直线与平面平行及平面与平面平行的性质学案

合集下载

《直线与平面、平面与平面平行的性质》导学案

《直线与平面、平面与平面平行的性质》导学案

第5课时直线与平面、平面与平面平行的性质1.理解直线与平面平行、平面与平面平行的性质定理,能用图形语言和符号语言表述这些定理,并能加以证明.2.能运用直线与平面平行、平面与平面平行的性质定理证明一些空间位置关系的简单问题.如图,足球门的上边框与地面平行,我们发现不管什么时刻,只要有太阳光照射着上边框,上边框在阳光的照射下的影子总是与上边框保持着平行,大家思考过是什么原因吗?问题1:我们可以用直线与平面平行的性质定理来解释上述问题,因为太阳离地球很远,所以照射球门框的那一束光线可以看作是经过球门框的,影子恰好是与地面的,由于上边框平行于地面,从而球门框平行于球门框在阳光照射下的影子.问题2:直线与平面平行、平面与平面平行的性质定理及其图形语言、符号语言:线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线.符号表示:错误!未找到引用源。

⇒.图形:面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的平行.用符号语言表示为:α∥β,γ∩α=a,γ∩β=b⇒a∥b.问题3:面面平行的其他性质:①若两个平面平行,则一个平面内的都和另一个平面.这条性质,给我们提供了证明的另一种方法,可以作为运用.②夹在两平行平面间的两条平行线段,这一点和平面内夹在两条平行线之间的类似.③和平行线具有传递性一样,平行平面也具有传递性,即平行于的两个平面.该性质同时是的一种判定方法.问题4:线线、线面、面面平行如何相互转化:由上可以看出三者之间可以进行适当转化,即由两相交直线和平面平行可以推出两个;同样,由两个平面平行的定义和性质也可以推出.直线与平面、平面与平面平行的这种相互转化关系体现了知识间的相互依赖关系.1.已知直线a∥平面α,P∈α,那么过点P且平行于a的直线().A.只有一条,不在平面α内B.有无数条,不一定在α内C.只有一条,且在平面α内D.有无数条,一定在α内2.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中().A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.有且只有一条与a平行的直线3.已知平面α∥平面β,它们之间的距离为d,直线a⊂α,则在β内与直线a相距为2d的直线有条.4.已知在三棱锥P-ABC中,D,E分别是PA,PB上的点,DE∥平面ABC,求证:错误!未找到引用源。

线面,面面平行判定及性质导学案

线面,面面平行判定及性质导学案

2.2.1 直线与平面平行的判定课型:新授 编写:尚辉 袁长涛 滕璐 聂东林 校审:高一数学组 基础知识:1.直线与平面有几种位置关系?用三种语言表述。

2.判断两条直线平行,常用的有几种方法?3.根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点。

但是,直线是无限伸长的,平面是无限延展的,如何保证直线与平面没有公共点呢?用三种语言表述直线与平面平行的判定定理。

4.我们知道平行线有传递性,线面的平行有传递性吗?学习任务: 一、必做题:1.如图,长方体1111D C B A ABCD -中,(1)与AB 平行的平面是____________________; (2)与AA 1平行的平面是____________________; (3)与AD 平行的平面是____________________;2.如图,正方体1111D C B A ABCD -中,E 为1DD 的中点,试判断1BD 与平面AEC 的位置关系, 并说明理由。

3.如图,在空间四边形ABCD 中,已知E 、F 分别是AB 、AD 的中点。

求证:EF ∥平面BCD二、选做题:1.下列命题中正确的个数是 ( ) (1)若直线l 上有无数个点都不在平面α内,则α//l ;(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行; (4)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点; (5)平行于同一平面的两条直线互相平行。

A.0个B.1个C.2个D.3个2.如图,在正方体1111D C B A ABCD -中,E 、F 分别是棱BC 、C 1D 1的中点,求证:EF//平面BDD 1B 1。

3.如图,在四棱锥ABCD P -中,已知底面ABCD 为平行四边形,E 、F 分别是AB ,PD 的中点。

求证://AF 平面PCE ;学习报告(学生): 教学反思(教师):2.2.1 直线与平面平行的判定课型:习题 编写:尚辉 袁长涛 滕璐 聂东林 校审:高一数学组BAD CEP 1.判断对错(1)直线a 与平面α不平行,即a 与平面α相交. ( ) (2)直线a ∥b ,直线b 平面α,则直线a ∥平面α. ( ) (3)直线a ∥平面α,直线b 平面α,则直线a ∥b . ( )2.直线与平面平行的条件是这条直线与平面内的 ( ) A.一条直线不相交 B.两条直线不相交 C.任意一条直线不相交 D.无数条直线不相交3.过空间一点作与两条异面直线都平行的平面,这样的平面 ( ) A 不存在 B 有且只有一个或不存在 C 有且只有一个 D 有无数个4.下列三个命题正确的个数为 ( ) (1)如果一条直线不在平面内,则这条直线与该面平行 (2)过直线外一点,可以作无数个面与该面平行(3)如果一条直线与平面平行,则它与平面内的任意直线平行 A 0 B 1 C 2 D 35.已知三条互相平行的直线c b a ,,中,,,βα⊂⊂c b a 、则两个平面βα,的位置关系是( ) A.平行 B.相交 C.平行或相交 D.重合6.与两个相交平面的交线平行的直线和这两个平面的位置关系是( ) A.都平行 B.都相交 C.在这两个平面内 D.至少和其中一个平面平行 7.如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .8.如图,ABCD 是平行四边形,S 是平面ABCD 外一点,M 为SC 的中点. 求证://SA 平面MDB .9.如图,在四棱锥ABCD P -中,底面ABCD 是正方形,E 是PC 的中点.证明://PA 平面EDB ;10.如图,在底面为平行四边形的四棱锥ABCD P -中,点E 是PD 的中点.求证://PB 平面AEC .C D A BM PP ABCDEO11.在三棱柱111C B A ABC -中,D 为BC 中点.求证:1//A B 平面1ADC ;12.已知在四棱锥ABCD P -中,ABCD 为平行四边形,E 是PC 的中点,O 为BD 的中点. 求证://OE 平面ADP13.如图,在直三棱柱111C B A ABC -中,D 为AC 的中点,求证:;平面D BC AB 11//14.如图,在四棱锥ABCD P -中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证://MN 平面PAD .2.2.2 平面与平面平行的判定 课型:新授 编写:尚辉 袁长涛 滕璐 聂东林 校审:高一数学组 基础知识:1.平面与平面有几种位置关系?用三种语言表述。

《4.3.1 直线与平面平行》学历案-中职数学高教版21拓展模块一上册

《4.3.1 直线与平面平行》学历案-中职数学高教版21拓展模块一上册

《直线与平面平行》学历案(第一课时)一、学习主题本课学习主题为“直线与平面平行”。

通过本课的学习,学生将掌握直线与平面平行的基本概念、性质和判定方法,为后续学习空间几何及其他相关数学知识打下基础。

二、学习目标1. 理解直线与平面平行的概念,知道平行直线的定义和性质。

2. 掌握直线与平面平行的判定定理和证明方法。

3. 学会利用平行线的性质和判定定理解决实际问题。

4. 培养学生的空间想象能力和逻辑推理能力。

三、评价任务1. 评价学生对直线与平面平行概念的理解程度,能否准确描述平行直线的定义和性质。

2. 评价学生掌握直线与平面平行判定定理的熟练程度,能否正确运用定理进行证明。

3. 评价学生应用直线与平面平行知识解决实际问题的能力,能否将所学知识运用到实际问题中。

4. 通过学生的课堂表现、作业完成情况和考试成绩等多方面进行评价。

四、学习过程1. 导入新课:通过复习前一节课的内容,引导学生思考直线与平面的关系,引出本课的主题——直线与平面平行。

2. 新课讲解:首先,教师通过讲解和举例,帮助学生理解直线与平面平行的概念和性质。

然后,重点讲解直线与平面平行的判定定理,并通过具体例子加以说明。

3. 学生练习:学生独立完成相关练习题,巩固所学知识。

教师巡回指导,及时解答学生疑问。

4. 课堂小结:教师总结本课重点内容,强调直线与平面平行的概念、性质和判定定理,并引导学生思考如何运用所学知识解决实际问题。

5. 拓展延伸:介绍一些与直线与平面平行相关的实际应用,如建筑、机械制造等领域的平行线应用,拓展学生的视野。

五、检测与作业1. 课堂检测:通过课堂小测验或随堂练习,检测学生对本课知识的掌握情况。

2. 作业布置:布置相关练习题和思考题,巩固所学知识,提高学生的应用能力。

作业包括基础题和拔高题,满足不同层次学生的需求。

3. 作业评讲:教师评讲作业时,要关注学生的解题思路和过程,及时纠正错误,表扬优秀解题方法。

六、学后反思1. 教师反思:教师反思本课教学过程中的优点和不足,总结经验教训,不断提高教学水平。

空间中直线平面平行的判定及其性质专题复习学案定稿

空间中直线平面平行的判定及其性质专题复习学案定稿

高三数学学案授课时间: 2013年月日星期执笔:张航审定:张骞班组:高三班第组姓名:1 / 2专题复习:空间中直线、平面平行的判定及其性质学案考纲要求1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简单题.学习目标:知识与能力:.理解线面平行、面面平行的判定及性质定理,并会灵活应用。

过程与方法:.会进行空间线面平行位置关系的转化。

情感态度与价值观:培养学生逻辑推理能力,并能规范的书写论证步骤。

教学过程:环节一:课前自主学习:自主复习必修2的这部分内容,做到能够用自己的语言概括出这部分的主要内容,完成环节三的两个例题。

环节二:知识梳理自己尝试对这部分内容进行知识梳理,并画出知识结构图。

环节三:典例精析:例1:(2013全国文改编)如图,直三棱柱111ABC A B C中,D,E分别是AB,1BB的中点,。

证明:1//BC平面11ACD;EDB1C1A CBA12 / 2环节四:巩固练习与拓展应用下面两个练习要试着用多种不同的方法做。

练习1:(2012年辽宁文改编)如图,直三棱柱///ABC A B C中,点M ,N 分别为/A B 和//B C 的中点。

证明:MN ∥平面//A ACC ;:练习2环节五:知识梳理与课堂小结:试着再次对这节课所学的知识和方法进行梳理,画出知识与方法结构图,要加上老师在课上补充的而自己又在环节二没画出的内容。

环节六:完成课后作业。

《直线与平面平行的性质》教案、导学案、课后作业

《直线与平面平行的性质》教案、导学案、课后作业

《8.5.2 直线与平面平行》教案第2课时直线与平面平行的性质【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

【教学目标与核心素养】课程目标1.理解直线和平面平行的性质定理并能运用其解决相关问题.2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的性质定理,线线平行与线面平行转化;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线和平面平行的性质定理.难点:直线和平面平行的性质定理的应用.【教学过程】一、情景导入问题1:观察长方体,可以发现长方体ABCD—A′B′C′D′中,线段A′B 所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B平行吗?问题2:由直线与平面平行可知直线与平面内的直线关系为平行或异面,那么满足什么条件,直线与平面内的直线平行呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本137-138页,思考并完成以下问题1、平面外的直线与平面内的直线有几种位置关系?2、满足什么条件时平面外一条直线与平面内的直线平行?3、用符号语言怎么表示直线与平面平行的性质定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、直线与平面平行的性质定理四、典例分析、举一反三题型一直线与平面平行的性质定理的理解例1 已知直线m,n及平面α,β有下列关系:①m,n⊂β,②n⊂α,③m∥α,④m∥n.现把其中一些关系看作条件,另一些看作结论,组成一个真命题是 .【答案】①②③⇒④或①②④⇒③【解析】结合线面平行的性质定理,可知①②③⇒④,结合线面平行的判定定理,可知①②④⇒③.解题技巧(性质定理理解的注意事项)(1)明确性质定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1、有以下三个命题:①如果一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②过直线外一点,有且只有一个平面和已知直线平行;③如果直线l ∥平面α,那么过平面α内一点和直线l 平行的直线在α内,其中正确命题的个数为( )A.0B.1C.2D.3【答案】C .【解析】结合线面平行的性质定理,可知过直线外一点,有无数个平面和已知直线平行.题型二 直线与平面平行的性质定理的应用 例2如图所示的一块木料中,棱平行于面.(1) 要经过面内的一点P 和棱将木料锯开, 在木料表面应该怎样画线?(2)所画的线与平面是什么位置关系?【答案】(1)见解析(2)直线与平面平行直线与平面相交.【解析】(1)如图,在平面A′C′内,过点P 作直线EF ,使EF ∥B′C′,并分别交棱A′B′、C′D′于点E 、F .连接BE 、CF . 则EF 、BE 、CF 就是应画的线.(2)因为棱BC 平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC ∥B′C′.由(1)知,EF ∥B′C′,所以EF ∥BC .而BC 在平面AC 内,EF 在平面AC 外,所以EF ∥平面AC.BC A C ''A C ''BC AC EF AC ,BE CFAC显然, BE 、CF 都与平面AC 相交. 解题技巧 (性质定理应用的注意事项)(1)欲证线线平行可转化为线面平行解决,常与判定定理结合使用. (2)性质定理中有三个条件,缺一不可,注意平行关系的寻求.常利用中位线性质.跟踪训练二1、如图,AB,CD 为异面直线,且AB ∥α,CD∥α,AC,BD 分别交α于M,N 两点,求证AM ∶MC=BN ∶ND.【答案】证明见解析【解析】连接AD 交α于点P,连接MP,NP因为CD ∥α,平面ACD∩α=MP, 所以CD ∥MP,所以=.同理可得NP ∥AB,=,所以=.五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计AM MCAP PDAP PDBN NDAM MCBN ND七、作业课本139页练习4题,143页习题8.5的1、3、7、10、11题.【教学反思】通过本节课性质定理的学习,使学生进一步了解线线平行和线面平行时刻相互转化的,即空间问题和平面问题可以相互转化.《8.5.2 直线与平面平行》导学案第2课时直线与平面平行的性质【学习目标】知识目标1.理解直线和平面平行的性质定理并能运用其解决相关问题.2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的性质定理,线线平行与线面平行转化;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线和平面平行的性质定理.【学习难点】:直线和平面平行的性质定理的应用.【学习过程】一、预习导入阅读课本137-138页,填写。

高中数学教案《直线与平面平行的性质

高中数学教案《直线与平面平行的性质

高中数学教案《直线与平面平行的性质》一、教学目标:1. 知识与技能:使学生掌握直线与平面平行的性质定理及其证明;能运用性质定理判断直线与平面是否平行。

2. 过程与方法:通过观察、思考、推理等过程,培养学生空间想象能力和逻辑思维能力。

3. 情感态度与价值观:激发学生学习兴趣,培养学生勇于探索、严谨治学的科学精神。

二、教学内容:1. 直线与平面平行的定义:直线与平面内的所有直线都不相交。

2. 直线与平面平行的性质定理:如果直线与平面内的两条相交直线分别垂直,该直线与平面平行。

3. 性质定理的证明:利用反证法,证明直线与平面平行。

三、教学重点与难点:1. 教学重点:直线与平面平行的性质定理及其证明。

2. 教学难点:性质定理的证明,特别是反证法的运用。

四、教学过程:1. 导入:引导学生回顾直线、平面、直线与平面相交等基本概念,为新课的学习做好铺垫。

2. 新课讲解:讲解直线与平面平行的定义,引导学生理解并掌握。

3. 性质定理的提出:通过实例,引导学生发现直线与平面平行的性质,提出性质定理。

4. 性质定理的证明:引导学生运用反证法证明性质定理,解释证明过程中的关键步骤。

5. 例题讲解:分析并讲解典型例题,帮助学生巩固所学知识。

6. 课堂练习:布置练习题,让学生运用性质定理判断直线与平面是否平行。

五、课后作业:1. 复习课堂内容,巩固直线与平面平行的性质定理。

2. 完成课后练习题,提高运用性质定理解决问题的能力。

3. 探索更多直线与平面平行的性质,拓展知识面。

六、教学评价:1. 评价目标:检查学生对直线与平面平行性质定理的理解和掌握程度。

2. 评价方法:通过课堂回答、练习题和课后作业,评估学生的学习效果。

3. 评价内容:a) 学生能否准确表述直线与平面平行的性质定理。

b) 学生能否运用性质定理判断直线与平面是否平行。

c) 学生能否在解决实际问题时,灵活运用所学知识。

七、教学策略:1. 采用直观教学法,利用教具和图形,帮助学生建立空间概念。

直线与平面平行性质 导学案

直线与平面平行性质  导学案

数学必修2 导学案………………………..装……………………订……………………线……………………….直线与平面平行性质导学案日期______编写______审定_______一、学习目标:1.通过直观感知、操作确认、认识和理解空间中线面平行的性质2.掌握直线和平面平行的性质,灵活运用线面平行的判定定理和性质定理3.掌握“线线”“线面”平行的转化二、重点、难点重点:两个性质定理。

难点:(1)性质定理的证明;(2)性质定理的正确运用三、知识链接预习教材P58—P60,找出疑惑之处复习1:两个平面平行的判定定理是_______________________________________________它的实质是由______________平行推出________________平行问题:如果直线a与平面α平行,那么a和平面α内的直线具有什么样的关系。

四、学法指导:线面关系是线线关系和面面关系的桥梁和纽带,线面平行的判定是高考考查的重点.本节的难点是应用线面平行的性质定理把线面平行转化为线线平行,本节在选题时始终围绕这个中心展开,针对性强,因此这节课目的突出,是一个精彩课例.另外,本节总结了应用线面平行性质定理的口诀,对学生的学习一定有很大帮助五、学习内容探究:直线与平面平行的性质定理问题1:直线a平面α平行。

请在图中的平面α内画出一条和直线a平行的直线b问题2:我们知道两条平行线可以确定一个平面(为什么?)请在上图中把直线a,b确定的平面画出来,并且表示为β问题3:在你画出的图中,平面β是经过直线a,b的平面,显然它和平面α是相交的,并且直线b是这两个平面的交线,而直线a和b又是平行的。

因此你能得出什么结论?请把它用符号语言写在下面。

问题4:在上图中过直线a再画另外一个平面γ与平面α相交,交线为c。

直线a,c平行吗?和你上面得出结论相符吗?你能不能从理论上加以证明呢?新知:直线与平面平行的性质定理:_________________________________________________________________反思:定理的实质是什么?__________________________________________典型例题例1:如图所示的一块木料中,棱BC平行于面''CA(1)要经过面''CA内的一点P和棱BC将木栏锯开,应怎样画线?(2)所画的线与平面AC是什么位置关系?变式训练:如图,a∥α,A是α另一侧的点,B、C、D∈a,线段AB、AC、AD交α于E、F、G点,若BD=4,CF=4,AF=5,求EG.………………………..装……………………订……………………线……………………….点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2:如图,已知直线a ,b ,平面α,且a//b ,a//α,a ,b 都在平面α外。

线面平行的判定与性质导学案

线面平行的判定与性质导学案

8.4 直线、平面平行的判定与性质(学案)【考点分布】直线和平面平行的判定和性质;两个平面平行的判定和性质.【考试要求】认识和理解空间中线面平行的有关性质与判定定理;能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题.【基础知识】1.直线和平面的位置关系(1)直线在平面内:直线和平面的公共点的个数是 ;符号表示为: . (2)直线和平面相交:直线和平面的公共点的个数是 个公共点;符号表示为: .(3)直线和平面平行:直线和平面的公共点的个数是 个.符号表示为: .2.直线和平面平行(1)定义:若一直线与一平面 ,则直线与平面平行.(2)判定定理:若 一直线与 一直线平行,则平面外这直线平行于平面.(3)性质定理:如果一条直线和一个平面平行, 的平面和这个平面相交,那么这条直线和交线平行.3.两个平面平行(1)定义:若两个平面 ,则这两个平面平行.(2)判定定理:如果一个平面内的 直线分别平行于另一个平面,那么这两个平面平行.(3)性质定理:如果两个平行平面同时与第三个平面 ,那么它们的交线平行. 【基础练习】1.βα、表示平面,b a 、表示直线,则a ∥α的一个充分不必要条件是 ( )(A)α⊥β,a ⊥β (B)α∩β=b ,且a ∥b(C) a ∥b 且b ∥α (D)α∥β且a ⊂β; 2.βα,是两个不重合的平面,在下列条件中,不能判定平面βα//的条件是 ( ) (A)n m ,是α内一个三角形的两条边,且ββ//,//n m (B)α内有不共线的三点到β的距离都相等 (C) βα,都垂直于同一条直线a(D)n m ,是两条异面直线,βα⊂⊂n m ,,且αβ//,//n m ;3. 一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是(A)异面(B)相交(C)平行(D)不能确定4.设a 、b 是两条互不垂直的异面直线,过a 、b 分别作平面βα、,对于下面四种情况:①b ∥α,②b ⊥α,③α∥β,④α⊥β.其中可能的情况有 (A) 1种 (B) 2种 (C) 3种 (D) 4种5.若,a b 是两条异面直线, 则存在唯一确定的平面β, 满足 ( )(A) //a β且//b β (B) a β⊂且//b β (C) a β⊥且b β⊥ (D) a β⊂且b β⊥6. a 、b 、c为三条不重合的直线,γβα、、为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上)【典型例题】题型一: 线面平行的判断与性质例 1 两个全等的正方形ABCD 和ABEF 所在平面相交于AB,M ∈AC,N ∈FB,且AM=FN,求证:MN ∥平面BCE.变式练习 :1.如图,四面体A —BCD 被一平面所截,截面EFGH 是一个矩形.(1)求证:CD ∥平面EFGH .(2)求异面直线AB 、CD 所成的角.αE C AN PM D B β 2. 异面直线AB 、CD 分别与两个平行平面α和β相交于A 、B 和C 、D ,M 、N 分别是AB 和CD 的中点,求证:MN //α.题型二:面面平行判定与性质例2 已知P 为△ABC 所在平面外一点,321G G G 、、分别是△PAB 、△PCB 、△PAC 的重心.(1)求证:平面321G G G //平面ABC; (2) 求ABC G G G S S ∆∆:321变式练习:1. 如图所示,在棱长为2cm 的正方体''''D C B A ABCD -中,''B A 的中点是P ,问过点'A 作与截面PBC 1平行的截面也是三角形吗?该截面的面积.C2.已知:平面α、β 都垂直于平面γ,交线分别为a 、b ,且a //b . 求证:α//β.1.已知a 、b 表示直线,α表示平面,给出四个命题: ①a //b , b ⊂α, 则a //α; ②a //α, b ⊂α, 则a //b ; ③a //α, b //α, 则a //b ; ④a //b , b //α, 则a //α. 其中正确命题的个数为 ( ) (A )0 (B )1 (C )2 (D )32.直线a 平行于平面α,点A ∈α,则过点A 且平行于a 的直线是 ( ) (A )只有一条,但不一定在平面α内 (B )只有一条,一定在平面α内 (C )有无数条,但不都在平面α内 (D )有无数条,都在平面α内 3.a 和b 是异面直线,下列结论正确的是 ( ) (A )过不在a 、b 上的任一点,可以作一个平面与a 、b 都平行 (B )过不在a 、b 上的任一点,可以作一条直线与a 、b 都相交 (C )过不在a 、b 上的任一点,可以作一条直线与a 、b 都平行 (D )过a 可以作一个并且只能作一个平面与直线b 平行β α a bB dc Aγα a A α' c β' l β B b 4.下列命题中错误的是 ( ) (A )平行于同一条直线的两个平面平行 (B )平行于同一平面的两个平面平行 (C )垂直于同一直线的两个平面平行(D )过平面外一点与这个平面平行的平面有且只有一个5.已知直线a ,b ,c 与平面α,β,γ ,下列条件中能推出α//β的是 ( ) (A )a ⊂α,b ⊂β,a //b (B )a ⊂α,b ⊂α,a //β,b //β (C )a ⊥α,b ⊥β,a //b (D )α⊥γ,β⊥γ6.已知线段AB 和CD 是夹在两平行平面α、β之间的两条线段,AB ⊥CD ,AB =2,AB 与平面成30︒的角.则线段CD 的长度的范围是 ( )(A )⎪⎭⎫⎝⎛32,332 (B )⎪⎭⎫⎢⎣⎡+∞,332 (C )⎪⎭⎫⎝⎛332,1 (D )[1,+∞) 7.已知a 、b 是相交直线,且a 平行于平面α,那么b 与α的位置关系是 .8.AB 、CD 是夹在两个平行平面α、β间的线段,AB =13,CD =15,AB 、CD 在β上射影的长的和是14,那么AB 在平面β内的射影的长为 ;α与β之间的距离为 .9.在△ABC 中,AB =5,AC =7,∠BAC =60︒,G 是△ABC 的重心,过点G 的平面α与BC 平行,AB α=M , AC α=N ,则MN = .10. 给出以下六个命题:①垂直于同一直线的两个平面平行;②平行于同一直线的两个平面平行;③平行于同一平面的两个平面平行;④与同一直线成等角的两个平面平行;⑤一个平面内的两条相交直线于另一个平面内的两条相交直线平行,则这两个平面平行;⑥两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面平行性质及平面与平面平行的性质
学习目标:理解并掌握直线与平面平行的性质定理及平面与平面平行的性质定理 能把线面平行,面面平行转化为线线平行,体现数学划归的思想方法 复习:
(1)直线与平面平行的判定定理:
(2)平面与平面的平行的判定定理: 导入新课:
1、直线与平面平行性质定理:
探究一(1)如果一条直线与平面平行,那么这个平面内的所有直线都与这个直线平行吗?
(2)直线a 与平面α平行,如何在平面α内找到与直线a 平行的直线? 直线与平面平行性质定理:
简记为:线面平行则线线平行。

符号表示: 自主学习:
例1:过长方体1111ABCD A B C D 的棱1BB 作一平面,交平面11CDD C 于1EE ,求证
11BB EE 平行于
变式1:如图,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,平面α过EH 分别交BC 、CD 于F 、G.求证:EH∥FG.
D 1
C 1
B 1
A
B
C
D
A 1
E 1
E
2、平面与平面平行性质定理:
探究二1如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的位置关系?
2如果两个平面平行,那么如何分别在这两个平面内找到互相平行的两条直线?
平面与平面平行性质定理:
符号表示:
例2 已知://
αβ,,
AB CD是夹在两个平行平面,αβ间的平行线段,求证:AB CD
=.
变式2:如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点
(1)求证://
MN平面PAD;
(2)若4
MN BC
==
,PA=求异面直线PA与MN所成的角的大小
课堂小结:
线线平行的方法线面平行的方法
D
C
B
A
β
α
面面平行⇐线面平行⇐线线平行 . .。

相关文档
最新文档