2016-2017学年浙江省台州市高一数学下期末试卷

合集下载

浙江省台州市2016-2017学年高一上学期期末数学试卷Word版含答案

浙江省台州市2016-2017学年高一上学期期末数学试卷Word版含答案

2016-2017学年浙江省台州市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.13.的值为()A.B.C.D.4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2} 5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]10.若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为.12.已知函数f(x)=的值为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是.14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是,当λ∈(,)时,实数m的取值范围为.三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.20.已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.2016-2017学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}【考点】交、并、补集的混合运算.【分析】根据并集与补集的定义,写出运算结果即可.【解答】解:全集U={1,2,3,4,5},A={1,3},B={2,4},∴A∪B={1,2,3,4};∴∁U(A∪B)={5}.故选:B.2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.1【考点】平行向量与共线向量.【分析】根据平面向量共线定理的坐标表示,列出方程求x的值.【解答】解:平面向量=(1,2),=(x,﹣2),若与共线,则2x﹣1×(﹣2)=0,解得x=﹣1.故选:C.3.的值为()A.B.C.D.【考点】三角函数的化简求值.【分析】利用诱导公式化简即可计算出答案.【解答】解:sin=sin(4)=sin(﹣)=﹣sin=.故选A4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2}【考点】函数的值域.【分析】根据题意依次求出函数值,可得函数的值域.【解答】解:∵函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),∴f(x)分别是0、﹣1、0、1,则函数f(x)的值域是{﹣1,0,1},故选:B.5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<<,<0,∴b>a>c.故选:D.6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【考点】函数零点的判定定理.【分析】判断函数的连续性,利用零点判定定理求解即可.【解答】解:函数f(x)=﹣x3﹣3x+5是连续函数,因为f(1)=1>0,f(2)=﹣8﹣6+5<0,可知f(1)f(2)<0,由零点判定定理可知,函数的零点x0所在的一个区间是(1,2).故选:B.7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数图象确定函数的周期以及函数过定点坐标,代入进行求解即可.【解答】解:函数的周期T=﹣=π,即=π,则ω=2,当x=时,f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,则﹣<+φ<,可得: +φ=,解得:φ=,故选:A.8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.【考点】幂函数的概念、解析式、定义域、值域.【分析】由题意求得定点P的坐标,根据点P在幂函数f(x)的图象上,设g(x)=x n,求得n的值,可得g(x)的解析式即可.【解答】解:函数y=log a(x﹣+1)+2(a>0,a≠1)的图象过定点P(,2),∵点P在幂函数f(x)的图象上,设g(x)=x n,则2=n,∴n=3,g(x)=x3,故选:C.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]【考点】二次函数的性质.【分析】求出函数的对称轴,判断开口方向,然后通过函数值求解即可.【解答】解:函数f(x)=x2﹣2x的对称轴为:x=1,开口向上,而且f(﹣1)=3,函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,又f(3)=9﹣6=3,则实数t的取值范围是:(﹣1,3].故选:D.10.若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]【考点】三角函数的周期性及其求法.【分析】根据题意求出t≥,设f(t)=,求出f(t)的最小值;再根据题意求出t≤,设g(t)==2f(t),求出g(t)的最大值,从而求出实数t的取值范围.【解答】解:∵β∈[,π],∴﹣1≤cosβ≤0;∵α≤t,∴≥cos2β+cosβ,即t≥;令f(t)=,则f′(t)==;令f′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时f(t)==,当cosβ=0时,f(t)=0为最小值;又t≤α﹣2cosβ,∴α≥t+2cosβ,∴t≤cos2β+•cosβ,即t≤;令g(t)==2f(t),则g′(t)=2f′(t)=2•;令g′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时g(t)=2×=为最大值,当cosβ=0时,g(t)=0;综上,实数t的取值范围是[0,].故选:B.二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为4.【考点】子集与真子集.【分析】写出集合{1,2}的所有子集,从而得出该集合的子集个数.【解答】解:{1,2}的子集为:∅,{1},{2},{1,2},共四个.故答案为:4.12.已知函数f(x)=的值为.【考点】对数的运算性质.【分析】首先求出f()=﹣2,再求出f(﹣2)的值即可.【解答】解:∵>0∴f()=log3=﹣2∵﹣2<0∴f(﹣2)=2﹣2=故答案为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是[﹣,] .【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,得出结论.【解答】解:把函数f(x)=2cos(2x+)的图象向右平移个单位,得到g(x)=2cos[2(x﹣)+]=2cos(2x﹣)的图象,令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,可得函数g(x)的增区间为[kπ﹣,kπ+],k∈Z.结合x∈[﹣,]时,可得g(x)的增区间为[﹣,],故答案为:[﹣,].14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】根据题意、偶函数的单调性等价转化不等式,由对数函数的单调性求出解集.【解答】解:∵f(2)=0,f(lnx)>0,∴f(lnx)>f(2),∵定义在R上的偶函数f(x)在[0,+∞)上是减函数,∴f(lnx)>f(2)等价于|lnx|<2,则﹣2<lnx<2,即lne﹣2<lnx<lne2,解得,∴不等式的解集是,故答案为:.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.【考点】三角函数的最值.【分析】根据题意,利用正弦函数的图象与性质,即可得出结论.【解答】解:∵函数y=sinx的定义域为[m,n],值域为,结合正弦函数y=sinx的图象与性质,不妨取m=﹣,n=,此时n﹣m取得最大值为.取m=﹣,n=,n﹣m取得最小值为,故答案为,.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是±,当λ∈(,)时,实数m的取值范围为(,2).【考点】平面向量数量积的运算.【分析】以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y 轴,根据向量的数量积公式得到m=(4m﹣4)λ2,代值计算即可求出λ的值,再得到得m==1+,根据函数的单调性即可求出m的范围.【解答】解:以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y轴建立直角坐标系,不妨设B(a,0),C(﹣a,0),a>0∵AD=λBC=2λa∴A(0,2λa),∴=(a,﹣2λa),=(0,﹣2λa),=(﹣a,﹣2λa),∴•=4λ2a2,=﹣a2+4λ2a2,∵•=m,∴4λ2a2=﹣ma2+4mλ2a2,即m=(4m﹣4)λ2,当m=2时,λ2=,解得λ=±,由m=(4m﹣4)λ2,得m==1+∵m=1+在(,)上递减,∴m∈(,2)故答案为:±.,(,2)三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.【考点】函数的零点与方程根的关系;函数奇偶性的判断.【分析】(Ⅰ)利用奇函数的定义,即可得出结论;(Ⅱ)由,得2x=3,x=log23,即可得出结论.【解答】解:(Ⅰ)因为函数f(x)的定义域为R,且,所以f(x)是定义在R上的奇函数;…(Ⅱ)∵,∴2x=3,x=log23.所以方程的实数解为x=log23.…18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.【考点】平面向量数量积的运算;向量的模.【分析】(Ⅰ)根据便可得到,从而可求得,这样即可得出的值;(Ⅱ)根据即可得出,平方后即可求出cosα,cosβ的值,从而求出α,β的值.【解答】解:(Ⅰ)∵;∴;∴;∴,;(Ⅱ)∵;∴,即;解得,;∵;∴,.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.【考点】三角函数的最值;集合的包含关系判断及应用.【分析】(Ⅰ)若B⊆A,分类讨论,即可求实数a的取值范围;(Ⅱ)由题意,,即可求实数x0取值的集合.【解答】解:(Ⅰ)A={x|﹣1<x<3},若B=∅,则2a﹣1≥a+1,解得a≥2,满足B⊆A,若B≠∅,则a<2,要使B⊆A,只要解得0≤a<2,综上,实数a的取值范围是[0,+∞);…(Ⅱ)由题意,,即,∴,或,k∈Z,∴,或,k∈Z.则实数x0取值的集合是,或,k∈Z}.…20.已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.【考点】正弦函数的单调性;三角形中的几何计算.【分析】(Ⅰ)利用同角三角函数的基本关系,求得sinA和cosA的值,可得tanA 的值.(2)由题意可得1≤tanA<2,化简要求式子为﹣,再利用函数的单调性求得它的范围.【解答】解:(Ⅰ)锐角△ABC中,a=﹣1,由题意可得,求得,或(舍去),∴.(Ⅱ)若a<0,由题意可得sinA﹣2cosA<0,得tanA<2,又,tanA≥1,∴1≤tanA<2,∴=,令t=tanA+1,2≤t<3,∴,∵y=在[2,3)上递增,∴,∴.即sin2A﹣sinA•cosA的取值范围为.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)根据二次函数的性质求出函数的递增区间即可;(Ⅱ)求出h(x)的解析式,根据函数的零点得到关于a的不等式组,解出即可;(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,分别求出F(x)的最小值和G(x)的最大值,求出a的范围即可.【解答】解:(Ⅰ)函数y=f(x)的单调递增区间为[﹣1,1],[3,+∞);(不要求写出具体过程)…(Ⅱ)∵﹣1<x<3,∴h(x)=f(x)﹣g(x)=|x2﹣2x﹣3|﹣x﹣a=﹣x2+x+3﹣a,由题意知,即得;…(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,由题意,F(x)在[0,2]上的最小值不小于G(x)在[﹣2,﹣1]上的最大值,F(x)=|x2﹣2x﹣3|﹣m=﹣x2+2x+3﹣m=﹣(x﹣1)2+4﹣m(0≤x≤2),当x=0,或x=2时,F(x)min=3﹣m,G(x)=g(2x)﹣5=2x+a﹣5在区间[﹣2,﹣1]单调递增,当x=﹣1时,,∴存在m∈[2,5],使得成立,即,∴.∴a的最大值为.…2017年3月17日。

浙江省台州市高一下学期期末数学试卷(理科)

浙江省台州市高一下学期期末数学试卷(理科)

浙江省台州市高一下学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知向量,且,则mt的取值范围是()A .B .C . [-1,1]D . (-1,1)2. (2分)的值为()A .B .C .D .3. (2分)从某校高三100名学生中采用系统抽样的方法抽取10名学生作代表,学生的编号从00到99,若第一组中抽到的号码是03,则第三组中抽到的号码是()A . 22B . 23C . 32D . 334. (2分) (2018高一上·西宁期末) 弧长为3,圆心角为的扇形面积为()A .B .C . 2D .5. (2分)(2018·北京) 执行如图所示的程序框图,输出的S值为()A .B .C .D .6. (2分)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则A . 甲的成绩的平均数小于乙的成绩的平均数B . 甲的成绩的方差小于乙的成绩的方差C . 甲的成绩的中位数等于乙的成绩的中位数D . 甲的成绩的极差小于乙的成绩的极差7. (2分) (2016高一上·佛山期中) 本来住校的小明近期“被”走读,某天中午上学路上,一开始慢悠悠,中途又进甜品店买了杯饮料,喝完饮料出来发现快要迟到了,于是一路狂奔,还好,终于在规定的时间内进了校门,奈何汗湿了衣裳.那么问题来了:若图中的纵轴表示小明与校门口的距离,横轴表示出发后的时间,下面四个图形中,较符合小明这次上学经历的是()A .B .C .D .8. (2分)在一次模拟考试后,从高三某班随机抽取了20位学生的数学成绩,其分布如下:分数在130分(包括130分)以上者为优秀,据此估计该班的优秀率约为()A . 10%B . 20%C . 30%D . 40%9. (2分) (2017·南阳模拟) 已知P,Q为动直线y=m(0<m<)与y=sinx和y=cosx在区间上的左,右两个交点,P,Q在x轴上的投影分别为S,R.当矩形PQRS面积取得最大值时,点P的横坐标为x0 ,则()A .B .C .D .10. (2分) (2016高二上·定州期中) 某学校有学生2500人,教师350人,后勤职工150人,为了调查对食堂服务的满意度,用分层抽样从中抽取300人,则学生甲被抽到的概率为()A .B .C .D .11. (2分)在中,a=15,b=10,A=60°,则().A . -B .C . -D .12. (2分)动点P满足,则动点P的轨迹一定通过的()A . 重心B . 垂心C . 内心D . 外心二、填空题 (共4题;共4分)13. (1分)(2018·南京模拟) 为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在(单位:分钟)内的学生人数为________.14. (1分) (2016高一下·潮州期末) 在区间[﹣1,4]内任取一个实数a,则方程x2+2x+a=0存在两个负数根的概率为________15. (1分)(2017·石嘴山模拟) 设向量 =(cosα,﹣1), =(2,sinα),若⊥ ,则tan(α﹣)=________.16. (1分) (2019高二上·四川期中) 给出下列说法:①方程表示的图形是一个点;②命题“若,则或”为真命题;③已知双曲线的左右焦点分别为,,过右焦点被双曲线截得的弦长为4的直线有3条;④已知椭圆上有两点,,若点是椭圆上任意一点,且,直线,的斜率分别为,,则为定值 .其中说法正确的序号是________.三、解答题 (共6题;共50分)17. (10分) (2017高一下·平顶山期末) 已知向量 =(cosα,sinα), =(cosβ,sinβ), =({1,0).(1)求向量 + 的长度的最大值;(2)设α= ,<β<,且⊥(﹣),求的值.18. (10分) (2016高一上·兴国期中) 已知任意角α的终边经过点P(﹣3,m),且cosα=﹣(1)求m的值.(2)求sinα与tanα的值.19. (5分)(2018·齐齐哈尔模拟) 近年来,随着科学技术迅猛发展,国内有实力的企业纷纷进行海外布局,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外设多个分支机构需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工对是否愿意接受外派工作的态度随机调查了100位员工,得到数据如下表:愿意接受外派人数不愿意接受外派人数合计80后20204090后402060合计6040100(Ⅰ)根据调查的数据,判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄层有关”,并说明理由;(Ⅱ)该公司选派12人参观驻海外分支机构的交流体验活动,在参与调查的80后员工中用分层抽样方法抽出6名,组成80后组,在参与调查的90后员工中,也用分层抽样方法抽出6名,组成90后组①求这12 人中,80后组90后组愿意接受外派的人数各有多少?②为方便交流,在80后组、90后组中各选出3人进行交流,记在80后组中选到愿意接受外派的人数为 ,在90 后组中选到愿意接受外派的人数为 ,求的概率.参考数据:参考公式:,其中20. (5分)(2019·湖州模拟) 已知函数 .(Ⅰ)求函数的单调递减区间;(Ⅱ)求方程在区间内的所有实根之和.21. (10分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲82 81 79 78 95 88 93 84乙92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;若将频率视为概率,对甲学生在培训后参加的一次数学竞赛成绩进行预测,求甲的成绩高于80分的概率;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两中)考虑,你认为选派哪位学生参加合适?请说明理由.22. (10分)已知函数f(x)=sin[ωπ(x+ )]的部分图象如图,其中P为函数图象的最高点,PC⊥x 轴,且tan∠APC=1.(1)求函数f(x)的解析式;(2)若x∈[1,2],求函数f(x)的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、。

浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(2021年整理)

浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(2021年整理)

浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省台州市2016-2017学年高一(上)期末数学试卷(解析版)(word版可编辑修改)的全部内容。

2016-2017学年浙江省台州市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=() A.5 B.{5} C.∅ D.{1,2,3,4}2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.13.的值为( )A.B.C.D.4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为( )A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1} D.{y|0≤y≤2}5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2, B.,C.ω=2, D.,8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为( )A.g(x)=x2B.C.g(x)=x3D.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3] D.(﹣1,3]10.若存在实数α∈R,,使得实数t同时满足,α≤t ≤α﹣2cosβ,则t的取值范围是( )A.B.C.D.[2,4]二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为.12.已知函数f(x)=的值为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是.14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是,当λ∈(,)时,实数m的取值范围为.三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.20.已知A为锐角△ABC的内角,且 sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.2016—2017学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=( )A.5 B.{5}C.∅ D.{1,2,3,4}【考点】交、并、补集的混合运算.【分析】根据并集与补集的定义,写出运算结果即可.【解答】解:全集U={1,2,3,4,5},A={1,3},B={2,4},∴A∪B={1,2,3,4};∴∁U(A∪B)={5}.故选:B.2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.1【考点】平行向量与共线向量.【分析】根据平面向量共线定理的坐标表示,列出方程求x的值.【解答】解:平面向量=(1,2),=(x,﹣2),若与共线,则2x﹣1×(﹣2)=0,解得x=﹣1.故选:C.3.的值为( )A.B.C.D.【考点】三角函数的化简求值.【分析】利用诱导公式化简即可计算出答案.【解答】解:sin=sin(4)=sin(﹣)=﹣sin=.故选A4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为() A.{0,1,2,3}B.{﹣1,0,1} C.{y|﹣1≤y≤1} D.{y|0≤y≤2}【考点】函数的值域.【分析】根据题意依次求出函数值,可得函数的值域.【解答】解:∵函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),∴f(x)分别是0、﹣1、0、1,则函数f(x)的值域是{﹣1,0,1},故选:B.5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<<,<0,∴b>a>c.故选:D.6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1)B.(1,2) C.(2,3)D.(3,4)【考点】函数零点的判定定理.【分析】判断函数的连续性,利用零点判定定理求解即可.【解答】解:函数f(x)=﹣x3﹣3x+5是连续函数,因为f(1)=1>0,f(2)=﹣8﹣6+5<0,可知f(1)f(2)<0,由零点判定定理可知,函数的零点x0所在的一个区间是(1,2).故选:B.7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2, B.,C.ω=2, D.,【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数图象确定函数的周期以及函数过定点坐标,代入进行求解即可.【解答】解:函数的周期T=﹣=π,即=π,则ω=2,当x=时,f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,则﹣<+φ<,可得: +φ=,解得:φ=,故选:A.8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P 在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B.C.g(x)=x3D.【考点】幂函数的概念、解析式、定义域、值域.【分析】由题意求得定点P的坐标,根据点P在幂函数f(x)的图象上,设g(x)=x n,求得n的值,可得 g(x)的解析式即可.【解答】解:函数y=log a(x﹣+1)+2(a>0,a≠1)的图象过定点P(,2),∵点P在幂函数f(x)的图象上,设g(x)=x n,则2=n,∴n=3,g(x)=x3,故选:C.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是( )A.(1,3]B.[1,3] C.[﹣1,3] D.(﹣1,3]【考点】二次函数的性质.【分析】求出函数的对称轴,判断开口方向,然后通过函数值求解即可.【解答】解:函数f(x)=x2﹣2x的对称轴为:x=1,开口向上,而且f(﹣1)=3,函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,又f(3)=9﹣6=3,则实数t的取值范围是:(﹣1,3].故选:D.10.若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是( )A.B.C.D.[2,4]【考点】三角函数的周期性及其求法.【分析】根据题意求出t≥,设f(t)=,求出f(t)的最小值;再根据题意求出t≤,设g(t)==2f(t),求出g(t)的最大值,从而求出实数t的取值范围.【解答】解:∵β∈[,π],∴﹣1≤cosβ≤0;∵α≤t,∴≥cos2β+cosβ,即t≥;令f(t)=,则f′(t)==;令f′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时f(t)==,当cosβ=0时,f(t)=0为最小值;又t≤α﹣2cosβ,∴α≥t+2cosβ,∴t≤cos2β+•cosβ,即t≤;令g(t)==2f(t),则g′(t)=2f′(t)=2•;令g′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时g(t)=2×=为最大值,当cosβ=0时,g(t)=0;综上,实数t的取值范围是[0,].故选:B.二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为 4 .【考点】子集与真子集.【分析】写出集合{1,2}的所有子集,从而得出该集合的子集个数.【解答】解:{1,2}的子集为:∅,{1},{2},{1,2},共四个.故答案为:4.12.已知函数f(x)=的值为.【考点】对数的运算性质.【分析】首先求出f()=﹣2,再求出f(﹣2)的值即可.【解答】解:∵>0∴f()=log3=﹣2∵﹣2<0∴f(﹣2)=2﹣2=故答案为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是[﹣,].【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,得出结论.【解答】解:把函数f(x)=2cos(2x+)的图象向右平移个单位,得到g(x)=2cos[2(x﹣)+]=2cos(2x﹣)的图象,令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,可得函数g(x)的增区间为[kπ﹣,kπ+],k∈Z.结合x∈[﹣,]时,可得g(x)的增区间为[﹣,],故答案为:[﹣,].14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f (lnx)>0,则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】根据题意、偶函数的单调性等价转化不等式,由对数函数的单调性求出解集.【解答】解:∵f(2)=0,f(lnx)>0,∴f(lnx)>f(2),∵定义在R上的偶函数f(x)在[0,+∞)上是减函数,∴f(lnx)>f(2)等价于|lnx|<2,则﹣2<lnx<2,即lne﹣2<lnx<lne2,解得,∴不等式的解集是,故答案为:.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.【考点】三角函数的最值.【分析】根据题意,利用正弦函数的图象与性质,即可得出结论.【解答】解:∵函数y=sinx的定义域为[m,n],值域为,结合正弦函数y=sinx的图象与性质,不妨取m=﹣,n=,此时n﹣m取得最大值为.取m=﹣,n=,n﹣m取得最小值为,故答案为,.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是±,当λ∈(,)时,实数m的取值范围为(,2).【考点】平面向量数量积的运算.【分析】以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y轴,根据向量的数量积公式得到m=(4m﹣4)λ2,代值计算即可求出λ的值,再得到得m==1+,根据函数的单调性即可求出m的范围.【解答】解:以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y 轴建立直角坐标系,不妨设B(a,0),C(﹣a,0),a>0∵AD=λBC=2λa∴A(0,2λa),∴=(a,﹣2λa),=(0,﹣2λa),=(﹣a,﹣2λa),∴•=4λ2a2,=﹣a2+4λ2a2,∵•=m,∴4λ2a2=﹣ma2+4mλ2a2,即m=(4m﹣4)λ2,当m=2时,λ2=,解得λ=±,由m=(4m﹣4)λ2,得m==1+∵m=1+在(,)上递减,∴m∈(,2)故答案为:±.,(,2)三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.【考点】函数的零点与方程根的关系;函数奇偶性的判断.【分析】(Ⅰ)利用奇函数的定义,即可得出结论;(Ⅱ)由,得2x=3,x=log23,即可得出结论.【解答】解:(Ⅰ)因为函数f(x)的定义域为R,且,所以f(x)是定义在R上的奇函数;…(Ⅱ)∵,∴2x=3,x=log23.所以方程的实数解为x=log23.…18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.【考点】平面向量数量积的运算;向量的模.【分析】(Ⅰ)根据便可得到,从而可求得,这样即可得出的值;(Ⅱ)根据即可得出,平方后即可求出cosα,cosβ的值,从而求出α,β的值.【解答】解:(Ⅰ)∵;∴;∴;∴,;(Ⅱ)∵;∴,即;解得,;∵;∴,.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.【考点】三角函数的最值;集合的包含关系判断及应用.【分析】(Ⅰ)若B⊆A,分类讨论,即可求实数a的取值范围;(Ⅱ)由题意,,即可求实数x0取值的集合.【解答】解:(Ⅰ)A={x|﹣1<x<3},若B=∅,则2a﹣1≥a+1,解得a≥2,满足B⊆A,若B≠∅,则a<2,要使B⊆A,只要解得0≤a<2,综上,实数a的取值范围是[0,+∞);…(Ⅱ)由题意,,即,∴,或,k∈Z,∴,或,k∈Z.则实数x0取值的集合是,或,k∈Z}.…20.已知A为锐角△ABC的内角,且 sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.【考点】正弦函数的单调性;三角形中的几何计算.【分析】(Ⅰ)利用同角三角函数的基本关系,求得sinA和cosA的值,可得tanA的值.(2)由题意可得1≤tanA<2,化简要求式子为﹣,再利用函数的单调性求得它的范围.【解答】解:(Ⅰ)锐角△ABC中,a=﹣1,由题意可得,求得,或(舍去),∴.(Ⅱ)若a<0,由题意可得sinA﹣2cosA<0,得tanA<2,又,tanA≥1,∴1≤tanA<2,∴=,令t=tanA+1,2≤t<3,∴,∵y=在[2,3)上递增,∴,∴.即sin2A﹣sinA•cosA的取值范围为.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f (x1)﹣m≥g(2)﹣5成立,求实数a的最大值.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)根据二次函数的性质求出函数的递增区间即可;(Ⅱ)求出h(x)的解析式,根据函数的零点得到关于a的不等式组,解出即可;(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,分别求出F(x)的最小值和G(x)的最大值,求出a的范围即可.【解答】解:(Ⅰ)函数y=f(x)的单调递增区间为[﹣1,1],[3,+∞);(不要求写出具体过程)…(Ⅱ)∵﹣1<x<3,∴h(x)=f(x)﹣g(x)=|x2﹣2x﹣3|﹣x﹣a=﹣x2+x+3﹣a,由题意知,即得;…(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,由题意,F(x)在[0,2]上的最小值不小于G(x)在[﹣2,﹣1]上的最大值,F(x)=|x2﹣2x﹣3|﹣m=﹣x2+2x+3﹣m=﹣(x﹣1)2+4﹣m(0≤x≤2),当x=0,或x=2时,F(x)min=3﹣m,G(x)=g(2x)﹣5=2x+a﹣5在区间[﹣2,﹣1]单调递增,当x=﹣1时,,∴存在m∈[2,5],使得成立,即,∴.∴a的最大值为.…2017年3月17日。

浙江省台州市高一下学期期末数学试卷

浙江省台州市高一下学期期末数学试卷

浙江省台州市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)把89化成五进制数的末位数字为()A . 1B . 2C . 3D . 42. (2分)下列程序语句不正确的是()A . INPUT“MATH=”;a+b+cB . PRINT“MATH=”;a+b+cC . a=b+cD . a=b-c3. (2分) (2016高一上·德州期中) 对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示).则该样本的中位数、众数、极差分别是()A . 46 45 56B . 46 45 53C . 47 45 56D . 45 47 534. (2分) (2017高二下·成都期中) 为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:收入 x (万元)8.28.610.011.311.9支出 y (万元) 6.27.58.08.59.8根据上表可得回归直线方程 = x+ ,其中 =0.76, =y﹣ x,据此估计,该社区一户收入为 14 万元家庭年支出为()A . 11.04 万元B . 11.08 万元C . 12.12 万元D . 12.02 万元5. (2分)若,,则()A .B .C .D .6. (2分) (2016高二上·梅里斯达斡尔族期中) 某人射击一次,设事件A:“中靶”;事件B:“击中环数大于5”;事件C:“击中环数大于1且小于6”;事件D:“击中环数大于0且小于6”,则正确的关系是()A . B与C为互斥事件B . B与C为对立事件C . A与D为互斥事件D . A与D为对立事件7. (2分) (2016高一上·贵阳期末) 函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A . f(x)=sin(2x+ )B . f(x)=sin(2x﹣)C . f(x)=sin(x+ )D . f(x)=sin(x﹣)8. (2分)将函数的图象向左平移个单位,得到函数y=g(x)的图象.若y=g(x)在[]上为增函数,则的最大值为()A . 4B . 3C . 2D . 19. (2分) (2019高三上·安徽月考) 平行四边形ABCD中,,,,若,且,则的值为()A . 3B . 4C . 5D . 610. (2分)若||=1,||=,(﹣)⊥,则与的夹角为()A . 30°B . 45°C . 60°D . 75°11. (2分)为得到函数的图像,只需将函数的图像()A . 向左平移个长度单位B . 向右平移个长度单位C . 向左平移个长度单位D . 向右平移个长度单位12. (2分)已知,则=()A .B .C .D .二、填空题 (共8题;共9分)13. (1分)设两个向量 =(λ,λ﹣2cosα)和 =(m,+sinα),其中λ、m、α为实数.若 =2 ,则m的取值范围是________.14. (2分) (2018高一上·浙江期中) 已知扇形的弧长为,半径为1,则扇形的圆心角为________,扇形的面积为________.15. (1分)将参加冬季越野跑的600名选手编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,把编号分50组后,在第一组的001到012这12个编号中随机抽得的号码为004.这600名选手分穿着三种颜色的衣服,从001到301穿红色衣服,从302到496穿白色衣服,从497到600穿黄色衣服.则抽到穿白色衣服的选手人数为________.16. (1分) (2017高一下·新余期末) 已知tanα=3,则 =________.17. (1分)(2013·江苏理) 现在某类病毒记作XmYn ,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为________.18. (1分)(2019高一下·慈利期中) 锐角的三边和面积满足条件,则角既不是的最大角也不是的最小角,则实数的取值范围是________.19. (1分) (2018高二上·黑龙江期中) 如图所示是一个算法的流程图,最后输出的 ________.20. (1分) (2016高三上·连城期中) 设函数f(x)=x|x|+bx+c,给出下列命题:①b=0,c>0时,方程f (x)=0只有一个实数根;②c=0时,y=f(x)是奇函数;③方程f(x)=0至多有两个实根.上述三个命题中所有正确命题的序号为________.三、解答题 (共5题;共50分)21. (15分) (2016高二下·衡阳期中) 2013年第三季度,国家电网决定对城镇居民用电计费标准作出调整,并根据用电情况将居民分为三类:第一类的用电区间在(0,170],第二类在(170,260],第三类在(260,+∞)(单位:千瓦时).某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图,如图所示.(1)求该小区居民用电量的中位数与平均数;(2)本月份该小区没有第三类的用电户出现,为鼓励居民节约用电,供电部门决定:对第一类每户奖励20元钱,第二类每户奖励5元钱,求每户居民获得奖励的平均值;(3)利用分层抽样的方法从该小区内选出5位居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.22. (10分) (2016高二上·弋阳期中) 先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.23. (5分)已知函数f(x)=sinωx+cosωx(ω>0)的周期为π.(Ⅰ)求ω的值,并在下面提供的坐标系中画出函数y=f(x)在区间[0,π]上的图象;(Ⅱ)函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换得到?24. (10分) (2016高一下·驻马店期末) 已知向量 =(1,2), =(x,1), = +2 , =2﹣.(1)当∥ 时,求x的值;(2)当⊥ 时且x<0时,求向量与的夹角α.25. (10分) (2015高三上·承德期末) 如图,AB是圆O的直径,C为圆周上一点,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E.(1)求证:AB•DE=BC•CE;(2)若AB=8,BC=4,求线段AE的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共50分) 21-1、21-2、21-3、22-1、22-2、23-1、24-1、24-2、25-1、25-2、。

数学---浙江省台州市2016-2017学年高一(上)期末试卷(解析版)

数学---浙江省台州市2016-2017学年高一(上)期末试卷(解析版)

浙江省台州市2016-2017学年高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5} C.∅D.{1,2,3,4}2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.13.的值为()A.B.C.D.4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3} B.{﹣1,0,1} C.{y|﹣1≤y≤1}D.{y|0≤y≤2}5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2, B.,C.ω=2, D.,8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B.C.g(x)=x3D.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是()A.(1,3] B.[1,3] C.[﹣1,3] D.(﹣1,3]10.若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为.12.已知函数f(x)=的值为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是.14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(ln x)>0,则x的取值范围是.15.已知函数y=sin x(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是,当λ∈(,)时,实数m的取值范围为.三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.20.已知A为锐角△ABC的内角,且sin A﹣2cos A=a(a∈R).(Ⅰ)若a=﹣1,求tan A的值;(Ⅱ)若a<0,且函数f(x)=(sin A)•x2﹣(2cos A)•x+1在区间[1,2]上是增函数,求sin2A﹣sin A•cos A的取值范围.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B【解析】全集U={1,2,3,4,5},A={1,3},B={2,4},∴A∪B={1,2,3,4};∴∁U(A∪B)={5}.2.C【解析】平面向量=(1,2),=(x,﹣2),若与共线,则2x﹣1×(﹣2)=0,解得x=﹣1.3.A【解析】sin=sin(4)=sin(﹣)=﹣sin=.4.B【解析】∵函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),∴f(x)分别是0、﹣1、0、1,则函数f(x)的值域是{﹣1,0,1},5.D【解析】∵0<<,<0,∴b>a>c.6.B【解析】函数f(x)=﹣x3﹣3x+5是连续函数,因为f(1)=1>0,f(2)=﹣8﹣6+5<0,可知f(1)f(2)<0,由零点判定定理可知,函数的零点x0所在的一个区间是(1,2).7.A【解析】函数的周期T=﹣=π,即=π,则ω=2,当x=时,f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,则﹣<+φ<,可得:+φ=,解得:φ=,8.C【解析】函数y=log a(x﹣+1)+2(a>0,a≠1)的图象过定点P(,2),∵点P在幂函数f(x)的图象上,设g(x)=x n,则2=n,∴n=3,g(x)=x3,9.D【解析】函数f(x)=x2﹣2x的对称轴为:x=1,开口向上,而且f(﹣1)=3,函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,又f(3)=9﹣6=3,则实数t的取值范围是:(﹣1,3].10.B【解析】∵β∈[,π],∴﹣1≤cosβ≤0;∵α≤t,∴≥cos2β+cosβ,即t≥;令f(t)=,则f′(t)==;令f′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时f(t)==,当cosβ=0时,f(t)=0为最小值;又t≤α﹣2cosβ,∴α≥t+2cosβ,∴t≤cos2β+•cosβ,即t≤;令g(t)==2f(t),则g′(t)=2f′(t)=2•;令g′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时g(t)=2×=为最大值,当cosβ=0时,g(t)=0;综上,实数t的取值范围是[0,].二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.4【解析】{1,2}的子集为:∅,{1},{2},{1,2},共四个.故答案为:4.12.【解析】∵>0∴f()=log3=﹣2∵﹣2<0∴f(﹣2)=2﹣2=故答案为.13.[﹣,]【解析】把函数f(x)=2cos(2x+)的图象向右平移个单位,得到g(x)=2cos[2(x﹣)+]=2cos(2x﹣)的图象,令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,可得函数g(x)的增区间为[kπ﹣,kπ+],k∈Z.结合x∈[﹣,]时,可得g(x)的增区间为[﹣,],故答案为:[﹣,].14.【解析】∵f(2)=0,f(ln x)>0,∴f(ln x)>f(2),∵定义在R上的偶函数f(x)在[0,+∞)上是减函数,∴f(ln x)>f(2)等价于|ln x|<2,则﹣2<ln x<2,即lne﹣2<ln x<lne2,解得,∴不等式的解集是,故答案为:.15.【解析】∵函数y=sin x的定义域为[m,n],值域为,结合正弦函数y=sin x的图象与性质,不妨取m=﹣,n=,此时n﹣m取得最大值为.取m=﹣,n=,n﹣m取得最小值为,故答案为,.16.±(,2)【解析】以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y轴建立直角坐标系,不妨设B(a,0),C(﹣a,0),a>0∵AD=λBC=2λa∴A(0,2λa),∴=(a,﹣2λa),=(0,﹣2λa),=(﹣a,﹣2λa),∴•=4λ2a2,=﹣a2+4λ2a2,∵•=m,∴4λ2a2=﹣ma2+4mλ2a2,即m=(4m﹣4)λ2,当m=2时,λ2=,解得λ=±,由m=(4m﹣4)λ2,得m==1+∵m=1+在(,)上递减,∴m∈(,2)三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.解(Ⅰ)因为函数f(x)的定义域为R,且,所以f(x)是定义在R上的奇函数;…(Ⅱ)∵,∴2x=3,x=log23.所以方程的实数解为x=log23.…18.解(Ⅰ)∵;∴;∴;∴,;(Ⅱ)∵;∴,即;解得,;∵;∴,.19.解(Ⅰ)A={x|﹣1<x<3},若B=∅,则2a﹣1≥a+1,解得a≥2,满足B⊆A,若B≠∅,则a<2,要使B⊆A,只要解得0≤a<2,综上,实数a的取值范围是[0,+∞);…(Ⅱ)由题意,,即,∴,或,k∈Z,∴,或,k∈Z.则实数x0取值的集合是,或,k∈Z }.…20.解(Ⅰ)锐角△ABC中,a=﹣1,由题意可得,求得,或(舍去),∴.(Ⅱ)若a<0,由题意可得sin A﹣2cos A<0,得tan A<2,又,tan A≥1,∴1≤tan A<2,∴=,令t=tan A+1,2≤t<3,∴,∵y=在[2,3)上递增,∴,∴.即sin2A﹣sin A•cos A的取值范围为.21.解(Ⅰ)函数y=f(x)的单调递增区间为[﹣1,1],[3,+∞);(不要求写出具体过程)…(Ⅱ)∵﹣1<x<3,∴h(x)=f(x)﹣g(x)=|x2﹣2x﹣3|﹣x﹣a=﹣x2+x+3﹣a,由题意知,即得;…(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,由题意,F(x)在[0,2]上的最小值不小于G(x)在[﹣2,﹣1]上的最大值,F(x)=|x2﹣2x﹣3|﹣m=﹣x2+2x+3﹣m=﹣(x﹣1)2+4﹣m(0≤x≤2),当x=0,或x=2时,F(x)min=3﹣m,G(x)=g(2x)﹣5=2x+a﹣5在区间[﹣2,﹣1]单调递增,当x=﹣1时,,∴存在m∈[2,5],使得成立,即,∴.∴a的最大值为.…。

2016-2017年浙江省台州市高一上学期期末数学试卷带答案

2016-2017年浙江省台州市高一上学期期末数学试卷带答案

2016-2017学年浙江省台州市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}2.(5.00分)已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.13.(5.00分)的值为()A.B.C.D.4.(5.00分)已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2} 5.(5.00分)若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c6.(5.00分)若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.(5.00分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,8.(5.00分)已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.9.(5.00分)已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t 的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]10.(5.00分)若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.(3.00分)集合{1,2}的子集个数为.12.(3.00分)已知函数f(x)=的值为.13.(3.00分)已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是.14.(3.00分)已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.15.(4.00分)已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.16.(4.00分)在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是,当λ∈(,)时,实数m 的取值范围为.三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.(8.00分)已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.18.(10.00分)已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.19.(10.00分)已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.20.(10.00分)已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.21.(12.00分)已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.2016-2017学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}【解答】解:全集U={1,2,3,4,5},A={1,3},B={2,4},∴A∪B={1,2,3,4};∴∁U(A∪B)={5}.故选:B.2.(5.00分)已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.1【解答】解:平面向量=(1,2),=(x,﹣2),若与共线,则2x﹣1×(﹣2)=0,解得x=﹣1.故选:C.3.(5.00分)的值为()A.B.C.D.【解答】解:sin=sin(4)=sin(﹣)=﹣sin=.故选:A.4.(5.00分)已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2}【解答】解:∵函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),∴f(x)分别是0、﹣1、0、1,则函数f(x)的值域是{﹣1,0,1},故选:B.5.(5.00分)若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c【解答】解:∵0<<,<0,∴b>a>c.故选:D.6.(5.00分)若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数f(x)=﹣x3﹣3x+5是连续函数,因为f(1)=1>0,f(2)=﹣8﹣6+5<0,可知f(1)f(2)<0,由零点判定定理可知,函数的零点x0所在的一个区间是(1,2).故选:B.7.(5.00分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,【解答】解:函数的周期T=﹣=π,即=π,则ω=2,当x=时,f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,则﹣<+φ<,可得:+φ=,解得:φ=,故选:A.8.(5.00分)已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.【解答】解:函数y=log a(x﹣+1)+2(a>0,a≠1)的图象过定点P(,2),∵点P在幂函数f(x)的图象上,设g(x)=x n,则2=n,∴n=3,g(x)=x3,故选:C.9.(5.00分)已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t 的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]【解答】解:函数f(x)=x2﹣2x的对称轴为:x=1,开口向上,而且f(﹣1)=3,函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,又f(3)=9﹣6=3,则实数t的取值范围是:(﹣1,3].故选:D.10.(5.00分)若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]【解答】解:∵β∈[,π],∴﹣1≤cosβ≤0;∵α≤t,∴≥cos2β+cosβ,即t≥;令f(t)=,则f′(t)==;令f′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时f(t)==,当cosβ=0时,f(t)=0为最小值;又t≤α﹣2cosβ,∴α≥t+2cosβ,∴t≤cos2β+•cosβ,即t≤;令g(t)==2f(t),则g′(t)=2f′(t)=2•;令g′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时g(t)=2×=为最大值,当cosβ=0时,g(t)=0;综上,实数t的取值范围是[0,].故选:B.二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.(3.00分)集合{1,2}的子集个数为4.【解答】解:{1,2}的子集为:∅,{1},{2},{1,2},共四个.故答案为:4.12.(3.00分)已知函数f(x)=的值为.【解答】解:∵>0∴f()=log3=﹣2∵﹣2<0∴f(﹣2)=2﹣2=故答案为.13.(3.00分)已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是[﹣,] .【解答】解:把函数f(x)=2cos(2x+)的图象向右平移个单位,得到g(x)=2cos[2(x﹣)+]=2cos(2x﹣)的图象,令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,可得函数g(x)的增区间为[kπ﹣,kπ+],k∈Z.结合x∈[﹣,]时,可得g(x)的增区间为[﹣,],故答案为:[﹣,].14.(3.00分)已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.【解答】解:∵f(2)=0,f(lnx)>0,∴f(lnx)>f(2),∵定义在R上的偶函数f(x)在[0,+∞)上是减函数,∴f(lnx)>f(2)等价于|lnx|<2,则﹣2<lnx<2,即lne﹣2<lnx<lne2,解得,∴不等式的解集是,故答案为:.15.(4.00分)已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.【解答】解:∵函数y=sinx的定义域为[m,n],值域为,结合正弦函数y=sinx的图象与性质,不妨取m=﹣,n=,此时n﹣m取得最大值为.取m=﹣,n=,n﹣m取得最小值为,故答案为,.16.(4.00分)在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是±,当λ∈(,)时,实数m的取值范围为(,2).【解答】解:以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y轴建立直角坐标系,不妨设B(a,0),C(﹣a,0),a>0∵AD=λBC=2λa∴A(0,2λa),∴=(a,﹣2λa),=(0,﹣2λa),=(﹣a,﹣2λa),∴•=4λ2a2,=﹣a2+4λ2a2,∵•=m,∴4λ2a2=﹣ma2+4mλ2a2,即m=(4m﹣4)λ2,当m=2时,λ2=,解得λ=±,∵AD=λBC∴λ=,由m=(4m﹣4)λ2,得m==1+∵m=1+在(,)上递减,∴m∈(,2)故答案为:.,(,2)三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.(8.00分)已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.【解答】解:(Ⅰ)因为函数f(x)的定义域为R,且,所以f(x)是定义在R上的奇函数;…(4分)(Ⅱ)∵,∴2x=3,x=log23.所以方程的实数解为x=log23.…(8分)18.(10.00分)已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.【解答】解:(Ⅰ)∵;∴;∴;∴,;(Ⅱ)∵;∴,即;解得,;∵;∴,.19.(10.00分)已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.【解答】解:(Ⅰ)A={x|﹣1<x<3},若B=∅,则2a﹣1≥a+1,解得a≥2,满足B⊆A,若B≠∅,则a<2,要使B⊆A,只要解得0≤a<2,综上,实数a的取值范围是[0,+∞);…(5分)(Ⅱ)由题意,,即,∴,或,k∈Z,∴,或,k∈Z.则实数x0取值的集合是,或,k∈Z}.…(10分)20.(10.00分)已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.【解答】解:(Ⅰ)锐角△ABC中,a=﹣1,由题意可得,求得,或(舍去),∴.(Ⅱ)若a<0,由题意可得sinA﹣2cosA<0,得tanA<2,又,tanA≥1,∴1≤tanA<2,∴=,令t=tanA+1,2≤t<3,∴,∵y=在[2,3)上递增,∴,∴.即sin2A﹣sinA•cosA的取值范围为.21.(12.00分)已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.【解答】解:(Ⅰ)函数y=f(x)的单调递增区间为[﹣1,1],[3,+∞);(不要求写出具体过程)…(3分)(Ⅱ)∵﹣1<x<3,∴h(x)=f(x)﹣g(x)=|x2﹣2x﹣3|﹣x﹣a=﹣x2+x+3﹣a,由题意知,即得;…(7分)(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,由题意,F(x)在[0,2]上的最小值不小于G(x)在[﹣2,﹣1]上的最大值,F(x)=|x2﹣2x﹣3|﹣m=﹣x2+2x+3﹣m=﹣(x﹣1)2+4﹣m(0≤x≤2),当x=0,或x=2时,F(x)min=3﹣m,G(x)=g(2x)﹣5=2x+a﹣5在区间[﹣2,﹣1]单调递增,当x=﹣1时,,∴存在m∈[2,5],使得成立,即,∴.∴a的最大值为.…(12分)。

浙江省台州市高一下学期数学期末考试试卷

浙江省台州市高一下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知Sn是数列{an}的前n项和,Sn=2n-1 ,则a10= ()A . 256B . 512C . 1024D . 20482. (2分)一个年级有12个班,每个班有50名学生,随机编为1~50号,为了解他们在课外的兴趣爱好。

要求每班是40号学生留下来进行问卷调查,这里运用的抽样方法是()A . 分层抽样B . 抽签法C . 随机数表法D . 系统抽样法3. (2分) (2016高一下·蕲春期中) 如果a>b>0,那么下面一定成立的是()A . a﹣b<0B . ac>bcC . <D . a3<b34. (2分) (2018高二上·哈尔滨月考) 先后抛掷两枚均匀的骰子,骰子向上的面的点数分别为,则的概率为()A .B .C .D .5. (2分) (2018高二下·衡阳期末) 在平面直角坐标系中,不等式组(为常数)表示的平面区域的面积为,若满足上述约束条件,则的最小值为()A . -1B .C .D .6. (2分)在中,,则()A .B .C .D .7. (2分)在各项均为实数的等比数列中,,则()A . 2B . 8C . 16D . 328. (2分)(2020·内江模拟) 割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率为,在半径为的圆内任取一点,则该点取自其内接正十二边形的概率为()A .B .C .D .9. (2分)(2018·衡阳模拟) 1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数。

如果它是奇数,对它乘3再加1,如果它是偶救。

对它除以2,这样循环,最终结果都能得到1.虽然该猜想看上去很简单,但有的教学家认为“该猜思任何程度的解决都是现化数学的一大进步”。

浙江省台州市高一下学期数学期末考试试卷

浙江省台州市高一下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知数列{an}满足:an=log(n+1)(n+2),定义使a1a2...ak-1ak为整数的叫做希望数,则区间[1,2013] 内所有希望数的和M=()A . 2026B . 2036C . 32046D . 20482. (2分) (2018高二上·玉溪期中) 已知高一(1)班有48名学生,班主任将学生随机编号为01,02,……,48,用系统抽样方法,从中抽8人,若05号被抽到了,则下列编号的学生被抽到的是()A . 16B . 22C . 29D . 333. (2分)完成一项装修工程,请木工需要付工资每人50元,请瓦工需要付工资每人40元,现有工人工资2000元,设木工x人,瓦工y人,则所请工人的约束条件是()A . 5x+4y<200B . 5x+4y≥200C . 5x+4y=200D . 5x+4y≤2004. (2分)甲乙两人一起去游“2010上海世博会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A .B .C .D .5. (2分) (2016高三上·集宁期中) 设实数x,y满足,则的取值范围是()A .B .C .D .6. (2分)某人向正东方向走后,向右转,然后朝新方向走,结果他离出发点恰好是,那么的值为()A .B .C . 或D . 37. (2分)(2017·长春模拟) 等比数列{an}中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2 , a4=16,则S4=()A . 9B . 15C . 18D . 308. (2分)(2017·东北三省模拟) 已知实数a,b满足﹣2≤a≤2,﹣2≤b≤2,则函数y= x3﹣ ax2+bx ﹣1有三个单调区间的概率为()A .B .C .D .9. (2分)阅读如图的程序框图,若运行相应的程序,则输出的S的值是()A . 102B . 39C . 81D . 2110. (2分)对于样本频率分布直方图与总体密度曲线的关系,下列说法正确的是()A . 频率分布直方图与总体密度曲线无关B . 频率分布直方图就是总体密度曲线C . 样本总量很大的频率分布直方图就是总体密度曲线D . 如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线11. (2分)若不等式组所表示的平面区域被直线分为面积相等的两部分,则k的值是()A .B .C .D .12. (2分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A . p为真B . ﹁q为假C . p∧q为假D . p∨q为真二、填空题 (共4题;共4分)13. (1分) (2018高二下·溧水期末) 某单位要在4名员工(含甲、乙两人)中随机选2名到某地出差,则甲、乙两人中,至少有一人被选中的概率是________.14. (1分) (2019高二上·龙潭期中) 一个单位共有职工人,其中男职工人,女职工人.用分层抽样的方法从全体职工中抽取一个容量为的样本,应抽取女职工________人。

2016-2017学年浙江省台州市高一下学期期末数学试卷(答案+解析)

浙江省台州市2016-2017学年高一(下)期末数学试卷一、选择题:每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)直线x﹣y=0的倾斜角为()A.1 B.C.﹣1 D.2.(3分)若a,b,c为实数,且a>b,则下列不等式一定成立的是()A.ac>bc B.a﹣b>b﹣c C.a+c>b+c D.a+c>b3.(3分)sin15°+cos15°=()A.B.C.D.4.(3分)若关于x的不等式x2+mx<0的解集为{x|0<x<2},则实数m的值为()A.﹣2 B.﹣1 C.0 D.25.(3分)已知数列{a n}的各项均为正数,且满足a1=1,﹣=1(n≥2,n∈N*),则a1024=()A.B.C.D.6.(3分)已知点(x,y)满足不等式组,则z=x﹣y的取值范围是()A.[﹣2,﹣1] B.[﹣2,1] C.[﹣1,2] D.[1,2]7.(3分)在△ABC中,三个内角A,B,C依次成等差数列,若sin2B=sin A sin C,则△ABC 形状是()A.锐角三角形B.等边三角形C.直角三角形D.等腰直角三角形8.(3分)已知数列{a n}为等比数列,其前n项和为S n,若a6=8a3,则的值为()A.18 B.9 C.8 D.49.(3分)若不等式|x+1|+|﹣1|≤a有解,则实数a的取值范围是()A.a≥2B.a<2 C.a≥1D.a<110.(3分)在△ABC中,AB=2,AC=BC,则当△ABC面积最大值时其周长为()A.2+2 B.+3 C.2+4 D.+4二、填空题:单空题每小题4分,多空题每小题4分,共20分.11.(4分)已知α,β为锐角,若sinα=,cosβ=,则sin2α=,cos(α+β)=.12.(4分)已知直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,则m=,l1与l2之间的距离为.13.(3分)如图,在直角梯形ABCD中,AB∥CD,E为下底CD上的一点,若AB=CE=2,DE=3,AD=5,则tan∠EBC=.14.(3分)在数列{a n}中,已知a1=2,a n a n﹣1=2a n﹣1(a≥2,n∈N*),记数列{a n}的前n项之积为T n,若T n=2017,则n的值为.15.(3分)已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为.16.(3分)已知x,y为正实数,且满足(xy﹣1)2=(3y+2)(y﹣2),则x+的最大值为.三、解答题:共50分.解答应写出文字说明,证明过程或演算步骤.17.(8分)在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.18.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin A=2sin B,c=b.(Ⅰ)求sin A的值;(Ⅱ)若△ABC的面积为3,求b的值.19.(10分)已知函数f(x)=|2x﹣3|+ax﹣6(a是常数,a∈R).(Ⅰ)当a=1时,求不等式f(x)≥0的解集;(Ⅱ)当x∈[﹣1,1]时,不等式f(x)<0恒成立,求实数a的取值范围.20.(10分)已知函数f(x)=4sin x cos(x+)+m(x∈R,m为常数),其最大值为2.(Ⅰ)求实数m的值;(Ⅱ)若f(α)=﹣(﹣<α<0),求cos2α的值.21.(12分)已知数列{a n}的前n项和为S n,且满足a1=3,S n+1=3(S n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)在数列{b n}中,b1=9,b n+1﹣b n=2(a n+1﹣a n)(n∈N*),若不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立,求实数λ的取值范围;(Ⅲ)令T n=+++…+(n∈N*),证明:对于任意的n∈N*,T n<.【参考答案】一、选择题:每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.B【解析】根据题意,设直线x﹣y=0的倾斜角为θ,(0≤θ<π)直线的方程为x﹣y=0,即y=x,该直线的斜率k=1,则有tanθ=1,且0≤θ<π,故θ=;故选B.2.C【解析】对于A,c=0时,不成立,对于B,令a=1,b=0,c=﹣5,显然不成立,对于C,根据不等式出性质,成立,对于D,若c<0,不一定成立,故选C.3.A【解析】sin15°+cos15°=(sin15°+cos15°)=sin(15°+45°)=sin60°=,故选A.4.A【解析】关于x的不等式x2+mx<0的解集为{x|0<x<2},∴不等式x2+mx=0的实数根为0和2,由根与系数的关系得m=﹣(0+2)=﹣2.故选A.5.D【解析】∵数列{a n}的各项均为正数,且满足a1=1,﹣=1(n≥2,n∈N*),∴数列是等差数列,公差为1,首项为1.∴=1+(n﹣1)=n,解得a n=.则a1024==.故选D.6.C【解析】作作出不等式组对应的平面区域如图:由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z最大,当直线经过点A(0,1)时,此时直线y=x﹣z截距最大,z最小.此时z max=2.z min=0﹣1=﹣1.∴﹣1≤z≤2,故选C.7.B【解析】∵在△ABC中,sin2B=sin A sin C,∴由正弦定理可得b2=ac,又∵A+B+C=180°,且角A、B、C依次成等差数列,∴A+C=180°﹣B=2B,解得B=60°.根据余弦定理得:cos B==,即,化简得(a﹣c)2=0,可得a=c.结合b2=ac,得a=b=c,∴△ABC是等边三角形.故选B.【解析】设等比数列{a n}的公比为q,∵a6=8a3,∴q3=8,解得q=2.则==23+1=9.故选B.9.A【解析】令f(x)=|x+1|+|﹣1|,①x≥1时,f(x)=x+2﹣,f′(x)=1+>0,f(x)在[1,+∞)递增,故f(x)min=f(1)=2,②0<x<1时,f(x)=x+,f′(x)=<0,故f(x)在(0,1)递减,f(x)>f(1)=2,③﹣1<x<0时,f(x)=x+2﹣,f′(x)=1+>0,f(x)在(﹣1,0)递增,f(x)>f(﹣1)=2,④x≤﹣1时,f(x)=﹣x﹣,f′(x)=﹣1+<0,f(x)在(﹣∞,﹣1]递减,f(x)>f(﹣1)=2,综上,f(x)的最小值是2,若不等式|x+1|+|﹣1|≤a有解,即a≥f(x)min,故a≥2,故选A.【解析】以AB中点为原点,AB垂直平分线为y轴建立直角坐标系,如图,A(1,0),B(﹣1,0),设C(x,y),∵AC=BC,∴=,整理,得(x+2)2+y2=3,∴C在以D(﹣2,0)为圆心,以为半径的圆上,∴当△ABC面积取最大值时,C到x轴即AB线段取最大距离为,∴C(﹣2,),∴BC=2,AC=2,∴当△ABC面积最大值时其周长为:2+2+2=2.故选C.二、填空题:单空题每小题4分,多空题每小题4分,共20分.11.﹣【解析】∵已知α,β为锐角,若sinα=,cosβ=,∴则cosα==,sinβ==,∴sin2α=2sinαcosα=2•=,cos(α+β)=cosα•cosβ﹣sinαsinβ=﹣=﹣,故答案为:;﹣.12.4;【解析】直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,当m=0,两直线显然不平行;可得=≠,解得m=4,即有直线l1:x+2y﹣4=0,l2:2x+4y﹣4=0,即x+2y﹣2=0,可得l1与l2之间的距离d==.故答案为:4,.13.【解析】如图,过B作BF⊥DC,垂足为F,则EF=DE﹣DF=DE﹣AB=1.∴CF=CE+EF=3.∴tan∠CBF=,tan∠EBF=.则tan∠EBC=tan(∠CBF﹣∠EBF)==.故答案为:.14.2016【解析】由a n a n﹣1=2a n﹣1(a≥2,n∈N*),得,∵a1=2,∴,…,.数列{a n}的前n项之积为T n==n+1,∴当T n=2017时,则n的值为2016,故答案为:2016.15.27﹣18【解析】∵设AB=x,则AD=6﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,即AP=x﹣DP,∴(6﹣x)2+PD2=(x﹣PD)2,得PD=6﹣,∵AB>AD,∴3<x<6,∴△ADP的面积S=AD•DP=(6﹣x)(6﹣)=27﹣3(x+)≤27﹣3×2=27﹣18,当且仅当x=3时取等号,∴△ADP面积的最大值为27﹣18,故答案为:27﹣1816.2﹣1【解析】∵(xy﹣1)2=(3y+2)(y﹣2)=3y2﹣4y﹣4,∴(xy﹣1)2+(y2+4y+4)=4y2,∴(xy﹣1)2+(y+2)2=4y2,∴4=(x﹣)2+(1+)2≥(x﹣+1+)2,当且仅当x﹣=1+时取等号,∴(x++1)2≤8∴x++1≤2,∴x+≤2﹣1,故答案为:2﹣1三、解答题:共50分.解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)∵AB的中点是M(3,2),直线AB的斜率是﹣3,线段AB中垂线的斜率是,故线段AB的垂直平分线方程是y﹣2=(x﹣3),即x﹣3y+3=0;(Ⅱ)设△ABC的重心为G(x,y),由重心坐标公式可得,故重心坐标是G(4,2).18.解:(Ⅰ)∵在△ABC中,内角A,B,C的对边分别为a,b,c,sin A=2sin B,c=b.∴a=2b,∴cos A====﹣,∴sin A==.(Ⅱ)∵S=,即=3,解得bc=24,又c=,∴,解得b=4.19.解:(Ⅰ)a=1时,f(x)=|2x﹣3|+x﹣6=,故原不等式等价于或,解得:x≥3或x≤﹣3,故原不等式的解集是{x|x≥3或x≤﹣3};(Ⅱ)x∈[﹣1,1]时,不等式f(x)<0恒成立,即3﹣2x+ax﹣6<0恒成立,即(a﹣2)x﹣3<0,x∈[﹣1,1],由,解得:﹣1<a<5,故a的范围是(﹣1,5).20.解:(Ⅰ)函数f(x)=4sin x cos(x+)+m(x∈R,m为常数),化简可得:f(x)=4sin x cos x cos﹣4sin2x sin+m=sin2x﹣2sin2x+m=sin2x+cos2x﹣+m=2sin(2x+)﹣+m∵最大值为2.即2﹣+m=2,可得m=.(Ⅱ)由f(α)=﹣(﹣<α<0),即2sin(2α+)=.∴sin(2α+)=∵﹣<α<0∴<2α+<.∴cos(2α+)=;那么cos2α=cos[(2α)]=cos(2α+)cos+sin(2α+)sin=.21.(Ⅰ)解:∵S n+1=3(S n+1)(n∈N*).当n≥2时,S n=3(S n﹣1+1)(n∈N*).两式相减得a n+1=3a n∴数列{a n}是首项为3,公比为3的等比数列,当n≥2时,.当n=1时,a1=3也符合,∴.(Ⅱ)解:将,代入b n+1﹣b n=2(a n+1﹣a n)(n∈N*),得,∴b n=(b n﹣b n﹣1)+(b n﹣1﹣b n)+…+(b2﹣b1)+b1=4(3n﹣1+3n﹣2+…+3)+9+9=2•3n+3,(n∈N+)∴不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立⇔λ>令f(n)=+,则f(n+1)=,∴当n≤4时,f(n)单调递增,当n≥5时,f(n)单调递减,故a1<a2<a3<a4<a5>a6>a7…∴,故∴实数λ的取值范围为(,+∞).(Ⅲ)证明:当n=1时,T1=当n≥2时,(2n﹣1)a n﹣1=(2n﹣1)•3n>2•3n∴∴==故对于任意的n∈N*,T n<.。

台州市_2017_学年第二学期高一年级期末质量评估试题数学试题

台州市2017学年第二学期高一年级期末质量评估试题数学一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()3,2a = ,()0,1b =- ,则a b += ()A.()3,1B.()3,3C.()0,2-D.()2,22.不等式(1)(2)0x x -->的解集是()A.{}|2,1x x x ≥≤或B.{}|2,1x x x ><或C.{}|12x x <<D.{}|12x x ≤≤3.已知{}n a 是等比数列,22a =,88a =,则46a a ⋅=()A.4B.10C.16D.244.,a b R ∈,下列命题正确的是()A.若a b <,则22a b <B.若a b <,则22a b<C.若a b <,则22a b <D.若a b ≠,则22a b ≠5.若点P 在直线AB 上,且2AP PB = ,AB BP λ= ,则λ的值为()A.-3B.23-C.13D.36.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若2212a c ac ++=,且2b =,3B π=,则ABC ∆的面积为()A.B.2D.17.等差数列{}n a 的前n 项和、前2n 项和、前3n 项和分别为M ,N ,T ,则()A.M N T+=B.2M T N +=C.2N MT =D.3()N M T-=8.已知平面向量a ,b ,c 满足1a b c === ,若12a b ⋅= ,则()(2)a c b c +⋅- 的最小值为()A.-2B.C.-1D.09.不等式20(,)x ax b a b R ++≤∈的解集为12{|}x x x x ≤≤,若122x x +≤,则()A.22a b +≥B.22a b +≤C.1a ≥D.1b ≤10.已知,a b R ∈,2a b +=,则221111a b +++的最大值为()A.1B.65C.12+D.2二、填空题:本大题共7小题,共36分.多空题每小题6分;单空题每小题4分.11.向量(sin ,cos )a θθ= ,(1,2)b = ,则a = ;若向量a ,b 不能..作为一组基底,则tan θ=.12.设等差数列{}n a 的前n 项和为n S ,已知316a =,610a =,则公差d =;n S 取得最大值时,n =.13.若实数x ,y 满足10200x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则y 的最大值为,该不等式组表示的平面区域的面积是.14.当0x >时,1x x +的最小值为;当1x >-时,(0)1t x t x +>+的最小值为3,则实数t 的值为.15.若关于x 的不等式2x x t +-≤有解,则实数t 的取值范围为.16.已知数列{}n a 满足13a =,1*133()n n n a a n N ++-=∈,则数列{}n a 的前n 项和n S =.17.在ABC ∆中,BC 边上的中垂线分别交直线BC 、AC 于点D 、E ,若3AE BC ⋅= ,1AB = ,则AC =.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.设{}n a 是首项为1a ,公比为q 的等比数列,且11a =.(Ⅰ)若1a ,2a ,3a 成等差数列,求数列{}n a 的通项公式;(Ⅱ)n S 为数列{}n a 的前n 项和,当2q =时,令2log (1)n n b S =+,求证:数列{}n b 是等差数列.19.已知函数2()f x x ax b =++.(Ⅰ)若()0f x <的解集为(1,2)-,求a ,b 的值;(Ⅱ)当4b =时,若对任意的0x >,()0f x ≥恒成立,求实数a 的取值范围.20.已知两个不共线的向量a ,b ,它们的夹角为θ,且2a = ,1b = ,λ为实数.(Ⅰ)若a b + 与3a b - 垂直,求sin θ;(Ⅱ)若3πθ=,求a b λ- 的最小值及对应的λ的值.21.已知ABC ∆内接于半径为R 的圆,a ,b ,c 分别是A ,B ,C 的对边,且222(sin sin )()sin R B A b c C -=-,3c =.(Ⅰ)求角A ;(Ⅱ)若AD 是BC 边上的中线,192AD =,求ABC ∆的面积.22.已知数列{}n a 中,13a =,n S 为数列{}n a 的前n 项和,且2*112()2n n n n S S a a n N +=+-+∈.(Ⅰ)证明:1n n a a +>;(Ⅱ)证明:132()2n n a --≥;(Ⅲ)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:21()13n n T -≤<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年浙江省台州市高一(下)期末数学试卷一、选择题:每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.直线x﹣y=0的倾斜角为()A.1 B.C.﹣1 D.2.若a,b,c为实数,且a>b,则下列不等式一定成立的是()A.ac>bc B.a﹣b>b﹣c C.a+c>b+c D.a+c>b3.sin15°+cos15°=()A.B.C.D.4.若关于x的不等式x2+mx<0的解集为{x|0<x<2},则实数m的值为()A.﹣2 B.﹣1 C.0 D.25.已知数列{a n}的各项均为正数,且满足a1=1,﹣=1(n≥2,n∈N*),则a1024=()A.B.C.D.6.已知点(x,y)满足不等式组,则z=x﹣y的取值范围是()A.[﹣2,﹣1] B.[﹣2,1] C.[﹣1,2] D.[1,2]7.在△ABC中,三个内角A,B,C依次成等差数列,若sin2B=sinAsinC,则△ABC形状是()A.锐角三角形B.等边三角形C.直角三角形D.等腰直角三角形8.已知数列{a n}为等比数列,其前n项和为S n,若a6=8a3,则的值为()A.18 B.9 C.8 D.49.若不等式|x+1|+|﹣1|≤a有解,则实数a的取值范围是()A.a≥2 B.a<2 C.a≥1 D.a<110.在△ABC中,AB=2,AC=BC,则当△ABC面积最大值时其周长为()A.2+2 B.+3 C.2+4 D.+4二、填空题:单空题每小题4分,多空题每小题4分,共20分.11.已知α,β为锐角,若sinα=,cosβ=,则sin2α=,cos(α+β)=.12.已知直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,则m=,l1与l2之间的距离为.13.如图,在直角梯形ABCD中,AB∥CD,E为下底CD上的一点,若AB=CE=2,DE=3,AD=5,则tan∠EBC=.14.在数列{a n}中,已知a1=2,a n a n﹣1=2a n﹣1(a≥2,n∈N*),记数列{a n}的前n项之积为T n,若T n=2017,则n的值为.15.已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为.16.已知x,y为正实数,且满足(xy﹣1)2=(3y+2)(y﹣2),则x+的最大值为.三、解答题:共50分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.18.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=2sinB,c=b.(Ⅰ)求sinA的值;(Ⅱ)若△ABC的面积为3,求b的值.19.已知函数f(x)=|2x﹣3|+ax﹣6(a是常数,a∈R).(Ⅰ)当a=1时,求不等式f(x)≥0的解集;(Ⅱ)当x∈[﹣1,1]时,不等式f(x)<0恒成立,求实数a的取值范围.20.已知函数f(x)=4sinxcos(x+)+m(x∈R,m为常数),其最大值为2.(Ⅰ)求实数m的值;(Ⅱ)若f(α)=﹣(﹣<α<0),求cos2α的值.21.已知数列{a n}的前n项和为S n,且满足a1=3,S n+1=3(S n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)在数列{b n}中,b1=9,b n+1﹣b n=2(a n+1﹣a n)(n∈N*),若不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立,求实数λ的取值范围;(Ⅲ)令T n=+++…+(n∈N*),证明:对于任意的n∈N*,T n<.2016-2017学年浙江省台州市高一(下)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.直线x﹣y=0的倾斜角为()A.1 B.C.﹣1 D.【考点】I3:直线的斜率.【分析】根据题意,设直线x﹣y=0的倾斜角为θ,由直线的方程可得直线的斜率k=1,则有tanθ=1,由θ的范围分析可得答案.【解答】解:根据题意,设直线x﹣y=0的倾斜角为θ,(0≤θ<π)直线的方程为x﹣y=0,即y=x,该直线的斜率k=1,则有tanθ=1,且0≤θ<π,故θ=;故选:B.2.若a,b,c为实数,且a>b,则下列不等式一定成立的是()A.ac>bc B.a﹣b>b﹣c C.a+c>b+c D.a+c>b【考点】R3:不等式的基本性质.【分析】根据不等式的性质以及特殊值法判断即可.【解答】解:对于A,c=0时,不成立,对于B,令a=1,b=0,c=﹣5,显然不成立,对于C,根据不等式出性质,成立,对于D,若c<0,不一定成立,故选:C.3.sin15°+cos15°=()A.B.C.D.【考点】GI:三角函数的化简求值.【分析】利用两角和的正弦公式,求得要求式子的值.【解答】解:sin15°+cos15°=(sin15°+cos15°)=sin(15°+45°)=sin60°=,故选:A.4.若关于x的不等式x2+mx<0的解集为{x|0<x<2},则实数m的值为()A.﹣2 B.﹣1 C.0 D.2【考点】74:一元二次不等式的解法.【分析】根据一元二次不等式的解集与对应方程的关系,利用根与系数的关系,即可求得m的值.【解答】解:关于x的不等式x2+mx<0的解集为{x|0<x<2},∴不等式x2+mx=0的实数根为0和2,由根与系数的关系得m=﹣(0+2)=﹣2.故选:A.5.已知数列{a n}的各项均为正数,且满足a1=1,﹣=1(n≥2,n∈N*),则a1024=()A.B.C.D.【考点】8H:数列递推式.【分析】利用等差数列的通项公式即可得出.【解答】解:∵数列{a n}的各项均为正数,且满足a1=1,﹣=1(n≥2,n∈N*),∴数列是等差数列,公差为1,首项为1.∴=1+(n﹣1)=n,解得a n=.则a1024==.故选:D.6.已知点(x,y)满足不等式组,则z=x﹣y的取值范围是()A.[﹣2,﹣1] B.[﹣2,1] C.[﹣1,2] D.[1,2]【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:作作出不等式组对应的平面区域如图:由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z 最大,当直线经过点A(0,1)时,此时直线y=x﹣z截距最大,z最小.此时z max=2.z min=0﹣1=﹣1.∴﹣1≤z≤2,故选:C.7.在△ABC中,三个内角A,B,C依次成等差数列,若sin2B=sinAsinC,则△ABC形状是()A.锐角三角形B.等边三角形C.直角三角形D.等腰直角三角形【考点】HP:正弦定理;8F:等差数列的性质.【分析】根据sin2B=sinAsinC利用正弦定理,可得b2=ac.由三角形内角和定理与等差中项的定义算出B=60°,再利用余弦定理列式,解出(a﹣c)2=0,进而得到a=b=c,可得△ABC 是等边三角形.【解答】解:∵在△ABC中,sin2B=sinAsinC,∴由正弦定理可得b2=ac,又∵A+B+C=180°,且角A、B、C依次成等差数列,∴A+C=180°﹣B=2B,解得B=60°.根据余弦定理得:cosB==,即,化简得(a﹣c)2=0,可得a=c.结合b2=ac,得a=b=c,∴△ABC是等边三角形.故选:B8.已知数列{a n}为等比数列,其前n项和为S n,若a6=8a3,则的值为()A.18 B.9 C.8 D.4【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a6=8a3,∴q3=8,解得q=2.则==23+1=9.故选:B.9.若不等式|x+1|+|﹣1|≤a有解,则实数a的取值范围是()A.a≥2 B.a<2 C.a≥1 D.a<1【考点】R4:绝对值三角不等式.【分析】令f(x)=|x+1|+|﹣1|,通过讨论a的范围,求出f(x)的最小值,问题转化为a ≥f(x)min,求出a的范围即可.【解答】解:令f(x)=|x+1|+|﹣1|,①x≥1时,f(x)=x+2﹣,f′(x)=1+>0,f(x)在[1,+∞)递增,故f(x)min=f(1)=2,②0<x<1时,f(x)=x+,f′(x)=<0,故f(x)在(0,1)递减,f(x)>f(1)=2,③﹣1<x<0时,f(x)=x+2﹣,f′(x)=1+>0,f(x)在(﹣1,0)递增,f(x)>f(﹣1)=2,④x≤﹣1时,f(x)=﹣x﹣,f′(x)=﹣1+<0,f(x)在(﹣∞,﹣1]递减,f(x)>f(﹣1)=2,综上,f(x)的最小值是2,若不等式|x+1|+|﹣1|≤a有解,即a≥f(x)min,故a≥2,故选:A.10.在△ABC中,AB=2,AC=BC,则当△ABC面积最大值时其周长为()A.2+2 B.+3 C.2+4 D.+4【考点】HT:三角形中的几何计算.【分析】以AB中点为原点,AB垂直平分线为y轴建立直角坐标系,设C(x,y),推导出C在以D(﹣2,0)为圆心,以为半径的圆上,当△ABC面积取最大值时,C(﹣2,),由此能求出当△ABC面积最大值时其周长的值.【解答】解:以AB中点为原点,AB垂直平分线为y轴建立直角坐标系,如图,A(1,0),B(﹣1,0),设C(x,y),∵AC=BC,∴=,整理,得(x+2)2+y2=3,∴C在以D(﹣2,0)为圆心,以为半径的圆上,∴当△ABC面积取最大值时,C到x轴即AB线段取最大距离为,∴C(﹣2,),∴BC=2,AC=2,∴当△ABC面积最大值时其周长为:2+2+2=2.故选:C.二、填空题:单空题每小题4分,多空题每小题4分,共20分.11.已知α,β为锐角,若sinα=,cosβ=,则sin2α=,cos(α+β)=﹣.【考点】GI:三角函数的化简求值.【分析】利用同角三角函数的基本关系,二倍角公式、两角和的余弦公式,求得sin2α、cos (α+β)的值.【解答】解:∵已知α,β为锐角,若sinα=,cosβ=,∴则cosα==,sinβ==,∴si n2α=2sinαcosα=2•=,cos(α+β)=cosα•cosβ﹣sinαsinβ=﹣=﹣,故答案为:;﹣.12.已知直线l 1:x+2y ﹣4=0,l 2:2x+my ﹣m=0(m ∈R ),且l 1与l 2平行,则m= 4 ,l 1与l 2之间的距离为.【考点】IU :两条平行直线间的距离.【分析】由两直线平行的条件可得=≠,解方程可得m 的值;化简l 2,再由两平行线的距离公式即可得到所求值.【解答】解:直线l 1:x+2y ﹣4=0,l 2:2x+my ﹣m=0(m ∈R ),且l 1与l 2平行, 当m=0,两直线显然不平行;可得=≠,解得m=4,即有直线l 1:x+2y ﹣4=0,l 2:2x+4y ﹣4=0,即x+2y ﹣2=0,可得l 1与l 2之间的距离d==.故答案为:4,.13.如图,在直角梯形ABCD 中,AB ∥CD ,E 为下底CD 上的一点,若AB=CE=2,DE=3,AD=5,则tan ∠EBC=.【考点】GR :两角和与差的正切函数.【分析】过B 作BF ⊥DC ,垂足为F ,由已知求出tan ∠CBF ,tan ∠EBF 的值,再由tan ∠EBC=tan (∠CBF ﹣∠EBF ),展开两角差的正切得答案. 【解答】解:如图,过B作BF⊥DC,垂足为F,则EF=DE﹣DF=DE﹣AB=1.∴CF=CE+EF=3.∴tan∠CBF=,tan∠EBF=.则tan∠EBC=tan(∠CBF﹣∠EBF)==.故答案为:.14.在数列{a n}中,已知a1=2,a n a n﹣1=2a n﹣1(a≥2,n∈N*),记数列{a n}的前n项之积为T n,若T n=2017,则n的值为2016.【考点】8E:数列的求和.【分析】由a n a n﹣1=2a n﹣1(a≥2,n∈N*),得,,…,,数列{a n}的前n项之积为T n==n+1即可.【解答】解:由a n a n﹣1=2a n﹣1(a≥2,n∈N*),得,∵a1=2,∴,…,.数列{a n}的前n项之积为T n==n+1,∴当T n=2017时,则n的值为2016,故答案为:2016.15.已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为27﹣18.【考点】7F:基本不等式.【分析】设AB=x,则AD=6﹣x,利用勾股定理得到PD,再根据三角形的面积公式和基本不等式的性质,即可求出.【解答】解∵设AB=x,则AD=6﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,即AP=x﹣DP,∴(6﹣x)2+PD2=(x﹣PD)2,得PD=6﹣,∵AB>AD,∴3<x<6,∴△ADP的面积S=AD•DP=(6﹣x)(6﹣)=27﹣3(x+)≤27﹣3×2=27﹣18,当且仅当x=3时取等号,∴△ADP面积的最大值为27﹣18,故答案为:27﹣1816.已知x,y为正实数,且满足(xy﹣1)2=(3y+2)(y﹣2),则x+的最大值为2﹣1.【考点】7F:基本不等式.【分析】由已知条件可得4=(x﹣)2+(1+)2,再根据基本不等式可得(x++1)2≤8,问题得以解决.【解答】解:∵(xy﹣1)2=(3y+2)(y﹣2)=3y2﹣4y﹣4,∴(xy﹣1)2+(y2+4y+4)=4y2,∴(xy﹣1)2+(y+2)2=4y2,∴4=(x﹣)2+(1+)2≥(x﹣+1+)2,当且仅当x﹣=1+时取等号,∴(x++1)2≤8∴x++1≤2,∴x+≤2﹣1,故答案为:2﹣1三、解答题:共50分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.【考点】IK:待定系数法求直线方程.【分析】(Ⅰ)求出直线AB的斜率,点到其中垂线的斜率,求出直线方程看;(Ⅱ)设出△ABC的重心,结合公式求出重心的坐标即可.【解答】解:(Ⅰ)∵AB的中点是M(3,2),直线AB的斜率是﹣3,线段AB中垂线的斜率是,故线段AB的垂直平分线方程是y﹣2=(x﹣3),即x﹣3y+3=0;(Ⅱ)设△ABC的重心为G(x,y),由重心坐标公式可得,故重心坐标是G(4,2).18.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=2sinB,c=b.(Ⅰ)求sinA的值;(Ⅱ)若△ABC的面积为3,求b的值.【考点】HT:三角形中的几何计算.【分析】(Ⅰ)由正弦定理得a=2b,从而利用余弦定理求出cosA,由此利用正弦定理能求出sinA.(Ⅱ)由S=,求出bc=24,由此能求出b.【解答】解:(Ⅰ)∵在△ABC中,内角A,B,C的对边分别为a,b,c,sinA=2sinB,c=b.∴a=2b,∴cosA====﹣,∴sinA==.(Ⅱ)∵S=,即=3,解得bc=24,又c=,∴,解得b=4.19.已知函数f(x)=|2x﹣3|+ax﹣6(a是常数,a∈R).(Ⅰ)当a=1时,求不等式f(x)≥0的解集;(Ⅱ)当x∈[﹣1,1]时,不等式f(x)<0恒成立,求实数a的取值范围.【考点】R4:绝对值三角不等式.【分析】(Ⅰ)代入a的值,通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题转化为(a﹣2)x﹣3<0,x∈[﹣1,1],得到关于a的不等式组,解出即可.【解答】解:(Ⅰ)a=1时,f(x)=|2x﹣3|+x﹣6=,故原不等式等价于或,解得:x ≥3或x ≤﹣3,故原不等式的解集是{x|x ≥3或x ≤﹣3}; (Ⅱ)x ∈[﹣1,1]时,不等式f (x )<0恒成立, 即3﹣2x+ax ﹣6<0恒成立, 即(a ﹣2)x ﹣3<0,x ∈[﹣1,1],由,解得:﹣1<a <5, 故a 的范围是(﹣1,5).20.已知函数f (x )=4sinxcos (x+)+m (x ∈R ,m 为常数),其最大值为2.(Ⅰ)求实数m 的值;(Ⅱ)若f (α)=﹣(﹣<α<0),求cos2α的值.【考点】GL :三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin (ωx +φ)的形式,求出最大值,令其等于2,可得实数m 的值.(Ⅱ)f (α)=﹣(﹣<α<0)带入计算,找出等式关系,利用二倍角公式求解即可.【解答】解:(Ⅰ)函数f (x )=4sinxcos (x+)+m (x ∈R ,m 为常数),化简可得:f (x )=4sinxcosxcos ﹣4sin 2xsin+m=sin2x ﹣2sin 2x+m=sin2x+cos2x ﹣+m=2sin (2x+)﹣+m∵最大值为2.即2﹣+m=2,可得m=.(Ⅱ)由f (α)=﹣(﹣<α<0),即2sin (2α+)=.∴sin(2α+)=∵﹣<α<0∴<2α+<.∴cos(2α+)=;那么cos2α=cos[(2α)]=cos(2α+)cos+sin(2α+)sin=.21.已知数列{a n}的前n项和为S n,且满足a1=3,S n+1=3(S n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)在数列{b n}中,b1=9,b n+1﹣b n=2(a n+1﹣a n)(n∈N*),若不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立,求实数λ的取值范围;(Ⅲ)令T n=+++…+(n∈N*),证明:对于任意的n∈N*,T n<.【考点】8K:数列与不等式的综合;8H:数列递推式.【分析】(Ⅰ)由S n+1=3(S n+1)(n∈N*).得当n≥2时,S n=3(S n﹣1+1)(n∈N*).两式相减得a n+1=3a n,得数列{a n}是首项为3,公比为3的等比数列,即可.(Ⅱ)可得,b n=(b n﹣b n﹣1)+(b n﹣1﹣b n)+…+(b2﹣b1)+b1=2•3n+3,(n ∈N+)不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立⇔λ>令f(n)=+,利用单调性实数λ的取值范围.(Ⅲ)当n≥2时,(2n﹣1)a n﹣1=(2n﹣1)•3n>2•3n即=【解答】解:(Ⅰ)∵S n+1=3(S n+1)(n∈N*).当n≥2时,S n=3(S n﹣1+1)(n∈N*).两式相减得a n+1=3a n∴数列{a n}是首项为3,公比为3的等比数列,当n≥2时,.当n=1时,a1=3也符合,∴.(Ⅱ)将,代入b n+1﹣b n=2(a n+1﹣a n)(n∈N*),得,∴b n=(b n﹣b n﹣1)+(b n﹣1﹣b n)+…+(b2﹣b1)+b1=4(3n﹣1+3n﹣2+…+3)+9+9=2•3n+3,(n∈N+)∴不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立⇔λ>令f(n)=+,则f(n+1)=,∴当n≤4时,f(n)单调递增,当n≥5时,f(n)单调递减,故a1<a2<a3<a4<a5>a6>a7…∴,故∴实数λ的取值范围为(,+∞).(Ⅲ)证明:当n=1时,T1=当n≥2时,(2n﹣1)a n﹣1=(2n﹣1)•3n>2•3n∴∴==故对于任意的n∈N*,T n<.。

相关文档
最新文档