he syn thesizing m ethod of heavy m etal chelating agen t w as exp lo red in th is paper .T he techno logy p rocess and treatm en t efficiency of the chelating agen t in treating w ith fly ash w ere experi m en tally studied .T he resu lts indicated that the efficiency of heavy m etal chelating agen t in treating w ith fly ash w as h igher than that of u sing N a 2S and li m e ,fu thermo re ,the treated fly ash u sing th is chelating agen t can reach the landfilling stan 2dards fo r heavy m etal w aste .T he m ax i m um leach ing quan tity of heavy m etal fo r the treated fly ash u sing th is chelating agen t w as m uch low er than that fo r the treated fly ash u sing N a 2S and li m e ,and it can keep stab iliza 2ti on w ith in a b roader pH value .T hu s the risk of secondary po llu ti on fo r the treated w aste w as reduced dram ati 2cally w hen the environm en t conditi on changes.Keywords heavy m etal chelating agen t ,stab ilizati on techno logy ,fly ash ,heavy m etal w astes ,so lid w aste treat 2m en t . 垃圾焚烧技术由于可以有效降低垃圾的体积,回收能源,将会成为我国垃圾资源化和减容处理技术的重要研究和发展方向.但是,垃圾焚烧所产生的焚烧飞灰因其含有较高浸出浓度的铅和铬等重金属而属于重金属危险废物[1,2,4,6],在对其进行最终处置之前必须先经过稳定化处理.在日本,已有明确的法律要求垃圾焚烧飞灰必须经过药剂稳定化处理后才能进行填埋处置[6],同时关于飞灰的药剂稳定化处理已有一定的研究和报道[2,4,5].在我国,由于常规稳定化技术所存在的问题[3],开发新型重金属螯合剂及其在重金属废物治理中的应用将在我国及国际上具有广阔的市场和实用价值[4,5,6].本论文对重金属螯合剂的开发及其处理垃圾焚烧飞灰的效果和工艺进行系统的研究,并与常规的无机稳定化药剂石灰和N a 2S 处理焚烧飞灰的效果进行对比,得出了相应的结论.1 重金属螯合剂的合成重金属螯合剂实验室合成中使用的多胺其分子量一般在500以下,实验发现以60~250为最佳,这些多胺包括乙二胺、二乙烯三胺等聚烯烃多胺,而聚乙烯亚胺则使用30%的水溶液.以上的多胺或聚乙烯亚胺都具有含N 置换基的烷基、氨基、酰基或羟基烷基.在合成反应过程中,CS 2可在碱性条件下置换多胺或聚乙烯亚胺分子N 元素上的活性H 原子,生成重金属螯合剂即二硫代氨基甲酸或其盐[7,8].其基本反应式可表示为:多胺(聚乙烯亚胺)+二硫化碳碱性条件αCH 2N CSS -N a+CH 2χn重金属螯合剂高分子长链上的有效官能团二硫代羧基以离子键和共价键的形式与重金属离子反应,生成稳定的交联空间网状结构的重金属螯合物[7].2 焚烧飞灰稳定化处理工艺及方法211 处理工艺流程焚烧飞灰中含有的重金属以阳离子的形式(Pb 2+、Cd 2+等)存在,较易溶出,且其粒径已经很小(d m ax <1mm ),故处理前不需要机械粉碎.实验中采用的处理流程简图如图1所示.1废物储槽 21废物计量 31重金属螯合剂储槽 41重金属螯合剂稀释槽 51稀释水 61机械搅拌设备 71稳定化产物图1 焚烧飞灰稳定化处理工艺流程212 有毒物质浸出程序(Tox icity Character 2istic L each ing P rocedu re ,TCL P )实验方法TCL P 方法是一种确定废物浸出毒性的标准方法[1],是由美国EPA 在原有的危险废物提取程度(EP )基础上改进提出的.其目的是考察在填埋场环境下,处置废物中危险成分的浸出特性,判断其是否对地下水构成污染.实验中采用的TCL P 实验流程如图2所示.图2有毒物质浸出程序(TC LP )流程湿样固相固体弃去液体4℃下储存分析测试浸出液液固分离0.6~0.8Λm滤膜过滤固相TC LP浸取液相液 固分离0.6~0.8Λm 玻璃纤维滤膜过滤湿废物样品含不可过滤固体>0.5%干废物样品废物代表样3 实验结果与分析311 飞灰性能测试实验焚烧飞灰的TCL P 浸出试验结果示于表1.表1 焚烧飞灰的基本性能 m g ・L -1重金属种类PbCdZnC rH gCu 焚烧飞灰重金属含量15206517810028121113290焚烧飞灰浸出实验重金属浓度381511877120118010060111危险废物填埋控制标准31001311501005312 药剂投加量与飞灰中重金属去除率的关系实验分为投加重金属螯合剂、N a 2S 和石灰3组,药剂投加量分别为012%、014%和016%.所得结果示于图3~5,分别表示不同稳定化药剂投加量与飞灰中重金属的去除率的关系曲线.图3 药剂投加量为012%时去除率比较图3~5的投加量比较实验结果说明:在016%的投加量情况下,重金属螯合剂对飞灰中的主要污染重金属Pb 、Cd 、Zn 和C r 的捕集效41环 境 科 学20卷图4 药剂投加量为014%时去除率比较图5 药剂投加量为016%时去除率比较果都在95%以上,而同样投加量的N a 2S 特别是石灰对这4种重金属的捕集效果很难达到85%,重金属螯合剂对焚烧飞灰的处理效果明显优于N a 2S 和石灰.313 药剂投加量与稳定化产物最大浸出量的关系为了考察飞灰稳定化产物在最不利的环境条件下可能的最大的危险成分的泄露量,实验中对飞灰的稳定化产物进行了最大浸出量试验,该法是用于预测稳定化产物中危险成分在长时间、苛刻条件下可能的最大浸出量,是一种评价稳定化处理产物长期稳定性的方法[5,6].作为比较,同时进行了重金属螯合剂、N a 2S 和石灰处理后飞灰及原灰的最大浸出量实验.最大浸出量试验法工艺流程如图6.飞灰稳定化产物的最大浸出量随重金属螯合剂、N a 2S 和石灰的不同投加量变化的关系曲线绘于图7和图8.图7和图8的结果说明在016%的药剂投加量情况下,使用重金属螯合剂后飞灰中Cd 和Pb 的最大浸出量分别为18m g kg 干废物和2滤液滤液图6稳定化产物最大浸出量实验工艺流程原灰稳定化药剂混合装置养护最大浸出量试验方法1mol L HNO 3蒸馏水L S=50 1L S=50 131mol L HNO 蒸馏水残渣废物最大浸出量测定混合搅拌3h过滤调pH=4保持3h搅拌装置搅拌3h,过滤调pH=7保持3h 搅拌装置粉碎40℃干燥11重金属螯合剂 21N a 2S 31石灰图7 Cd 的最大浸出量2药剂投加量关系曲线11重金属螯合剂 21N a 2S 31石灰图8 Pb 的最大浸出量2药剂投加量关系曲线大浸出量则分别为309m g kg 、5019m g kg 干废物和532 、55 干废物,此结果要513期 环 境 科 学 远高于重金属螯合剂处理后的飞灰.所以,在实际的填埋处理中,重金属螯合剂稳定化产物中危险成分向环境泄露的量比无机稳定化药剂处理后的飞灰低得多,减少了稳定化产物再次污染环境的风险.314 pH 值对TCL P 浸出浓度的影响pH 相关实验是用不同pH 值的浸取液做废物的浸出试验,并以此为依据,预测废物中的危险成分在不同pH 值下的浸出量,它是一种评价稳定化产物在环境条件变化的情况下能否长期稳定存在的预测方法[4,6].实验中所使用的pH 相关实验的工艺流程如图9.图9稳定化产物pH 相关实验工艺流程pH 相关实验程序养护反应槽固体渣单位重量废物浸出量液体测定浓度固液分离装置振荡6h混合成pH=1,3,5,7,9,11,13称重,7等份原灰药剂混合装置L S=10 131mol L HNO 或Na OH40℃干燥用重金属螯合剂、N a 2S 和石灰分别处理后的飞灰在不同pH 值下Cd 和Pb 的TCL P 浸出浓度分别列于图10~13.11原灰 21重金属螯合剂 31N a 2S 41石灰 51达标值图10 药剂投加量为014%时Cd 的浸出量2pH关系曲线11原灰 21重金属螯合剂 31N a 2S 41石灰 51达标值图11 药剂投加量为016%时Cd 的浸出量2pH关系曲线11原灰 21重金属螯合剂 31N a 2S 41石灰 51达标值图12 药剂投加量为014%时Pb 的浸出量2pH关系曲线11原灰 21重金属螯合剂 31N a 2S 41石灰 51达标值图13 药剂投加量为016%时Pb 的浸出量2pH 关系曲线 从图10~13的结果可看出;重金属螯合剂在014%和016%的投加量下,pH 值分别大于318和316,Cd 的浸出量值可达标;pH 值分别大于412和312,Pb 的浸出量值可达标.而61环 境 科 学20卷N a2S在014%和016%的投加量下,pH值则分别需要大于10和615,Cd的浸出量值才可达标;pH值分别大于714和5,Pb的浸出量值才可达标.而用石灰作为稳定化药剂时,pH值只有在9~11时处理废物的重金属浸出量值才有希望达到填埋标准.因此,重金属螯合剂处理飞灰的效果明显优于N a2S和石灰,其处理后飞灰在相当宽幅的pH值范围内保持稳定,降低了稳定化产物二次污染的风险.4 小结(1)实验开发成功的重金属螯合剂是利用其高分子长链上的二硫代羧基官能团以离子键和共价键的形式捕集废物中的重金属离子,生成的稳定化产物是一种空间网状结构的高分子螯合物.(2)重金属螯合剂对焚烧飞灰的处理效果明显优于N a2S和石灰;相同的投加量情况下,其对飞灰中的主要污染重金属Pb、Cd、Zn和C r的捕集效果不仅高于N a2S和石灰,并且其处理后的飞灰达到了重金属废物填埋控制标准.(3)重金属螯合剂处理后飞灰中Cd和Pb 的最大浸出量远低于N a2S和石灰处理后的飞灰,极大地降低了处理后飞灰再次污染环境的风险.(4)用重金属螯合剂处理后的飞灰能够有效拓宽飞灰中主要污染重金属Pb和Cd达到填埋标准的pH值的范围,而用N a2S和石灰处理后的飞灰,pH范围被拓宽的程度明显低于重金属螯合剂的相应值,使得稳定化产物在环境pH值改变的情况下能长期稳定存在,二次污染的潜在威胁大为降低.参考文献1 Jesse R Conner.Chem ical fixati on and so lidificati on of hazardous w aste.Chem ical W aste M anagem ent,Inc, 1990.59~752 须藤雅弘 .弃物学会第6回研究 表会讲演论文集.日本:化学工业日报社,1990.4353 蒋建国,王伟.危险废物稳定化 固化技术的现状与发展.环境科学进展,1998,6(1):55~624 井田 莰,须藤 雅弘.全国都市清扫会议第17回演讲论文集.日本:化学工业日报社,1996,2085 高月弘,酒井伸一.危险 弃物—— —— 、 、 —— の视点 .日本:中央法规出版社, 1993.1886 厚生省生活卫生局水道环境部.特别管理 弃物 —— 《特别管理一般 弃物ばいじん 理 》.日本:化学工业日报社,1993.143~1757 蒋建国.重金属螯合剂的研制及其在污染治理中应用研究:(博士论文).清华大学环境科学与工程系,19988 蒋建国,王伟等.高分子螯合剂捕集重金属Pb2+的机理研究.环境科学,1997,18(2):31~33713期 环 境 科 学 。

哌嗪类DTC稳定垃圾焚烧飞灰重金属的实验研究

哌嗪类DTC稳定垃圾焚烧飞灰重金属的实验研究

哌嗪类DTC稳定垃圾焚烧飞灰重金属的实验研究佚名【摘要】采用哌嗪二硫代氨基甲酸盐类(PDTC)螯合剂,对华北、华中和西南3座城市的垃圾焚烧厂飞灰分别在夏季和冬季开展了稳定化处理工艺研究.结果表明:PDTC螯合剂通过螯合反应作用于飞灰的重金属,当DTC类螯合剂投加量为2%~3%(质量比)时,飞灰中重金属的浸出值均符合GB 16889-2008生活垃圾填埋场污染控制标准.【期刊名称】《环境卫生工程》【年(卷),期】2018(026)006【总页数】4页(P12-14,18)【关键词】飞灰;重金属;PDTC【正文语种】中文【中图分类】X705;X799.3截至2016年,我国已建成城市焚烧厂249座,焚烧处理量为2.02×105t/d,年焚烧量为7.37×107t,较2006年增长550%[1]。

飞灰作为垃圾焚烧副产物,由于大量富集如Pb、Cd、Cr、Zn等多种重金属,国内现有的环境法规已将它归类为危险废物。

一般地,焚烧飞灰产量约为垃圾焚烧量的3%~5%,GB 16889—2008生活垃圾填埋场污染控制标准中规定,达到浸出标准的飞灰可以豁免进入生活垃圾卫生填埋场分区填埋。

飞灰的处理方法主要有水泥固化[2]、药剂稳定化[3-4]、热处理[5]。

其中,药剂稳定化技术因其低增容、低成本、重金属稳定效率高、抗酸浸出能力强等优势而成为主流技术。

药剂稳定化技术的关键是稳定剂的选取。

目前,常用的飞灰稳定剂可分为无机药剂[2,6]和有机药剂[7-8]2 类。

与水泥固化技术相比,无机螯合剂稳定化处理技术处理后的废弃物增容很小,但在环境pH条件发生改变时,飞灰中的重金属会二次浸出[9],较难满足危险废物处理的长期安全性要求。

现行的HJ/T 300—2007固体废物浸出毒性浸出方法醋酸缓冲溶液法[10],要求以pH为2.64的醋酸缓冲溶液作为浸提剂对飞灰进行浸出毒性测试。

这对飞灰螯合剂的选择提出了更高要求,因此有机药剂已经成为飞灰稳定化处理的热点。

垃圾焚烧飞灰螯合物重金属浸出检测及要点分析

垃圾焚烧飞灰螯合物重金属浸出检测及要点分析

为了尽可能避免误操作导致的结果偏差,本文将从飞灰重金属浸出方法、浸出实验中容易误操作的步骤进行分析,梳理形成飞灰浸出实验要求,为垃圾焚烧厂飞灰螯合物自检提供参考。

1 浸出实验分析1.1 浸出方法目前,固体浸出毒性浸出方法有硫酸硝酸法和醋酸缓冲溶液法两种。

苏文渐等[2]采用上述两种方法对生活垃圾焚烧飞灰中重金属浸出特性进行对比试验发现,醋酸缓冲溶液法相对于硫酸硝酸法重金属提取效率明显较高,尤其是Pb 。

因此,采取正确的浸出方法是非常重要的。

对两种方法浸出过程进行对比分析表,如表1所示。

由于实验室接样时固体样品做浸出分析的一般常规采用硫酸硝酸法,因此,送样时一定要特别标注好检测方法。

0 引言生活垃圾焚烧飞灰中含有铅、镉、汞、铬等重金属和二噁英等持久性有机污染物,是一种环境激素类危险废物,对人体健康和环境危害极大。

因此,从根本上解决飞灰所引起的环境污染问题,保障市民的身体健康,对于促进经济的可持续发展、推动现代化城市的进程,具有十分重要的意义。

《生活垃圾填埋场污染控制标准》6.3规定,生活垃圾焚烧飞灰经过处理后满足条件后,可以进入生活垃圾填埋场填埋处置[1]。

此标准的发布为飞灰处理处置提供了一条出路。

飞灰无害化技术研究过程中检测是一个非常重要的环节,由于整个飞灰浸出毒性分析过程包括预处理和上机测定,前后约需24小时左右,步骤较多,指标也较多,其中部分步骤的正确执行对最终结果起决定性影响,但在普通试验分析中容易被忽视,从而导致最终结果严重偏离真实值。

垃圾焚烧飞灰螯合物重金属浸出检测及要点分析刘红 赵晓峰 彭贵芬(深圳市能源环保有限公司,广东 深圳 518000)摘要:由于垃圾焚烧飞灰螯合物重金属浸出毒性进场标准要求限值低,其样品预处理过程及检测分析环节出现操作失误都会引起检测结果的偏差,结合飞灰及飞灰螯合物自行检测操作经验,对其预处理及上机检测等过程中容易误操作环节进行总结说明,为飞灰自检及后期对外送检提供参考。

生活垃圾焚烧厂飞灰固化块重金属调查研究

生活垃圾焚烧厂飞灰固化块重金属调查研究

发 现 的 “重 金 属 在 垃 圾 焚 烧 过 程 中 的 迁 移 特 征 ,钴 、铜 、镍 、铬主 要 迁 移 至 底 渣 中 ,锌 、砷 、铅 主 要 迁 移 至 底 渣 和 飞 灰 中 ,镉主要迁 移 至 飞 灰 中 ,汞 主 要 迁 移 至 飞 灰 和 烟 气 中 ”121的 理 论 ,与本文中呈 现的结果非常吻合。
取 回 的 飞 灰 固 化 块 按 HJAD00-2007醋酸缓冲溶液法中要 求 进 行 前 处 理 ,铜 、锌 、铅 、镉 、铍 、钡 、镍 、总 铬 依 据 《固 体 废 物 22 种 金 属 元 素 的 测 定 电 感 耦 合 等 离 子 体 发 射 光 谱 法 》(HJ 781-
2016)进 行 检 测 ,六 价 铬 依 据 《固 体 废 物 六 价 铬 的 测 定 二 苯 碳 酰 二 肼 分 光 光 度 法 》(GB/T 15555.4-1995)进 行 检 测 、砷 、硒 、汞依据 《固 体 废 物 汞 、砷 、硒 、铋 、锑 的 测 定 微 波 消 解 /原 子 荧 光 法 》(HJ
《资 源 节 约 与 环 保 》 2 0 2 1 年 第 6 期
生活垃圾焚烧厂飞灰固化块重金属调查研究
黄璐 ( 广 东 杰 信 检 验 认 证 有 限 公 司 广 东 广 州 510655)
摘 要 :随着“十 四 五 ”污 染 防 治 攻 坚 战 总 思 路 的 提 出 ,生活垃 圾的治理已经成为全社会关注的热点。 肖前我国生活垃圾焚烧 是 城 市 生 活 垃 圾 处 理 的 主 要 发 展 方 向 ,但 生 活 垃 圾 焚 烧 飞 灰 (以 下 简 称 “飞 灰 ”)含 有 高 浸 出 毒 性 的 可 溶 性 重 金 属 对 自 然 环 境 和 人 类 健 康 存 在 潜 在 危 害 ,是 我 国 危 废 处 理 的 重 点 和 难 点 之 一 。飞 灰 以 固 化 稳 定 化 后 进 入 生 活 垃 圾 填 埋 场 分 区 填 埋 ,是当前主要 的 处 置 方 式 ,文 章 通 过 采 集 广 东 省 七 家 生 活 垃 圾 焚 烧 厂 产 生 的 飞 灰 固 化 块 ,通 过 进 行 金 属 浸 出 数 据 分 析 ,为调查区域的飞灰固 化块处理提供一定的数据依据与建议。 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种新型重金属螯合剂处理垃圾焚烧飞灰的浸出毒性安全性研究张旭健;王廖沙;王文丰;孙昌春【摘要】用一种新型重金属螯合剂飞卡处理生活垃圾焚烧发电厂的飞灰,并对螯合后的的安全性进行了研究.结果表明:其浸出液浓度均满足GB 16889-2008生活垃圾填埋场污染控制标准的规定,可以进入生活垃圾填埋场.螯合后的飞灰固化物在pH≤1时,锌、镉、铅的浸出浓度都超出GB 16889-2008控制标准,pH>3时,所有重金属浸出毒性指标均低于GB 16889-2008,由此可见在强酸性条件下,飞灰中的固化物某些重金属会重新被浸出,产生二次污染.经28个月暴露在空气中的实验表明,期间所有重金属浸出浓度均低于GB 16889-2008,但是铅的浸出浓度从0.1mg/L升到0.16mg/L,有缓慢上升趋势.【期刊名称】《环境卫生工程》【年(卷),期】2016(024)002【总页数】4页(P36-38,41)【关键词】垃圾焚烧飞灰;重金属螯合剂;浸出毒性;安全性评定;稳定化/固化【作者】张旭健;王廖沙;王文丰;孙昌春【作者单位】苏州环境监测中心站,江苏苏州 215000;苏州大学,江苏苏州 215000;苏州大学,江苏苏州 215000;苏州工业园区世普瑞环保科技有限公司,江苏苏州215000【正文语种】中文【中图分类】X705城市生活垃圾的焚烧处理因其具有良好的减容效果和能源回收利用等优点逐渐成为处理垃圾的首选技术,但垃圾焚烧时产生的飞灰中含有较多的重金属及二恶英等剧毒有机物[1],若处理不当将会造成重金属迁移,污染水体、土壤与空气。

因此在《国家危险废物名录》中明确将垃圾焚烧飞灰列为危险废物(编号HW18),不得进行简易处置及排放[2]。

因此垃圾焚烧飞灰必须预处理后才能进入危险废物填埋场。

我国在2008年制定了GB 16889—2008生活垃圾填埋场污染控制标准,生活垃圾焚烧飞灰经处理后,按照HJ/T300—2007制备的浸出液中危害成分质量浓度低于规定的限值[3],可以进入生活垃圾填埋场处置。

与进入危险废物填埋场处理相比,较大程度上降低了垃圾焚烧飞灰的填埋成本。

针对上述情况,苏州工业园区世普瑞环保科技有限公司合成了一种新型垃圾焚烧飞灰卫生填埋处置剂—飞卡(FACAR),其创新处在于对重金属和二恶英同时有稳定作用,并在此基础上研发了飞灰科学安全处置工艺。

该螯合剂已经列为2013年全国建设行业科技成果推广项目,在多家焚烧发电厂使用。

但是其螯合处理后的飞灰的重金属被稳定后在填埋场中会不会再次溶出,安全性有无风险,笔者开展了相关研究。

1.1 仪器和设备电感耦合等离子体原子发射光谱仪(JY-2000型,法国JY公司);原子荧光仪(AFS-9700,北京科创海光公司);同位素稀释高分辨气相色谱-高分辨质谱仪(MAT95XL,美国Finnigan公司);翻转式振荡器(固体废物浸出仪ZHF);纯水机(Millipore S.A67120型)。

1.2 材料与试剂1.2.1 试剂试剂水:采用纯水系统(Millipore S.A 67120型)制得,符合GB/T 6682—2008实验室用水二级要求。

冰醋酸、硝酸均为优级纯。

浸提剂:吸取17.25 mL冰醋酸至1 L容量瓶,用试剂水稀释至刻线,摇匀,溶液的pH应为2.64±0.05。

1.2.2 试样制备试验所用垃圾焚烧飞灰样品采自光大环保能源(苏州)有限公司生活垃圾焚烧发电厂,该公司一期采用3台350 t/d的比利时西格斯SHA多级炉排炉,配置2×15 MW凝汽式汽轮发电机组,日处理垃圾800 t,飞灰日产生量约40 t。

按照HJ/T 300—2007固体废物浸出毒性浸出方法醋酸缓冲溶液法对飞灰样品进行毒性浸出。

称取75~100 g飞灰样品,置于2 L提取瓶中,根据样品的含水率,按液固比为20∶1(L/kg)计算所需浸提剂的体积,加入浸提剂,盖紧瓶盖后固定在翻转式振荡器上,调节转速为(30±2)r/min,于(23±2)℃下振荡(18±2)h。

在振荡过程中有气体产生时,应定时在通风橱中打开提取瓶,释放过度的压力。

在压力过滤器上装上0.6 μm的玻纤滤膜,用稀硝酸淋洗过滤器和滤膜,弃掉淋洗液,过滤并收集浸出液,于4℃下保存。

每测定20个样品时至少做1个浸出空白实验,将浸提剂按以上步骤操作分析。

1.3 飞灰稳定化处理采用FACAR螯合树脂作为重金属稳定剂和粘合剂。

首先根据最终处置条件和污染控制标准确定FACAR剂量,结合焚烧飞灰的粉体性质及捏合要求的强度特性确定需水量,一般需水量为飞灰量的25%;按照确定的螯合剂剂量和需水量稀释FACAR溶液,所得的FACAR稀释溶液浓度为4%~20%。

将FACAR稀释溶液与焚烧飞灰在反应捏合机中反应1~3 min,推荐质量配比为飞灰∶FACAR∶水=100∶3∶25,反应后的混合料即为稳定化产物,直接运往生活垃圾填埋场进行填埋处置。

1.4 浸出液的元素分析方法与依据试验测试指标根据 GB 16889—2008选取,对铜、铅等12种元素进行测试,测试方法按照GB 5085.3—2007危险废物鉴别标准浸出毒性鉴别中规定的方法——附录A《固体废物元素的测定电感耦合等离子体原子发射光谱法》及《固体废物砷、锑、铋、硒的测定原子荧光法》,二恶英采用HJ 77.3—2008固体废物二恶英类的测定同位素稀释高分辨气相色谱-高分辨质谱法进行试验。

2.1 垃圾飞灰与螯合后的飞灰的浸出毒性比对试验分别对原灰与螯合后飞灰的浸出毒性进行测试,测试结果见表1。

由表1可以看出,焚烧飞灰在经过飞卡螯合后的浸出毒性含量普遍降低。

其中元素铅含量显著减少,原样浸出液中铅含量2.69 mg/L,螯合后浸出液减少至0.18 mg/L,去除效率达93%;原样浸出液镉含量0.79 mg/L,原样浸出液螯合后减少至0.01mg/L,去除效率达87%,均能满足进场要求。

原样中二恶英含量3.9 μg/kg,螯合后减少至2.7 μg/kg,满足进场要求。

由此可见,该螯合剂使得二恶英类化合物解毒,这是该螯合剂的创新之处。

其它元素均能满足生活垃圾填埋场进场要求。

2.2 pH对稳定化产物中重金属浸出量的影响采用HNO3或NaOH溶液配制pH分别为1.00、3.00、5.00、7.00、9.00、11.00、13.00的浸取剂溶液,以不同的浸取剂代替醋酸缓冲溶液,按照HJ/T 300—2007的步骤制备浸出液。

试验测定了稳定化产物暴露在各种pH环境条件下的重金属的浸出浓度。

由表2可以看出螯合后的飞灰固化物在pH=1.0时,锌,镉,铅的浸出浓度都超出标准限值,pH>3后浸出浓度都满足生活垃圾填埋场进场要求。

由此可见,螯合飞灰固化物在酸性条件下会浸出,在生活垃圾填埋场中一般pH不会低于1.0,因此预计经飞卡螯合后的飞灰中的重金属不易释放进入生活垃圾填埋场。

2.3 稳定性影响实验生活垃圾焚烧飞灰稳定化产物在填埋场中的稳定行为涉及填埋条件、微生物影响和酸雨影响等多种因素。

根据Satoshi Mizutani等的研究,空气中的氧气会破坏处理后具有还原性的飞灰的结构,从而引起重金属的扩散[4]。

本实验将螯合后的飞灰固化物暴露在空气中,从2013年7月起历时28个月,每2个月采样分析1次,按照HJ/T300—2007方法制备,该方法以醋酸缓冲溶液为浸提剂(pH=2.64± 0.05),模拟工业废物在进入卫生填埋场后,其中有害组分在填埋场渗沥液的影响下,从废物中浸出的过程。

测试结果见表3。

试验数据表明,在2 a多的实验期间,重金属铅的浸出毒性从0.1 mg/L变化到0.16 mg/L,呈缓慢上升,并逐渐趋于平稳,其他元素虽有波动,但都远低于GB16889—2008标准第6.3款所规定的标准限值。

1)垃圾焚烧飞灰卫生填埋处置剂—飞卡(FACAR)对垃圾焚烧飞灰中的重金属和二恶英有稳定作用,且螯合后飞灰的各项浸出毒性指标均低于GB 16889—2008标准第6.3款中所规定的限值,完全符合卫生填埋的进场条件。

2)螯合后的飞灰固化物在pH≤1时,锌、镉、铅的浸出浓度都超出GB 16889—2008,pH>3时,所有重金属浸出毒性指标均低于GB 16889—2008,由此可见,在强酸性条件下,飞灰中的固化物某些重金属会重新被浸出,产生二次污染。

根据相关文献的内容[5-8],其他有机螯合剂螯合后的飞灰固化物也有类似情况,而且pH>3就会被浸出。

3)暴露在空气的影响实验表明,在28个月的的实验期间,所有重金属浸出浓度均低于GB 16889—2008,其中铅的浸出浓度从0.1 mg/L升到0.16 mg/L,呈缓慢上升趋势,目前趋于平稳状态,但其长期稳定性还需继续观察。

【相关文献】[1] Hao J,Wang L,Shen M,et al.Air quality impacts of power plant emissions in Beijing[J].Environ Pollu,2007,147(3):401-408.[2]胡小英,田书磊,王琪,等.飞灰热处理过程中基本特性研究[J].环境工程学报,2007,1(12):120-123.[3]固体废物浸出毒性浸出方法醋酸缓冲液法:HJ/T 300-2007 [S].北京:中国环境出版社,2007.[4] Satoshi M,Hans A wan der S,Shin-ichi S.Sakai.Evaluation of treatment of gas cleaning residues from MSWI with chemical agents[J].Waste Manage,2000,20(2/3):233-240.[5] Jiang J G,Wang J,Xu X,et al.Heavy metal stabilization in municipal solid waste incineration fly ash using heavy metal chelating agents[J].J Hazard Mater,2004,B113(1/3):141-146.[6]徐科,吴立,陈德珍.采用螯合剂稳定垃圾焚烧飞灰中的重金属[J].能源研究与信息,2005,2(21):83-89.[7]蒋建国,王伟,李国鼎,等.重金属螯合剂处理焚烧飞灰的稳定化技术研究[J].环境科学,1999,3(20):14-17.[8]徐颖,陈玉,冯岳阳.重金属螯合剂处理垃圾焚烧飞灰的稳定化技术[J].化工学报,2013,64(5):1833-1839.。

相关文档
最新文档